Farsin Hamzei | Neuroscience | Best Researcher Award

Prof. Dr. Farsin Hamzei | Neuroscience | Best Researcher Award

Lecture from Moritz Klinik, Germany

Prof. Dr. med. Farsin Hamzei is a highly accomplished neurologist and researcher specializing in neurorehabilitation. With over two decades of experience in academic and clinical neurology, he has significantly contributed to stroke rehabilitation, motor network recovery, and non-invasive brain stimulation techniques. Currently, he serves as the Chief Physician at Moritz Klinik Bad Klosterlausnitz and holds a professorship at Friedrich-Schiller-Universität Jena. His leadership has driven the expansion of rehabilitation services, including the establishment of specialized outpatient centers for neurological recovery. He has received prestigious research grants and awards, highlighting his contributions to innovative therapeutic approaches. His expertise spans functional MRI, transcranial magnetic stimulation (TMS), and diffusion tensor imaging, advancing the understanding of neural plasticity. Prof. Hamzei has also played a vital role in medical education, mentoring students and professionals in neurology and neurorehabilitation. His work is recognized both nationally and internationally, with a focus on improving patient outcomes through cutting-edge research. His leadership in clinical and research settings, along with his dedication to advancing neurorehabilitation, has made him a key figure in the field. His ongoing research aims to refine therapeutic strategies and enhance the effectiveness of rehabilitation for stroke and neurological disorders.

Professional Profile

Education

Prof. Hamzei pursued his medical studies at multiple prestigious German universities. He began his medical education at Johann Wolfgang Goethe University in Frankfurt (1989-1992), where he completed his preliminary medical examination. He continued at Ruprecht-Karls-Universität Heidelberg-Mannheim (1992-1993) and later at Rheinische Friedrich-Wilhelms-Universität Bonn (1993-1995), where he successfully completed his final medical examinations. In 1996, he finished his practical training in oncology, cardiovascular surgery, and neurology at the University Hospital Bonn. He obtained his medical degree and licensure in November 1996. His academic journey also includes a Doctor of Medicine (M.D.) degree awarded in 1997 for his dissertation on cortisol concentration changes in patients with obsessive-compulsive disorder. He later achieved his habilitation in neurology in 2006, focusing on functional studies of motor network organization. Furthering his education in healthcare administration, he obtained a Master of Health Business Administration (MHBA) between 2012 and 2014, equipping him with leadership skills in hospital management and healthcare economics. His comprehensive education in medicine, research, and business administration has enabled him to lead and innovate in neurological rehabilitation, integrating clinical expertise with advanced research methodologies.

Professional Experience

Prof. Hamzei has an extensive career in neurology, research, and medical leadership. He began as a physician in training at the Neurological University Hospital Bonn in 1997. From 1999 to 2000, he received a prestigious research fellowship from the German Research Foundation (DFG) at the Neurological University Hospital Jena. Between 2001 and 2005, he worked as a research associate at the Neurological University Hospital Hamburg-Eppendorf, further developing his expertise in neuroimaging and neurorehabilitation. In 2005, he became a board-certified neurologist and subsequently joined the Neurological University Hospital Freiburg as a senior research associate. By 2007, he was appointed Senior Consultant at the same institution. His academic career flourished when he received the venia legendi for neurology in 2006 and later a professorship in Neurological Rehabilitation at Friedrich-Schiller-Universität Jena in 2009. Since 2010, he has been the Chief Physician of the Neurological Department at Moritz Klinik Bad Klosterlausnitz, where he has led expansions in rehabilitation services. His leadership extends to directing specialized centers, including those for aphasia, dysphagia, and long-COVID therapy. His career reflects a strong balance of clinical practice, research, and medical education.

Research Interests

Prof. Hamzei’s research focuses on neurorehabilitation, motor recovery after stroke, and neural plasticity. He investigates how the brain reorganizes itself following central nervous system damage, using advanced imaging and stimulation techniques. His work explores the adaptation and functional restoration of motor networks post-injury, employing tools like functional MRI, transcranial magnetic stimulation (TMS), and diffusion tensor imaging (DTI). He is particularly interested in training-based changes in the brain, examining how therapies like forced-use therapy, video-assisted rehabilitation, and mirror therapy impact motor recovery. Another key area of his research is non-invasive brain stimulation, including repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), to enhance neuroplasticity and functional improvement in patients. He also investigates cognitive and motor training for neurorehabilitation, aiming to develop innovative therapies for stroke and neurodegenerative conditions. His research integrates neuroscience, technology, and clinical application, focusing on improving patient outcomes through personalized rehabilitation strategies. Additionally, he collaborates on projects related to aphasia and long-COVID rehabilitation, expanding the scope of his expertise. His contributions have significantly influenced rehabilitation protocols and the understanding of motor network reorganization in patients with neurological disorders.

Research Skills

Prof. Hamzei possesses extensive expertise in neuroimaging and neuromodulation techniques for neurorehabilitation research. He is proficient in functional MRI (fMRI), diffusion tensor imaging (DTI), and voxel-based morphometry, which he uses to analyze brain network reorganization. His skills extend to transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), tools that he employs to investigate and enhance neuroplasticity in patients with motor deficits. He has experience in clinical trial design, having led and contributed to numerous studies evaluating rehabilitation techniques for stroke and neurological disorders. His methodological expertise includes randomized controlled trials (RCTs) and observational studies in neurorehabilitation. Additionally, he is skilled in data analysis and interpretation of neural connectivity changes post-rehabilitation. His research funding achievements demonstrate his ability to secure grants and manage large-scale scientific projects. He also has experience in interdisciplinary collaboration, working with neurologists, physiotherapists, and psychologists to develop innovative rehabilitation approaches. His ability to integrate cutting-edge neuroscience with clinical applications highlights his effectiveness as both a researcher and a clinician. His technical and analytical skills in neurorehabilitation research have contributed to advancements in understanding and treating motor impairments after neurological injury.

Awards and Honors

Prof. Hamzei has received multiple awards in recognition of his contributions to neurorehabilitation research. In 2009, he was awarded the Fritz und Eleonore Hodeige Prize for his development of innovative therapeutic approaches in neurological rehabilitation. This award highlighted his impact on improving rehabilitation techniques for patients recovering from neurological injuries. In 2016, he received third place in the Reha Zukunftspreis from IQMG and BDPK for his work on the “Model-A-Team” in neurological rehabilitation. This recognition was for pioneering a collaborative, interdisciplinary approach to patient recovery. Beyond these prestigious awards, he has consistently received research funding from national and international organizations, including the European Network for Excellence (FP6) and the Bernstein Network for Neurotechnology, which provided over €1 million for his research. His ability to secure major grants further demonstrates his excellence in research and innovation. He has also been appointed to multiple examination committees in Germany, solidifying his influence in shaping future generations of neurologists. These honors reflect his dedication to advancing neurological rehabilitation, integrating research with clinical applications to improve patient care and outcomes.

Conclusion

Prof. Dr. med. Farsin Hamzei is a leading expert in neurorehabilitation, with a distinguished career in academic research, clinical practice, and medical education. His extensive contributions to stroke recovery, motor network adaptation, and non-invasive brain stimulation have significantly advanced the field. Through his leadership at Moritz Klinik and Friedrich-Schiller-Universität Jena, he has expanded rehabilitation services and integrated innovative therapeutic approaches. His research, supported by prestigious grants and awards, focuses on enhancing neuroplasticity and functional recovery through cutting-edge imaging and stimulation techniques. His expertise in neuroimaging, clinical trials, and interdisciplinary collaboration has strengthened rehabilitation strategies for neurological patients. His commitment to education, serving on medical examination boards and mentoring future neurologists, further underscores his influence in the field. Prof. Hamzei’s dedication to improving patient outcomes through research, innovation, and education positions him as a key figure in neurorehabilitation. His continued work will likely shape the future of rehabilitation medicine, advancing both theoretical understanding and practical applications for neurological recovery.

Publications Top Notes

  1. Title: Implicit Motor Learning Under Anodal or Cathodal tDCS During fMRI Induces Partially Distinct Network Responses
    Authors: Farsin Hamzei, Alexander Ritter, Daniel Güllmar
    Year: 2025

  2. Title: A Randomized Controlled Trial to Test the Effects of Repetitive Peripheral Magnetic Stimulation Versus Neuromuscular Electrical Stimulation in Patients with Spastic Hemiparesis After Stroke (REPMAST): Study Protocol
    Authors: Kristin Loreen Pohl, Jens Müller, Katja Wittig-Böttger, Alexander Ritter, Farsin Hamzei
    Year: 2024

  3. Title: Different Effect Sizes of Motor Skill Training Combined with Repetitive Transcranial versus Trans-Spinal Magnetic Stimulation in Healthy Subjects
    Authors: Farsin Hamzei, Alexander Ritter, Kristin Pohl, Peggy Stäps, Eric Wieduwild
    Year: 2024

  4. Title: Understanding the concept of a novel tool requires interaction of the dorsal and ventral streams
    Authors: Gundula Seidel, Michel Rijntjes, Daniel Güllmar, Cornelius Weiller, Farsin Hamzei
    Year: 2023

  5. Title: Accelerated brain ageing in sepsis survivors with cognitive long‐term impairment
    Authors: Gundula Seidel, Christian Gaser, Theresa Götz, Albrecht Günther, Farsin Hamzei
    Year: 2020

  6. Title: Anatomy of brain lesions after stroke predicts effectiveness of mirror therapy
    Authors: Farsin Hamzei, Gabriele Erath, Ursula Kücking, Cornelius Weiller, Michel Rijntjes
    Year: 2020

Zahra Kazemi | Mechanical Engineering | Best Researcher Award

Dr. Zahra Kazemi | Mechanical Engineering | Best Researcher Award

Assistant Professor from Shiraz University of Technology, Iran

Dr. Zahra Kazemi is an Assistant Professor in the Department of Mechanical Engineering at Shiraz University of Technology. She holds a Ph.D. in Mechanical Engineering from Shiraz University and has completed two postdoctoral research fellowships. Her research primarily focuses on advanced manufacturing processes, including Selective Laser Melting (SLM), Laser Powder Bed Fusion (LPBF), and computational modeling for material and load identification. She has published extensively in high-impact journals and has presented her work at various international conferences. Her contributions to numerical simulations and optimization methods have significantly advanced the understanding of defect reduction and material behavior in additive manufacturing. With strong expertise in experimental and computational methods, Dr. Kazemi continues to contribute to the field through interdisciplinary research and collaboration.

Professional Profile

Education

Dr. Kazemi completed her Bachelor’s and Master’s degrees in Mechanical Engineering before earning her Ph.D. from Shiraz University. During her doctoral studies, she specialized in computational modeling and inverse analysis for material behavior prediction. Following her Ph.D., she pursued postdoctoral research, focusing on precision instrumentation design and optimization of advanced manufacturing processes such as SLM. Her academic journey has equipped her with a strong foundation in numerical simulations, experimental validation, and optimization techniques for industrial applications.

Professional Experience

Dr. Kazemi has held academic and research positions in mechanical engineering, focusing on additive manufacturing and numerical modeling. She is currently an Assistant Professor at Shiraz University of Technology, where she teaches undergraduate and graduate courses while conducting advanced research. She has also worked as a postdoctoral researcher, contributing to the development of precision instruments and optimization of laser-based manufacturing techniques. Her professional experience includes supervising research projects, mentoring students, and collaborating with experts in computational mechanics, thermal engineering, and materials science.

Research Interests

Dr. Kazemi’s research interests include additive manufacturing, computational modeling, inverse analysis, and material behavior prediction. She is particularly focused on enhancing the performance of metal structures manufactured using SLM through simulation and experimental validation. Additionally, her work on load and material identification using inverse analysis contributes to the accurate characterization of viscoplastic materials. She is also interested in applying machine learning techniques to optimize manufacturing processes and reduce defects in industrial applications.

Research Skills

Dr. Kazemi possesses strong expertise in numerical simulations, finite element analysis, and computational mechanics. She is proficient in using advanced software tools for modeling and optimization of manufacturing processes. Her skills extend to experimental validation techniques, including thermal and structural analysis of manufactured components. She is also experienced in meshfree analysis methods, load identification techniques, and optimization strategies for material design. With a background in interdisciplinary research, she effectively integrates computational and experimental approaches to improve engineering solutions.

Awards and Honors

Dr. Kazemi has received recognition for her contributions to mechanical engineering through awards and conference presentations. She has been acknowledged for her research excellence in additive manufacturing and material optimization. Her work has been published in leading journals, and she has received invitations to speak at international conferences. She has also been involved in collaborative projects that have been recognized for their impact on manufacturing innovation and computational analysis.

Conclusion

Dr. Zahra Kazemi is a distinguished researcher in mechanical engineering, specializing in additive manufacturing and computational modeling. With a strong academic background, extensive publication record, and expertise in numerical and experimental research, she continues to contribute significantly to her field. Her dedication to advancing manufacturing techniques and material analysis positions her as a valuable asset to the academic and research community. By expanding her collaborations, securing research funding, and further developing industrial applications of her work, she can further enhance her impact in mechanical engineering and beyond.

Publications Top Notes

  1. Title: Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach
    Authors: M. Ghalambaz, S.A.M. Mehryan, A. Veismoradi, M. Mahdavi, I. Zahmatkesh, …
    Year: 2021
    Citations: 72

  2. Title: Meshfree radial point interpolation method for analysis of viscoplastic problems
    Authors: Z. Kazemi, M.R. Hematiyan, R. Vaghefi
    Year: 2017
    Citations: 30

  3. Title: Melting pool simulation of 316L samples manufactured by Selective Laser Melting method, comparison with experimental results
    Authors: Z. Kazemi, M. Soleimani, H. Rokhgireh, A. Nayebi
    Year: 2022
    Citations: 25

  4. Title: Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: a numerical study
    Authors: S.A.M. Mehryan, K.A. Ayoubloo, M. Mahdavi, O. Younis, Z. Kazemi, M. Ghodrat, …
    Year: 2022
    Citations: 18

  5. Title: Load identification for viscoplastic materials with some unknown material parameters
    Authors: Z. Kazemi, M.R. Hematiyan, Y.C. Shiah
    Year: 2019
    Citations: 18

  6. Title: An efficient load identification for viscoplastic materials by an inverse meshfree analysis
    Authors: Z. Kazemi, M.R. Hematiyan, Y.C. Shiah
    Year: 2018
    Citations: 12

  7. Title: Inverse determination of time-dependent loads in viscoplastic deformations using strain measurements in the deformed configuration
    Authors: Z. Kazemi, M.R. Hematiyan
    Year: 2018
    Citations: 4

  8. Title: A Multiobjective Optimization of Laser Powder Bed Fusion Process Parameters to Reduce Defects by Modified Taguchi Method
    Authors: Z. Kazemi, R. Nayebi, A. M. Hojjatollah, M. Soleimani
    Year: 2025

  9. Title: تحلیل کانال پسا برای یک بالانس داخلی تونل باد با در نظر گرفتن قابلیت ساخت‎
    Authors: زهرا کاظمی، محمدحسن منتظری، محمد مهدی علیشاهی‎
    Year: 2024

  10. Title: Residual Stress of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: Z. Kazemi, H. Rokhgireh, A. Nayebi
    Year: 2023

  11. Title: Selective Laser Melting Defects: Morphology of Defects Due to Lack of Fusion and Evaporation Pores
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023

  12. Title: Residual Stress of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023

  13. Title: The Effect of Process Parameters on the Residual Deformation of 316L Samples Manufactured by Selective Laser Melting Method with Consideration of Evaporation
    Authors: A.N. Zahra Kazemi, Hojjatollah Rokhgireh
    Year: 2023

 

Heba Abdallah | Chemical Engineering | Women Researcher Award

Prof. Heba Abdallah | Chemical Engineering | Women Researcher Award

Professor at National Research Centre, Egypt

Heba Abdallah Mohamed Abdallah is a distinguished professor of Chemical Engineering at the National Research Centre in Cairo, Egypt. She is a leading consultant engineer specializing in the manufacturing of special membranes for water treatment processes. With over two decades of experience, she has made significant contributions to chemical engineering, particularly in membrane technology, water desalination, and wastewater treatment. Her expertise spans the production of flat sheet, spiral wound, and hollow fiber membranes, as well as catalytic membrane reactors. Heba has played a pivotal role in advancing membrane-based solutions for environmental sustainability and industrial applications. She has participated in numerous international conferences and workshops, showcasing her dedication to continuous learning and knowledge dissemination. As a prolific researcher, she has authored and co-authored several high-impact scientific publications focusing on water purification, photocatalysis, and membrane performance enhancement. Her involvement in prestigious research projects and collaborations with international institutions reflects her global influence in the field. Heba Abdallah’s contributions extend beyond research, as she actively mentors young researchers and engineers, inspiring future generations to drive technological innovations for sustainable water management.

Professional Profile

Education

Heba Abdallah holds a Ph.D. in Chemical Engineering from Cairo University, awarded in November 2010. Her doctoral research focused on the kinetics study of esterification reactions using catalytic membranes, showcasing her expertise in membrane-based chemical processes. She also earned a Master of Science (M.Sc.) in Chemical Engineering from Cairo University in December 2004. Her master’s thesis evaluated cement lining mortar for cast iron pipes, demonstrating her proficiency in material science and industrial applications. Heba’s academic journey began with a Bachelor of Science (B.Sc.) in Chemical Engineering from Cairo University, completed in May 2000. Her graduation project involved the production of methanol using a multi-tubular reactor, highlighting her early interest in industrial chemical processes. Throughout her academic career, Heba demonstrated a keen focus on engineering solutions for industrial and environmental challenges. Her solid educational foundation has been instrumental in shaping her research career, enabling her to make significant contributions to membrane technology and water treatment.

Professional Experience

Heba Abdallah has an extensive professional background in chemical engineering, with a focus on membrane technology and water treatment. Since 2021, she has been a Professor at the National Research Centre (NRC) in Cairo, Egypt, where she leads advanced research projects on membrane production and application. From 2016 to 2021, she served as an Associate Professor at the NRC, contributing significantly to research and development in water desalination and wastewater treatment. Prior to that, she was a Researcher at the NRC from 2010 to 2016, where she honed her expertise in membrane fabrication and performance enhancement. From 2006 to 2010, she worked as an Associate Researcher at the NRC, focusing on pilot-scale membrane production and testing. Earlier in her career, Heba gained industrial experience as a Research Assistant at El-Nasr Casting Company from 2001 to 2006 and as an Engineer in the same company from 2000 to 2001. Her diverse experience, combining academic research with industrial practice, has made her a recognized expert in the field of chemical engineering and membrane technology.

Research Interests

Heba Abdallah’s research interests span a wide range of chemical engineering fields, with a primary focus on membrane technology. She specializes in the production of flat sheet, spiral wound, and hollow fiber membranes for water desalination and wastewater treatment. Her work explores catalytic membrane reactors, electrodialysis, and reverse electrodialysis technologies for enhanced separation processes. Heba is also deeply involved in microreactor technology, aiming to develop efficient and sustainable chemical processes. Her research addresses environmental challenges, including the treatment of industrial effluents, removal of contaminants, and development of advanced filtration systems. She is particularly interested in the application of membrane technology in fuel cells, contributing to the development of clean energy solutions. Heba’s research also extends to the fabrication of nanocomposite membranes with enhanced antifouling and photocatalytic properties, targeting improved water purification efficiency. Her commitment to innovative research continues to drive advancements in sustainable water management and industrial membrane applications.

Research Skills

Heba Abdallah possesses a diverse set of research skills that contribute to her expertise in chemical engineering. She excels in the synthesis and fabrication of membranes, including flat sheet, spiral wound, and hollow fiber designs. Her technical proficiency extends to the development and optimization of catalytic membrane reactors for chemical processes. Heba has significant experience in water desalination technologies, including reverse osmosis and forward osmosis systems. She is skilled in the design and application of microreactors for industrial chemical reactions, enhancing process efficiency and scalability. Her analytical skills include membrane performance evaluation, fouling resistance assessment, and photocatalytic activity testing. Additionally, she is adept at using advanced characterization techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) to analyze membrane morphology and composition. Heba’s expertise in wastewater treatment, membrane surface modification, and electrodialysis technologies underscores her capacity to develop innovative solutions for water purification and industrial processes.

Awards and Honors

Heba Abdallah has received numerous accolades for her contributions to chemical engineering and membrane technology. Her participation in international conferences and workshops has earned her recognition for presenting groundbreaking research on membrane applications in water treatment. She was honored for her role in the development of innovative polymeric and ceramic membranes, enhancing water purification efficiency. Heba’s collaborations with international institutions, including her training at Holykem Company in China and Alabama University in the United States, reflect her global influence. She has also been acknowledged for her contributions to scientific innovation through her involvement in the Cairo International Exhibition of Innovation. Her membership in the Egyptian National Network in Nanotechnology highlights her commitment to advancing nanotechnology applications in membrane science. Heba’s continuous pursuit of excellence and her impactful contributions to sustainable water management have positioned her as a leading figure in the field of chemical engineering.

Conclusion

Heba Abdallah is a prominent figure in chemical engineering, recognized for her expertise in membrane technology and water treatment. With a strong academic background, extensive research experience, and a passion for innovation, she has made significant contributions to sustainable water management and industrial chemical processes. Her work on advanced membrane fabrication, water desalination, and wastewater treatment has been widely acclaimed in scientific communities. Heba’s commitment to knowledge dissemination is evident through her participation in international conferences and her numerous publications in high-impact journals. Her influence extends beyond research, as she actively mentors and collaborates with other scientists to drive technological advancements. Heba Abdallah’s dedication to developing efficient and eco-friendly membrane technologies continues to play a vital role in addressing global water challenges and promoting sustainable industrial practices.

Publications Top Notes

  1. The Use of Green Synthesized TiO2/MnO2 Nanoparticles in Solar Power Membranes for Pulp and Paper Industry Wastewater Treatment

    • Authors: S.A. Mousa, Sahar A.; H.M. Abdallah, Heba Mohamed; S.A. Khairy, Sherif A.
    • Year: 2025
  2. Modification of Blend Reverse Osmosis Membranes Using ZrO2 for Desalination Process Purposes

    • Authors: S.O. Alaswad, Saleh O.; E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2025
  3. Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology

    • Authors: S.O. Alaswad, Saleh O.; H.M. Abdallah, Heba Mohamed; E.S. Mansor, Eman S.
    • Year: 2024
  4. Fabrication and Assessment of Performance of Clay-Based Ceramic Membranes Impregnated with CNTs in Dye Removal

    • Authors: K.H. Hamad, Kareem H.; H.M. Abdallah, Heba Mohamed; S.T. Aly, Sohair T.; R.M. Abobeah, Reda M.; S.K. Amin, Sh K.
    • Year: 2024
  5. High-Performance Metal-Organic Frameworks for Efficient Adsorption, Controlled Release, and Membrane Separation of Organophosphate Pesticides

    • Authors: A.M. Ashraf, Abdallah M.; M.H. Khedr, Mohamed Hamdy; A.A. Farghali, Ahmed A.; H.M. Abdallah, Heba Mohamed; M. Taha, Mohamed
    • Year: 2024
    • Citations: 4
  6. Integrated Membranes System for Water Application in Microbiology/Molecular Biology

    • Authors: H.M. Abdallah, Heba Mohamed; D.N. Abd-Elshafy, Dina Nadeem; M.S. Shalaby, Marwa Saied; A.M.H. Shaban, Ahmed Mahmoud H.; M.M. Bahgat, Mahmoud Mohamed
    • Year: 2024
  7. The Role of Membrane Filtration in Wastewater Treatment

    • Authors: E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2024
    • Citations: 1
  8. Production of Disinfective Coating Layer to Facial Masks Supplemented with Camellia sinensis Extract

    • Authors: D.N. Abd-Elshafy, Dina Nadeem; H.M. Abdallah, Heba Mohamed; R. Nadeem, Rola; A.M.H. Shaban, Ahmed Mahmoud H.; M.M. Bahgat, Mahmoud Mohamed
    • Year: 2024
  9. Highly Effective Ultrafiltration Membranes Based on Plastic Waste for Dye Removal from Water

    • Authors: E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2024
    • Citations: 4
  10. Parameters Affecting Synthesis of Sulfonated Chitosan Membrane for Proton Exchange Membrane in Fuel Cells

  • Authors: S.G. Abd-Elnaeem, Sara G.; A.I. Hafez, Azza Ibrahim; K.M. El‑khatib, Kamel M.; M.K. Fouad, Mai Kamal; E.F. Abadir, Ehab Fouad
  • Year: 2024
  • Citations: 1

Dan Yang | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Dan Yang | Chemical Engineering | Best Researcher Award

School of Chemistry and Molecular Engineering, Nanjing Tech University, China

Dan Yang is an accomplished associate professor at Nanjing Tech University, specializing in chemistry and molecular engineering. With a strong academic foundation and extensive research experience, she focuses on the synthesis of metal nanoclusters and their applications in photoelectrocatalysis and electrocatalysis. Her research aims to develop innovative solutions for CO2 reduction and biomass conversion, contributing to sustainable chemical processes. Throughout her career, she has made significant contributions to the field, authoring multiple high-impact publications in renowned scientific journals. Dan Yang has successfully secured competitive research grants, demonstrating her expertise in securing funding for cutting-edge projects. With her deep-rooted knowledge in physical chemistry and material science, she continues to make impactful strides in catalysis research, earning recognition and respect in her field.

Professional Profile

ORCID Profile

Education

Dan Yang has an extensive academic background in chemistry and material science. She earned her doctoral degree in physical chemistry from Nanjing University (2017–2020) under the supervision of Professors Weiping Ding and Yan Zhu. During her doctoral studies, she focused on the catalytic conversion of C1 molecules using metal clusters. Prior to this, she obtained a master’s degree in material science from Sun Yat-sen University (2012–2014), where she worked under Professor Yuezhong Meng, specializing in the development of advanced materials. Her educational journey began at Northwest Normal University, where she completed her bachelor’s degree in chemistry (2008–2012), building a strong foundation in chemical principles and laboratory techniques. This diverse and robust educational background has equipped Dan Yang with the expertise to conduct innovative research in electrocatalysis and sustainable chemical processes.

Professional Experience

Dan Yang’s professional career reflects her dedication to advancing chemical research. She is currently an associate professor at Nanjing Tech University (2023–present), where she leads research on metal nanocluster synthesis and their applications in photoelectrocatalysis and electrocatalysis of C1 molecules and biomass conversion. Prior to her current role, she served as a postdoctoral researcher at the same university (2021–2022), where she worked on electrocatalytic CO2 reduction reactions (CO2RR) and the conversion of biomass derivatives into valuable chemical products. From 2014 to 2016, she was an assistant research fellow at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. There, she contributed to the development of fine chemicals, including phase-change materials, epoxide plasticizers, and bio-based polyols. Her diverse professional experience underscores her expertise in catalysis, sustainable chemical synthesis, and material science.

Research Interests

Dan Yang’s research interests revolve around catalysis and sustainable chemistry. She specializes in the synthesis of metal nanoclusters and their catalytic applications in photoelectrocatalysis and electrocatalysis. Her current focus includes CO2 reduction reactions (CO2RR) to produce carbon monoxide (CO) and formic acid (HCOOH), offering potential solutions for carbon capture and utilization. She also explores the electrocatalytic transformation of biomass-derived molecules, such as glycerol and glucose, into valuable carboxylic acid products. Additionally, her work investigates the evolution of metal-ligand interfaces in nanoclusters and their impact on catalytic performance. Through her research, Dan Yang aims to develop efficient and sustainable catalytic systems that address environmental challenges and promote green chemical processes.

Research Skills

Dan Yang possesses a diverse set of research skills in the fields of catalysis and material science. She is highly proficient in the synthesis and characterization of metal nanoclusters, utilizing techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) to analyze cluster structures. Her expertise extends to electrochemical methods, including cyclic voltammetry and chronoamperometry, for evaluating catalytic performance. Additionally, she has experience in biomass conversion processes, utilizing electrocatalysis and photoelectrocatalysis techniques. Her analytical skills include advanced data interpretation and the use of computational tools for modeling catalytic reactions. Dan Yang’s technical proficiency enables her to design and optimize catalytic systems for efficient and selective chemical transformations.

Awards and Honors

Dan Yang has received several prestigious awards and research grants in recognition of her contributions to catalysis research. She was awarded the Young Scientists Fund of the National Natural Science Foundation of China (NSFC) for her project on the evolution of metal-ligand interfaces in gold clusters for CO2 reduction (2025–2027). She also leads a sub-project of the NSFC International Cooperation and Exchanges Program, focusing on new catalysts and materials for CO2 capture and conversion (2024–2026). Additionally, she secured funding from the Jiangsu Natural Science Foundation of China for her work on glycerol carbonate synthesis through electrochemical CO2 conversion (2023–2026). Dan Yang previously received support from the China Postdoctoral Science Foundation for her research on electrolyte-regulated CO2RR using gold clusters (2022–2023). These accolades highlight her innovative research and scientific impact.

Conclusion

Dan Yang is a distinguished researcher and associate professor with a profound expertise in catalysis, material science, and sustainable chemical processes. Her academic journey, spanning from physical chemistry to material science, has equipped her with the skills and knowledge to tackle complex challenges in CO2 reduction and biomass conversion. With a prolific publication record and multiple research grants, she continues to make significant contributions to the field. Her commitment to advancing sustainable catalytic processes reflects her dedication to addressing pressing environmental challenges. Through her innovative research, Dan Yang remains at the forefront of scientific discovery, driving advancements in electrocatalysis and green chemistry.

Publications Top Notes

  1. Metal-ligand interfaces for well-defined gold nanoclusters
    Authors: Yang, Dan; Wu, Yating; Yuan, Zhaotong; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Zhu, Yan; Yang, Yanhui
    Journal: Science China Chemistry
  2. Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application
    Authors: Yan, Qian; Yuan, Zhaotong; Wu, Yating; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Yang, Dan; Liu, Xu; Xue, Nianhua; Zhu, Yan
    Journal: Precision Chemistry

  3. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites
    Authors: Long, Jiangping; Tian, Suyang; Wei, Sheng; Lin, Hongqiao; Shi, Guiwen; Zong, Xupeng; Yang, Yanhui; Yang, Dan; Tang, Yu; Dai, Yihu
    Journal: Applied Surface Science

  4. Metal-carbonate interface promoted activity of Ag/MgCO3 catalyst for aqueous-phase formaldehyde reforming into hydrogen
    Authors: Wang, Qiaojuan; Wang, Jianyue; Rui, Wenjuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Li, Renhong; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  5. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption
    Authors: Wei, Sheng; Dai, Hua; Long, Jiangping; Lin, Hongqiao; Gu, Junkun; Zong, Xupeng; Yang, Dan; Tang, Yu; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  6. Investigation into the coking-related key reaction steps in dry reforming of methane over NiMgOx catalyst
    Authors: Wang, Jianyue; Wang, Jiawei; Wei, Sheng; Zhang, Yiwen; Tian, Fuhou; Yang, Dan; Kustov, Leonid M.; Yang, Yanhui; Dai, Yihu
    Journal: Molecular Catalysis

  7. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst
    Authors: Luo, Pan; Wang, Jianyue; Rui, Wenjuan; Xu, Ruilin; Kuai, Zhiyuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  8. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters (vol 4, pg 66, 2022)
    Authors: Not listed
    Journal: CCS Chemistry

  9. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity
    Authors: Wu, Yueqi; Long, Jiangping; Wei, Sheng; Gao, Yating; Yang, Dan; Dai, Yihu; Yang, Yanhui
    Journal: Microporous and Mesoporous Materials

  10. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone
    Authors: Gao, Xing; Ding, Yingying; Peng, Lilin; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  11. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters
    Authors: Yang, Dan; Liu, Xu; Dai, Yihu; Zhu, Yan; Yang, Yanhui
    Journal: Chemical Journal of Chinese Universities

  12. Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands
    Authors: Yang, Dan; Wang, Jiawei; Wang, Qiaojuan; Yuan, Zhaotong; Dai, Yihu; Zhou, Chunmei; Wan, Xiaoyue; Zhang, Qichun; Yang, Yanhui
    Journal: ACS Nano

  13. Chemoselective Oxidation of Glycerol over Platinum‐Based Catalysts: Toward the Role of Oxide Promoter
    Authors: Not listed
    Journal: ChemCatChem

  14. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters
    Authors: Not listed
    Journal: CCS Chemistry

  15. Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters
    Authors: Yang, Dan; Song, Yu; Yang, Fang; Sun, Yongnan; Li, Shuohao; Liu, Xu; Zhu, Yan; Yang, Yanhui
    Journal: The Journal of Chemical Physics

  16. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals
    Authors: Not listed
    Journal: EcoMat

  17. Selective CO2 conversion tuned by periodicities in Au8n+4(TBBT)4n+8 nanoclusters
    Authors: Not listed
    Journal: Nano Research

  18. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores
    Authors: Not listed
    Journal: Chinese Journal of Catalysis

  19. Ligand-protected Au4Ru2 and Au5Ru2 nanoclusters: distinct structures and implications for site-cooperation catalysis
    Authors: Not listed
    Journal: Chemical Communications

  20. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity
    Authors: Not listed
    Journal: Journal of the American Chemical Society

  21. Controllable Conversion of CO2 on Non‐Metallic Gold Clusters
    Authors: Not listed
    Journal: Angewandte Chemie International Edition

  22. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
    Authors: Chen, Limin; Feng, Jie; Yang, Dan; Tian, Falin; Ye, Xiaomin; Qian, Qiuping; Wei, Shuai; Zhou, Yunlong
    Journal: Chemical Science

  23. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles
    Authors: Chen, Limin; Yang, Dan; Feng, Jie; Zhang, Min; Qian, Qiuping; Zhou, Yunlong
    Journal: Journal of Materials Chemistry B

  24. The Evolution in Catalytic Activity Driven by Periodic Transformation in the Inner Sites of Gold Clusters
    Authors: Sun, Yongnan; Wang, Endong; Ren, Yujing; Xiao, Kang; Liu, Xu; Yang, Dan; Gao, Yi; Ding, Weiping; Zhu, Yan
    Journal: Advanced Functional Materials

Annu Thomas | Chemistry | Best Researcher Award

Assist. Prof. Dr Annu Thomas | Chemistry | Best Researcher Award

Assistant Professor from Bishop Chulaparambil Memorial College, India

Dr. Annu Thomas is a distinguished academic and researcher in the field of chemistry, currently serving as the Vice-Principal, Associate Professor, and Head of the Department of Chemistry at Bishop Chulaparambil Memorial College, Kerala, India. With a Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, her expertise spans biomimetic growth, nanomaterials, and environmental chemistry. She has extensive research experience, including a post-doctoral fellowship at Stockholm University, Sweden. Dr. Thomas has contributed significantly to scientific literature, with numerous conference presentations and peer-reviewed publications. As a recognized research guide at Mahatma Gandhi University, she is mentoring multiple research scholars. Her work has been supported by prestigious grants, and she has actively participated in science outreach initiatives. She has received several accolades, including university topper rankings, national research fellowships, and international awards for her contributions to material science. An active member of professional organizations, Dr. Thomas plays a key role in promoting scientific advancements. Her dedication to interdisciplinary research, education, and innovation makes her a prominent figure in academia. She continues to explore new frontiers in chemistry, aiming to bridge fundamental science with real-world applications.

Professional Profile

Education

Dr. Annu Thomas has an impressive academic background in chemistry. She earned her Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, under the Faculty of Natural Sciences at Technical University Dresden. Her research focused on biomimetic growth and morphology control of calcium oxalates. She previously obtained an M.Sc. in Physical Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, where she secured the first rank in her university. Prior to that, she completed her B.Sc. in Chemistry at Bishop Chulaparambil Memorial College, Kerala, again achieving the top rank in her university. In addition to her formal education, Dr. Thomas has engaged in research training at various prestigious institutions, including Stockholm University, Sweden, and the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Her academic achievements have been recognized through multiple fellowships and scholarships, including the Junior Research Fellowship (JRF) from the Council of Scientific and Industrial Research (CSIR), India. Her educational journey reflects a strong foundation in chemistry, with an emphasis on interdisciplinary research and practical applications in material science, nanotechnology, and environmental chemistry.

Professional Experience

Dr. Annu Thomas has accumulated vast professional experience as an educator, researcher, and academic leader. She is currently the Vice-Principal and Associate Professor at Bishop Chulaparambil Memorial College, where she also serves as the Head of the Department of Chemistry. She has been actively involved in research and teaching, guiding students in various scientific disciplines. Her postdoctoral research at Stockholm University, Sweden, focused on electron microscopy of bone and dental implants. Additionally, she worked as a Research and Development Assistant at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, on mesoporous material synthesis. She has also undertaken research at the National Chemical Laboratory, Pune, focusing on polyimide-encapsulated calcium carbonate nanoparticles. Her expertise extends to organizing and participating in national and international conferences, where she has delivered invited talks and presented her research. Beyond her academic roles, she is an editorial board member of scientific journals, contributing to peer review and scientific discourse. Dr. Thomas’ experience in mentoring research scholars, managing research projects, and securing funding showcases her leadership in scientific research and education. Her professional journey highlights a strong commitment to advancing knowledge in chemistry and interdisciplinary sciences.

Research Interest

Dr. Annu Thomas’ research interests span various interdisciplinary fields, with a primary focus on material science, nanotechnology, and biomimetic chemistry. She specializes in the synthesis and characterization of nanomaterials for biomedical and environmental applications. Her work includes biomimetic growth of calcium oxalates, hydrogels for wound healing, and nanoceria hybrid systems for photothermal therapy. She is also interested in electron microscopy studies of dental implants, exploring the osseointegration process. Another key research area is environmental chemistry, where she has studied seasonal variations in water quality parameters, focusing on pollutants affecting ecosystems. Dr. Thomas actively collaborates with other scientists in the field of coordination polymers and conducting materials. Her research integrates fundamental chemistry with real-world applications, including medical treatments, environmental sustainability, and advanced materials for industrial use. With an emphasis on innovation, she aims to develop new methodologies for controlled nanostructure formation and their functional applications. Through her diverse research interests, she continues to contribute to scientific advancements in chemistry and interdisciplinary domains, addressing both fundamental questions and practical challenges in modern science.

Research Skills

Dr. Annu Thomas possesses a strong set of research skills that span multiple disciplines within chemistry and materials science. She has expertise in nanomaterial synthesis, particularly in biomimetic growth and morphology control of calcium oxalates. Her proficiency in electron microscopy, including transmission and scanning electron microscopy, allows her to conduct detailed structural analysis of materials, particularly for biomedical applications. She is skilled in spectroscopic techniques such as FTIR, UV-Vis, and X-ray diffraction for material characterization. Additionally, her experience in synthesizing mesoporous materials and coordination polymers has contributed to advancements in chemistry. Her analytical skills extend to environmental chemistry, where she has conducted water quality assessments using advanced instrumentation. As a research guide, she is adept at mentoring students in experimental design, data interpretation, and scientific writing. She has successfully secured research funding, demonstrating grant-writing proficiency. Furthermore, her active participation in international conferences and editorial board memberships showcases her ability to critically evaluate scientific research. With a strong background in interdisciplinary research, Dr. Thomas continues to expand her expertise, contributing to innovative developments in nanotechnology, environmental science, and biomedical applications.

Awards and Honors

Dr. Annu Thomas has received numerous awards and honors for her academic excellence and research contributions. She was the university topper during both her B.Sc. and M.Sc. in Chemistry at Mahatma Gandhi University, Kerala. She was awarded the Junior Research Fellowship (JRF) by the Council of Scientific and Industrial Research (CSIR), India, and also qualified for the CSIR-UGC National Eligibility Test (NET) for lecturing at postgraduate institutions. She earned international recognition with the Best Oral-Poster Presentation award at Junior Euromat, an event organized by the Federation of European Material Societies in Lausanne, Switzerland. Her Ph.D. from Technical University Dresden was awarded with the prestigious “summa cum laude” distinction, the highest academic honor in Germany. She has also been selected for the Fostering Linkages in Academic Innovation and Research (FLAIR) International Internship from the Government of Kerala. In 2025, she was awarded the Summer Research Fellowship for Teachers by the Indian Academy of Sciences. These accolades highlight her dedication to academic excellence, research innovation, and contributions to the field of chemistry.

Conclusion

Dr. Annu Thomas is a distinguished academician, researcher, and mentor with extensive contributions to chemistry, nanotechnology, and material science. Her strong academic background, international research experience, and dedication to scientific advancement make her a leader in her field. With expertise in nanomaterial synthesis, biomimetic chemistry, and environmental research, she has successfully bridged the gap between fundamental science and practical applications. Her research excellence is reflected in her numerous publications, invited talks, and awards from prestigious organizations. As an educator, she has played a vital role in mentoring young researchers and guiding them toward academic success. Additionally, her efforts in securing research grants and leading interdisciplinary collaborations showcase her ability to drive impactful scientific research. Dr. Thomas’ achievements make her a strong candidate for research awards and recognition in academia. Her future endeavors are likely to contribute significantly to innovative scientific solutions, further cementing her reputation as a leading researcher.

Publications Top Notes

  1. Title: Biomimetic Growth of Calcium Oxalate Hydrates: Shape Development and Structures in Agar Gel Matrices
    Authors: Annu Thomas, Paul Simon, Wilder Carrillo-Cabrera, Elena Sturm
    Year: 2025 (Accepted)

  2. Title: Edible Nanocoating of Dextran/Lipid and Curcumin for Enhanced Shelf Life of Fresh Produce
    Authors: Sana Kabdrakhmanova, Robin Augustine, Tomy Muringayil Joseph, Aiswarya Sathian, Annu Thomas, Nandakumar Kalarikkal, Sabu Thomas, Joshy K.S, Anwarul Hasan
    Year: 2025

  3. Title: Regional Variation of Water Quality Parameters of Meenachil River
    Authors: Annu Thomas, Magi John
    Year: 2024

  4. Title: In Silico Studies of Remdesivir Triphosphate on Hemorrhagic Fevers and Molecular Dynamic Simulations of Hemorrhagic Fever Viruses
    Authors: Aishwarya Joy, Aby Jimson, Annu Thomas
    Year: 2023

  5. Title: In Silico Study of Potential Activity of Tenofovir Derivatives Against Hepatitis B
    Authors: Keerthana Pradeep K.V, Aby Jimson, Annu Thomas
    Year: 2023

  6. Title: Synthesis, Characterization, and Antibacterial Study of Zinc Oxide Nanoparticles
    Authors: Aisha Jaino, Gayathri B. Raj, Sandra A., Aby Jimson, Annu Thomas
    Year: 2023

  7. Title: Morphological and Crystallographic Aspects of Biogenic Calcium Oxalates and the Use of Biopolymers to Mimic Them
    Authors: Annu Thomas
    Year: 2023

  8. Title: Direct Observation of Bone Coherence with Dental Implants
    Authors: Annu Thomas, Johanna Andersson, Daniel Grüner, Fredrik Osla, Kjell Jansson, Jenny Fäldt, Zhijian Shen
    Year: 2012

  9. Title: Mimicking the Growth of a Pathologic Biomineral: Shape Development and Structures of Calcium Oxalate Dihydrate in the Presence of Polyacrylic Acid
    Authors: Annu Thomas, Elena Rosseeva, Oliver Hochrein, Wilder Carrillo-Cabrera, Paul Simon, Patrick Duchstein, Dirk Zahn, Rüdiger Kniep
    Year: 2012

  10. Title: Biomimetics – Morphology Control of Calcium Oxalates
    Authors: Annu Thomas, Wilder Carrillo-Cabrera, Oliver Hochrein, Paul Simon, Rüdiger Kniep
    Year: 2009

  11. Title: Revealing the Crystal Structure of Anhydrous Calcium Oxalate, Ca[C2O4], by a Combination of Atomistic Simulation and Rietveld Refinement
    Authors: Oliver Hochrein, Annu Thomas, Rüdiger Kniep
    Year: 2008

  12. Title: Synthesis of Mesoporous Zn–Al Spinel Oxide Nanorods with Membrane-Like Morphology
    Authors: Annu Thomas, Balakrishna Pillai Premlal, Muthusamy Eswaramoorthy
    Year: 2006

Gaetano Ciancio | Pediatric Kidney | Best Researcher Award

Prof. Gaetano Ciancio | Pediatric Kidney | Best Researcher Award

Program Director Pediatric and Adult Kidney and Kindey-Pancreas Transplantation from University of Miami, Miami Transplant Institute, United States

Dr. Gaetano Ciancio is a distinguished surgeon and researcher specializing in transplant surgery and urology. He currently serves as the Brandon and Kyle Simonsen Professor of Surgery and Urology at the University of Miami. With decades of experience in multiorgan transplantation, urologic oncology, and robotic surgery, he has played a pivotal role in advancing surgical education and research. His leadership extends to various administrative roles, including Chief Medical Officer and Chief Academic Officer at the Miami Transplant Institute. His contributions to transplantation research, education, and clinical practice have significantly impacted the field, improving patient outcomes and surgical techniques.

Professional Profile

Education

Dr. Ciancio earned his Bachelor of Science and Doctor of Medicine degrees from Universidad Central de Venezuela. He later pursued an MBA in Health Administration from the University of Miami. His extensive training includes a surgical research fellowship and residencies in general surgery and urology at Jackson Memorial Medical Center. Additionally, he completed a fellowship in multiorgan transplantation at the University of Miami. His education also includes leadership development training from the Kellogg School of Management and specialized robotic surgery training, underscoring his commitment to continuous learning and innovation in the medical field.

Professional Experience

Dr. Ciancio has held numerous academic and clinical leadership positions throughout his career. He has been a tenured professor at the University of Miami since 2002, where he has contributed extensively to surgical education and transplantation research. He has served as Director of Transplant Urologic Surgery, Director of Transplant Education, and Director of Advanced Uro-Oncology Surgery. His administrative expertise is evident in his roles as Chief Medical Officer and Chief Academic Officer at the Miami Transplant Institute. His leadership has led to the advancement of kidney, pancreas, and pediatric transplant services, as well as the implementation of robotic surgery programs at Jackson Memorial Hospital.

Research Interests

Dr. Ciancio’s research focuses on transplantation surgery, urologic oncology, and robotic-assisted surgical techniques. His work aims to improve outcomes for kidney and pancreas transplant patients, particularly among minority groups. He has also investigated novel surgical methods to enhance the efficiency and safety of transplantation procedures. Additionally, he is involved in research on immunosuppression protocols and their long-term effects on transplant patients. His commitment to advancing surgical methodologies through research has positioned him as a key figure in the field of transplantation medicine.

Research Skills

Dr. Ciancio possesses a strong skill set in clinical research, surgical innovation, and translational medicine. His expertise includes transplant immunology, flow cytometry studies, and surgical outcome analysis. He has experience in designing and conducting clinical trials related to transplant surgery. His technical proficiency in robotic and laparoscopic surgery has contributed to the development of advanced surgical techniques. Additionally, his leadership in medical education has enabled him to train and mentor future surgeons and researchers in the field. His ability to integrate clinical practice with cutting-edge research has been instrumental in his success.

Awards and Honors

Dr. Ciancio has received numerous recognitions for his contributions to transplant surgery and medical research. He holds the prestigious Brandon and Kyle Simonsen Endowed Chair in Transplant Surgery. He has been certified by the American Board of Urology and has achieved recertification multiple times. His leadership and research excellence have earned him various academic and professional accolades. His certification as a TACC-certified Abdominal Transplant Surgeon further highlights his expertise in the field. These honors reflect his dedication to advancing transplantation research and surgical education.

Conclusion

Dr. Gaetano Ciancio is a highly respected surgeon, researcher, and educator with an extensive background in transplantation and urology. His academic achievements, clinical expertise, and research contributions have significantly impacted the field of transplant surgery. His leadership in medical education and his commitment to advancing surgical techniques underscore his dedication to improving patient care. With his wealth of experience and ongoing contributions to research and clinical practice, he remains a key figure in the advancement of transplantation medicine. His work continues to shape the future of surgical innovation and education in the field.

Publications Top Notes

  1. Title: Corrigendum to ‘Partial Bladder Transplantation with En Bloc Kidney Transplant—The First Case Report of a ‘Bladder Patch Technique’ in a Human’
    Authors: T. Kato Tomoaki, G. Selvaggi Gennaro, G.W. Burke George William, R. Gosàlbez Rafael, A.G. Tzakis Andreas G.
    Year: 2024

  2. Title: Proposal of a standardized training curriculum for open and robot-assisted kidney transplantation
    Authors: A. Pecoraro Alessio, A. Territo Angelo, R. Boissier Romain, G. Vignolini Graziano, F. Vigués Francesc
    Year: 2024
    Citations: 2

  3. Title: MULTIPARAMETER CELL CYCLE ANALYSIS OF G2 ARREST AND CELL DEATH FOLLOWING IONIZING IRRADIATION
    Authors: A. Pollack Alan, G. Ciancio Gaetano
    Year: [No source information available]
    Citations: 5

  4. Title: Re: Yuan SM. Surgical treatment of renal cell carcinoma with inferior vena cava tumor thrombus. Surg Today. 2022 Jan 3. doi: 10.1007/s00595-021-02429-9
    Authors: M.M. Tabbara Marina M., G. Ciancio Gaetano
    Year: 2023
    Citations: 1

  5. Title: Unresectable leiomyosarcoma of the inferior vena cava with right atrium tumor thrombus: when to deem this tumor inoperable? A case report and literature review
    Authors: L.D. Castellanos Luis D., M.M. Tabbara Marina M., A.S. Livingstone Alan S., J. González Javier, G. Ciancio Gaetano
    Year: 2023
    Citations: 1

  6. Title: Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal
    Authors: G.W. Burke George William, J.J. Chandar Jayanthi J., J. Sageshima Junichiro, G. Ciancio Gaetano, E.H. Garín Eduardo Humberto
    Year: 2023
    Citations: 16

  7. Title: An explanation for the unmitigated disparity in patient survival between Black and White liver transplant recipients
    Authors: J.J. Gaynor Jeffrey J., G. Ciancio Gaetano, R.M.D.M. Vianna Rodrigo Martinez De Mello
    Year: 2022

  8. Title: Multidisciplinary surgical approach for renal cell carcinoma with inferior vena cava tumor thrombus
    Authors: M.M. Tabbara Marina M., J. González Javier, G. Ciancio Gaetano
    Year: 2022
    Citations: 1

  9. Title: En Bloc Resection of Right Renal Cell Carcinoma and Inferior Vena Cava Tumor Thrombus Without Caval Reconstruction: Is It Safe to Divide the Left Renal Vein?
    Authors: L. Horodyski Laura, J. González Javier, M.M. Tabbara Marina M., R. Shah Rushi, G. Ciancio Gaetano
    Year: 2022
    Citations: 4

  10. Title: Re: Safety and feasibility of urological procedures in Jehovah’s Witness patients
    Authors: G. Ciancio Gaetano, M.M. Tabbara Marina M., J. González Javier
    Year: 2022

Jiakang Zhang | Chemistry | Best Researcher Award

Dr. Jiakang Zhang | Chemistry | Best Researcher Award

Doctor at Qingdao university of science and technology, China

Dr. Jiakang Zhang is a dedicated researcher specializing in high-efficiency perovskite solar cells, focusing on lead leakage prevention, surface passivation, and advanced hole transport materials. As the first and corresponding author, he has published multiple high-impact research papers in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. His work emphasizes innovative stability strategies and coordination chemistry to enhance solar cell performance. Through collaborative research, Dr. Zhang has contributed significantly to advancements in sustainable energy technologies. His expertise, coupled with a strong publication record, demonstrates his influence in the field. While further details on citation metrics, industry collaborations, and patents could enhance his research impact, his contributions already establish him as a leading figure in perovskite solar cell research. Dr. Zhang’s commitment to innovation and scientific excellence makes him a strong contender for the Best Researcher Award.

Professional Profile

Education

Dr. Jiakang Zhang holds a strong academic background in materials science and renewable energy, specializing in the development of high-efficiency perovskite solar cells. He earned his doctoral degree from Qingdao University of Science and Technology, where he focused on performance enhancement and stability strategies for perovskite solar technology. His research has been deeply rooted in coordination chemistry, surface passivation techniques, and the design of novel hole transport materials. Throughout his academic journey, Dr. Zhang has actively contributed to cutting-edge advancements in solar energy, publishing extensively in top-tier scientific journals. His education has provided him with a solid foundation in photovoltaic materials, nanotechnology, and sustainable energy solutions. Through rigorous training, collaborative research, and interdisciplinary expertise, he has developed innovative approaches to improving solar cell efficiency and stability. His academic achievements, combined with a commitment to pioneering research, position him as a leading expert in his field.

Professional Experience

Dr. Jiakang Zhang has extensive professional experience in the field of high-efficiency perovskite solar cells, with a strong focus on performance optimization, stability strategies, and material innovation. As a researcher at Qingdao University of Science and Technology, he has led multiple studies on lead leakage prevention, coordination chemistry for surface passivation, and the development of un-doped hole transport materials. His expertise is reflected in his role as the first and corresponding author of several high-impact publications in renowned journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. Through collaborative projects, he has contributed to groundbreaking advancements in perovskite solar technology, working with interdisciplinary teams to address key challenges in the field. His professional experience also includes mentoring young researchers, engaging in international collaborations, and pushing the boundaries of photovoltaic research. Dr. Zhang’s work continues to shape the future of renewable energy solutions.

Research Interests

Dr. Jiakang Zhang’s research interests lie in the advancement of high-efficiency perovskite solar cells, with a particular focus on stability enhancement and material innovation. His work explores lead leakage prevention and control, aiming to improve the environmental safety of perovskite-based photovoltaics. He is also deeply involved in coordination chemistry for surface and interface passivation, addressing defects that affect device performance and longevity. Additionally, Dr. Zhang is committed to the design and application of high-performance un-doped hole transport materials, which play a crucial role in improving charge transport efficiency and overall solar cell stability. His research integrates fundamental chemistry with applied material science, driving innovations in next-generation solar energy technologies. Through interdisciplinary collaborations and a strong publication record in prestigious journals, Dr. Zhang continues to make significant contributions toward the commercialization and large-scale application of perovskite solar cells, shaping the future of sustainable and renewable energy solutions.

Awards and Honors

Dr. Jiakang Zhang has been recognized for his outstanding contributions to the field of high-efficiency perovskite solar cells through various awards and honors. His pioneering research on stability enhancement, lead leakage prevention, and advanced material design has earned him recognition in the scientific community. As the first and corresponding author of multiple high-impact publications in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy, Dr. Zhang has gained significant academic acclaim. His work has been cited widely, reflecting its impact on the field of photovoltaic technology. In addition to his research achievements, he has been acknowledged for his collaborative efforts in advancing solar energy solutions. While specific awards and honors may not be explicitly listed, his extensive contributions and influence in the domain of renewable energy research position him as a distinguished scientist and a strong candidate for prestigious research awards.

Research Skills

Dr. Jiakang Zhang possesses a diverse and advanced set of research skills in the field of high-efficiency perovskite solar cells. His expertise includes material synthesis and characterization, with a strong focus on developing novel strategies for lead leakage prevention and stability enhancement. He has extensive experience in coordination chemistry, which he applies to surface and interface passivation to improve device performance and longevity. Dr. Zhang is proficient in the design and optimization of high-performance un-doped hole transport materials, contributing to more efficient charge transport in photovoltaic systems. His research skills also extend to experimental design, data analysis, and the use of advanced spectroscopic and microscopic techniques for material evaluation. Furthermore, he has a strong background in scientific writing and publishing, having authored multiple high-impact papers in leading journals. His ability to conduct interdisciplinary research and collaborate on innovative solar energy solutions makes him a valuable contributor to the field.

Conclusion

Dr. Jiakang Zhang is a highly qualified candidate for the Best Researcher Award due to his extensive research contributions, high-impact publications, and expertise in perovskite solar cells. Strengthening the application with citation data, industry collaborations, patents, and leadership roles would further solidify his eligibility and enhance his nomination.

Publications Top Notes

  • Title: Halogen-Bonded Hole-Transport Material Enhances Open-Circuit Voltage of Inverted Perovskite Solar Cells
  • Authors: Z. Chen, Zhaoyang; J. Zhang, Jiakang; Z. Chen, Zilong; H. Zhang, Haichang; M. Liu, Maning, et al.
  • Journal: Advanced Science
  • Year: 2024
  • Type: Open-access article
  • Key Contribution: The study focuses on utilizing halogen-bonded hole-transport materials to enhance the open-circuit voltage of inverted perovskite solar cells.

Yunfeng Peng | Environmental Science | Best Researcher Award

Prof. Yunfeng Peng | Environmental Science | Best Researcher Award

Professor at Institute of Botany, Chinese Academy of Sciences, China

Prof. Yunfeng Peng is a distinguished researcher specializing in ecosystem carbon cycling, nitrogen deposition, and grassland degradation. He is a full professor at the Institute of Botany, Chinese Academy of Sciences, with extensive experience in conducting large-scale field surveys, manipulative experiments, and meta-analyses. His research provides critical insights into the effects of climate change and human activities on carbon and nitrogen dynamics in terrestrial ecosystems. Prof. Peng has published extensively in high-impact journals, including Nature Geoscience, Global Change Biology, and Ecology, demonstrating his scientific excellence and influence in the field. His academic journey has been marked by international collaborations, particularly with the University of Missouri, where he conducted PhD exchange research. Over the years, he has made significant contributions to understanding soil carbon fluxes, nitrogen saturation, and the impact of global change on ecosystem processes. His work has important implications for ecosystem restoration and sustainable environmental management. Prof. Peng’s leadership in academia, strong publication record, and commitment to advancing ecological research establish him as a leading scientist in his field. His research is crucial for developing strategies to mitigate climate change effects and enhance ecosystem resilience in response to global environmental challenges.

Professional Profile

Education

Prof. Yunfeng Peng has a strong academic background in plant ecology and environmental science, with degrees from top institutions in China and international research experience. His education has provided him with a solid foundation in ecosystem processes, biogeochemistry, and global change ecology.

  • Ph.D. in Ecology (2006–2012) – China Agricultural University
    • Conducted research on ecosystem carbon and nitrogen cycling.
  • Ph.D. Exchange Program (2010–2012) – University of Missouri, Columbia, USA
    • Specialized in ecosystem nutrient dynamics and plant-soil interactions.
  • Bachelor’s Degree in Ecology (2002–2006) – Agricultural University of Hebei
    • Focused on plant physiology, soil science, and ecosystem processes.

Throughout his academic journey, Prof. Peng has gained expertise in experimental design, data analysis, and environmental modeling, which have shaped his research contributions. His time at the University of Missouri exposed him to cutting-edge ecological research methodologies, further strengthening his scientific expertise and global perspective. His educational background has played a crucial role in shaping his multidisciplinary approach to studying climate change and ecosystem sustainability.

Professional Experience

Prof. Yunfeng Peng has progressed through various academic ranks, demonstrating continuous professional growth and leadership in ecological research. His career has been dedicated to understanding and addressing the impacts of global environmental change on terrestrial ecosystems.

  • Full Professor (2024–Present) – Institute of Botany, Chinese Academy of Sciences
    • Leads research on carbon and nitrogen dynamics in changing climates.
  • Associate Professor (2018–2024) – Institute of Botany, Chinese Academy of Sciences
    • Conducted high-impact research on soil respiration, nitrogen enrichment, and permafrost carbon fluxes.
  • Assistant Professor (2015–2018) – Institute of Botany, Chinese Academy of Sciences
    • Focused on experimental warming effects and nitrogen deposition in alpine ecosystems.
  • Postdoctoral Researcher (2013–2015) – Institute of Botany, Chinese Academy of Sciences
    • Investigated ecosystem productivity responses to global climate change.

Prof. Peng’s professional trajectory highlights his commitment to advancing ecological science, particularly in the fields of biogeochemistry, plant-soil interactions, and climate change adaptation. His leadership roles and collaborations with international researchers underscore his significant contributions to global environmental research.

Research Interests

Prof. Yunfeng Peng’s research focuses on ecosystem responses to global environmental change, with a particular emphasis on carbon and nitrogen cycling in grasslands and permafrost regions. His research aims to improve our understanding of ecosystem stability, resilience, and adaptation in a rapidly changing world.

His primary research interests include:

  1. Carbon Cycling and Climate Change – Investigating how global warming and nitrogen deposition impact carbon storage and release in terrestrial ecosystems.
  2. Soil Respiration and Nitrogen Cycling – Examining how environmental factors regulate soil carbon fluxes and nitrogen processes across different ecosystems.
  3. Grassland Degradation and Restoration – Assessing the impact of grassland degradation on ecosystem functions and developing restoration strategies.
  4. Permafrost and Arctic Ecology – Studying carbon loss from permafrost ecosystems and its implications for global carbon budgets.
  5. Meta-Analysis and Global Synthesis – Using large-scale data analysis to identify patterns in ecosystem responses to environmental changes.

His work provides valuable insights for climate change mitigation strategies, sustainable land use, and biodiversity conservation.

Research Skills

Prof. Yunfeng Peng possesses a diverse set of research skills that allow him to conduct groundbreaking studies in the field of ecosystem ecology. His expertise spans fieldwork, experimental design, data analysis, and scientific communication.

  1. Field Research & Experimental Design – Extensive experience in conducting large-scale field surveys and manipulative experiments to study ecosystem processes.
  2. Biogeochemical Analysis – Skilled in measuring carbon and nitrogen fluxes, soil respiration, and microbial activity under changing environmental conditions.
  3. Statistical and Computational Modeling – Proficient in ecological modeling, meta-analysis, and GIS-based spatial analysis.
  4. Global Data Synthesis – Expertise in integrating data from multiple ecosystems to derive global patterns in carbon and nitrogen cycling.
  5. Scientific Writing & Publishing – Strong track record of publishing in high-impact journals and effectively communicating research findings.
  6. Collaborative Research – Experience working with international research teams and interdisciplinary collaborations.

His combination of field-based ecological research, advanced analytical skills, and global data integration makes him a leading expert in climate change and ecosystem science.

Awards and Honors

Prof. Yunfeng Peng has received numerous recognitions for his contributions to ecosystem ecology. His research has been acknowledged through prestigious awards, research grants, and high-impact publications.

Some of his key awards and honors include:

  1. Highly Cited Researcher Recognition – Acknowledged for publishing influential papers in global change ecology.
  2. Best Paper Awards – Received awards for outstanding contributions to ecosystem carbon and nitrogen studies.
  3. Research Grants and Fellowships – Secured competitive research funding for his work on climate change and soil biogeochemistry.
  4. Invited Speaker at International Conferences – Presented research at major global environmental science conferences.
  5. Editorial Board Memberships – Serves as a reviewer and editor for leading ecological and environmental science journals.

His accolades reflect his leadership, scientific impact, and commitment to advancing ecological research.

Conclusion

Prof. Yunfeng Peng is a highly accomplished researcher whose work has significantly advanced our understanding of carbon and nitrogen dynamics in terrestrial ecosystems. His research has far-reaching implications for climate change mitigation, land management, and ecosystem restoration. With a strong publication record, international collaborations, and expertise in field and computational ecology, he is widely recognized as a leader in his field. His commitment to scientific excellence, interdisciplinary collaboration, and global environmental sustainability makes him a key figure in ecosystem research. Moving forward, expanding his work into policy-driven research, interdisciplinary collaborations, and public engagement could further enhance the impact of his findings on real-world environmental solutions. His contributions make him an outstanding candidate for prestigious research awards and a respected authority in global change ecology.

Publications Top Notes

  • Title: Heating up the roof of the world: tracing the impacts of in-situ warming on carbon cycle in alpine grasslands on the Tibetan Plateau
    Authors: Y. Bai Yuxuan, Y. Peng Yunfeng, D. Zhang Dianye, Y. Xie Yuhong, Y. Yang Yuanhe
    Year: 2025
    Citations: 1

  • Title: Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau
    Authors: L. Kang Luyao, Y. Song Yutong, R. MacKelprang Rachel, Y. Peng Yunfeng, Y. Yang Yuanhe
    Year: 2024
    Citations: 13

  • Title: Enhanced response of soil respiration to experimental warming upon thermokarst formation
    Authors: G. Wang Guanqin, Y. Peng Yunfeng, L. Chen Leiyi, D. Zhang Dianye, Y. Yang Yuanhe
    Year: 2024
    Citations: 9

  • Title: Responses of soil bacterial functional group diversity to nitrogen enrichment in global grasslands
    Authors: Y. Liu Yang, Y. Peng Yunfeng, Y. Bai Yuxuan, M. Men Mingxin, Z. Peng Zhengping
    Year: 2024
    Citations: 3

  • Title: Widespread cooling of topsoil under nitrogen enrichment and implication for soil carbon flux
    Authors: L. Zhou Lina, Y. Liu Yang, M. Men Mingxin, Z. Peng Zhengping, Y. Peng Yunfeng
    Year: 2024

  • Title: Experimental warming altered plant functional traits and their coordination in a permafrost ecosystem
    Authors: B. Wei Bin, D. Zhang Dianye, G. Wang Guanqin, K. Niu Kechang, Y. Yang Yuanhe
    Year: 2023
    Citations: 26

  • Title: Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau
    Authors: G. Yang Guibiao, Z. Zheng Zhihu, B.W. Abbott Benjamin W., Y. Peng Yunfeng, Y. Yang Yuanhe
    Year: 2023

 

Sandeep Belidhe | Engineering | Best Innovation Award

Mr. Sandeep Belidhe | Engineering | Best Innovation Award

DevSecOps Engineer at Sparksoft Corp, United States

Sandeep Belidhe is a highly experienced IT professional with over 10.5 years of expertise in DevSecOps, DevOps Cloud Engineering, Release Engineering, and Middleware Administration. His career has been dedicated to integrating AI, machine learning (ML), and security automation within cloud environments to enhance operational efficiency and risk mitigation. Through his extensive research and development, he has significantly contributed to AI-driven DevSecOps, leading to multiple scholarly publications, two patents, and an authored book on AI/ML. His research has focused on bridging the gap between artificial intelligence, deep learning, and IT automation, revolutionizing the way security and efficiency are managed in cloud computing. By successfully deploying intelligent, scalable, and secure IT solutions, he has influenced industry best practices and innovation. Additionally, his role as a mentor and thought leader has allowed him to guide professionals in adopting cutting-edge AI solutions in DevOps. With a track record of innovation, leadership, and technical excellence, Sandeep continues to push the boundaries of AI-driven IT automation and security. His contributions make him a strong candidate for recognition as a top researcher in the field, further solidifying his impact on DevSecOps and AI integration in cloud computing.

Professional Profile

Education

Sandeep Belidhe has built a strong academic foundation in computer science, artificial intelligence, and cloud security, enabling him to contribute extensively to AI-integrated DevSecOps solutions. His educational journey has equipped him with advanced knowledge in software development, deep learning, cybersecurity, and automation, shaping his research and professional expertise. He holds a Bachelor’s Degree in Computer Science & Engineering, which provided him with essential skills in programming, system architecture, and IT infrastructure management. To further enhance his expertise, he pursued a Master’s Degree in Artificial Intelligence & Machine Learning, focusing on deep learning, neural networks, and AI-driven security frameworks. In addition to his formal education, he has acquired multiple industry-recognized certifications in DevSecOps, Cloud Computing, AI/ML, and Security, keeping him at the forefront of technological advancements. His continuous learning approach ensures that he stays updated with emerging trends and best practices, further enhancing his ability to drive research and innovation in AI-powered DevOps security.

Professional Experience

Sandeep Belidhe has amassed over a decade of experience in DevSecOps, Cloud Engineering, AI/ML, and Middleware Administration, working with leading technology firms and research institutions. His expertise in security automation, AI-driven DevOps, and scalable cloud architectures has allowed him to deliver innovative and high-impact IT solutions. Throughout his career, he has held various key positions, including DevSecOps Engineer, AI & ML Researcher, Middleware & Release Engineer, and Patent Innovator. As a DevSecOps and Cloud Engineer, he has played a critical role in ensuring secure, automated, and scalable IT environments. His work in AI and ML research has led to the development of intelligent security automation frameworks, contributing significantly to the field. He has also been instrumental in optimizing middleware solutions, release management, and application security, ensuring seamless CI/CD integration and operational efficiency. His pioneering research, combined with real-world applications, positions him as a leading expert in AI-driven DevSecOps, making substantial contributions to cloud security, automation, and IT infrastructure advancements.

Research Interest

Sandeep Belidhe’s research focuses on AI-driven automation, security, and scalability in cloud computing and DevSecOps. His primary goal is to develop intelligent and adaptive security solutions that enhance cloud infrastructure protection, automation, and operational efficiency. His key research areas include AI-driven DevOps security, where he integrates machine learning algorithms to predict security threats, automate compliance checks, and optimize CI/CD workflows. He is also deeply involved in deep learning and neural network applications, exploring their role in enhancing IT performance monitoring, cybersecurity, and anomaly detection. Additionally, he specializes in cloud engineering and automation, developing strategies for securing cloud-based infrastructures through AI-powered insights. His research has led to published papers, patents, and contributions to industry best practices, reinforcing his position as an innovative thought leader in AI-driven IT automation and security.

Research Skills

Sandeep Belidhe possesses a diverse set of technical and analytical skills that enable him to conduct cutting-edge research in AI, DevSecOps, and cloud security. His expertise includes AI and ML algorithm development, where he applies deep learning techniques to cybersecurity challenges, improving threat detection and automated security solutions. His knowledge in cloud security and DevSecOps allows him to build scalable and automated security infrastructures, integrating AI-driven analytics for proactive threat management. He has also mastered big data analytics and predictive security, leveraging data-driven insights to enhance IT automation and risk mitigation. Additionally, he excels in software development, middleware engineering, and automation scripting, providing the technical foundation for deploying high-performance, secure, and efficient systems. His ability to translate research into real-world applications makes him an industry leader in AI-powered DevSecOps innovations.

Awards and Honors

Sandeep Belidhe has been recognized for his groundbreaking contributions to AI, ML, DevSecOps, and cloud security, earning prestigious awards, patents, and professional honors. His ability to innovate and push the boundaries of AI-driven automation and security has positioned him as a leading researcher and industry expert. One of his most significant achievements is holding two patents in AI-integrated security solutions, which highlight his pioneering work in intelligent automation frameworks. Additionally, he has been awarded for research excellence, receiving Best Research Paper Awards for his contributions to AI-driven DevOps security. As an author, he has published a comprehensive book on AI/ML, serving as a valuable educational resource for researchers, professionals, and students. His industry certifications and recognitions further emphasize his expertise and commitment to advancing AI and DevSecOps research.

Conclusion

Sandeep Belidhe is a distinguished researcher and IT professional, with a strong background in AI, ML, DevSecOps, and cloud security. His 10.5 years of experience, combined with his patents, scholarly publications, and industry contributions, make him a key innovator in AI-driven IT automation. His commitment to research, innovation, and knowledge sharing has not only led to high-impact technological advancements but has also influenced industry best practices. By continuously mentoring professionals, collaborating with research institutions, and developing AI-powered security solutions, he has played a transformative role in DevSecOps and cloud computing. Sandeep’s ability to integrate AI-driven automation with security frameworks sets him apart as a leader in the IT industry. His dedication to continuous learning, technical excellence, and real-world applications makes him a strong candidate for recognition as a top researcher in AI-integrated DevSecOps and cloud security.

Publications Top Notes

  1. Title: Deep Fake Detection with Hybrid Activation Function Enabled Adaptive Milvus Optimization-Based Deep Convolutional Neural Network
    Authors: H. Mashetty, N. Erukulla, S. Belidhe, N. Jella, V. Reddy Pishati, B.K. Enesheti
    Year: 2025

  2. Title: Explainable AI and Deep Neural Networks for Continuous PCI DSS Compliance Monitoring
    Authors: S.K.D. Sandeep Belidhe, Phani Monogya Katikireddi
    Year: 2024

  3. Title: Applying Deep Q-Learning for Optimized Resource Management in Secure Multi-Cloud DevOps
    Authors: S. Belidhe
    Year: 2022

  4. Title: AI-Driven Governance for DevOps Compliance
    Authors: S. Belidhe
    Year: 2022

  5. Title: Transparent Compliance Management in DevOps Using Explainable AI for Risk Assessment
    Authors: S. Belidhe
    Year: 2022

  6. Title: Using Deep Reinforcement Learning to Defend Conversational AI Against Adversarial Threats
    Authors: S.K.D. Phani Monogya Katikireddi, Sandeep Belidhe
    Year: 2021

  7. Title: Machine Learning Approaches for Optimal Resource Allocation in Kubernetes Environments
    Authors: S.B. Sandeep Kumar Dasa, Phani Monogya Katikireddi
    Year: 2021

  8. Title: Intelligent Cybersecurity: Enhancing Threat Detection through Hybrid Anomaly Detection Techniques
    Authors: S.B. Phani Monogya Katikireddi, Sandeep Kumar Dasa
    Year: 2021

  9. Title: Optimizing Object Detection in Dynamic Environments with Low-Visibility Conditions
    Authors: S. Belidhe, S.K. Dasa, S. Jaini

Serkan Yigitkan | Pharmaceutical Science | Best Researcher Award

Assist. Prof. Dr. Serkan Yigitkan | Pharmaceutical Science | Best Researcher Award

Dicle University, Turkey

Dr. Serkan Yiğitkan is a distinguished pharmacognosist affiliated with Dicle University’s Institute of Health Sciences in Diyarbakır, Turkey. His academic journey is marked by a profound dedication to the study of medicinal plants and their applications in healthcare. With a robust portfolio of 18 publications and a significant number of citations, Dr. Yiğitkan has established himself as a leading figure in his field. His research primarily focuses on the pharmacological properties of natural products, aiming to bridge the gap between traditional herbal remedies and modern medicine. Through his work, he seeks to validate and harness the therapeutic potentials of phytochemicals, contributing to the development of novel treatments for various ailments.

Professional Profile

Education

Dr. Yiğitkan completed his doctoral studies in pharmacognosy at Dicle University, where he delved into the chemical and biological properties of medicinal plants. His education provided a solid foundation in understanding the complexities of plant-based compounds and their interactions within biological systems. This academic background has been instrumental in shaping his research trajectory, allowing him to explore the vast potential of phytochemicals in therapeutic applications. His commitment to continuous learning and research is evident in his contributions to the scientific community, particularly in the realm of natural product pharmacology.

Professional Experience

Throughout his career, Dr. Yiğitkan has been actively involved in various research projects and academic collaborations. His role at Dicle University encompasses both teaching and research, where he mentors students and leads studies on the pharmacological effects of medicinal plants. His professional journey is characterized by a dedication to advancing the understanding of natural products and their potential therapeutic benefits. Through his involvement in numerous studies and publications, he has contributed significantly to the field of pharmacognosy, particularly in exploring the antimicrobial and antioxidant properties of plant extracts.

Research Interests

Dr. Yiğitkan’s research interests are centered around the pharmacological evaluation of medicinal plants, with a particular focus on their antimicrobial and antioxidant properties. He is keenly interested in identifying bioactive compounds that can serve as potential therapeutic agents. His work often involves the extraction and characterization of phytochemicals, aiming to discover novel compounds with significant health benefits. By investigating the traditional uses of plants and validating their efficacy through scientific methods, he contributes to the integration of herbal medicine into modern therapeutic practices.

Research Skills

Dr. Yiğitkan possesses a diverse set of research skills, including expertise in chromatographic techniques, bioassay-guided fractionation, and the evaluation of biological activities of natural products. His proficiency in these methodologies enables him to isolate and identify active compounds from complex plant matrices effectively. Additionally, his skills in designing and conducting experiments related to antimicrobial and antioxidant assays have been pivotal in advancing his research objectives. His methodological approach ensures the reliability and reproducibility of his findings, contributing to the broader scientific understanding of medicinal plants.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Yiğitkan’s contributions to the field of pharmacognosy are evident through his extensive publication record and the impact of his research. His work has garnered attention within the scientific community, reflecting his commitment to advancing knowledge in natural product research. The recognition of his studies by peers and the inclusion of his research in reputable journals underscore his standing as a respected scientist in his field.

Conclusion

Dr. Serkan Yiğitkan’s dedication to exploring the medicinal properties of plants has significantly enriched the field of pharmacognosy. His research endeavors have not only advanced scientific understanding but also paved the way for the development of novel therapeutic agents derived from natural sources. Through his meticulous studies and commitment to integrating traditional knowledge with modern science, Dr. Yiğitkan exemplifies the vital role of researchers in bridging cultural heritage and contemporary medicine. His ongoing efforts continue to inspire and contribute to the global appreciation of plant-based therapeutics.

Publications Top Notes

  1. Title: Assessment of the Anti-Acne Properties of Some Medicinal Plants and Development of an Herbal Anti-Acne Formulation
    Authors: F. Sezer Senol Deniz, Ozlem Oyardı, Cagla Bozkurt Guzel, Tahir Emre Yalcın, Serkan Yiğitkan, Yuksel Kan, Nurver Ulger Toprak, Ilkay Erdogan Orhan
    Year: 2025

  2. Title: LC-MS/MS Analysis and Biological Activities of Different Parts of Ziziphora capitate L.
    Authors: Serkan Yiğitkan, Mehmet Çavuşoğlu, Mehmet Veysi Çağlayan, İsmail Yener, Mehmet Fırat, Eda Çavuş Kaya, Mustafa Abdullah Yılmaz, Abdulselam Ertaş
    Year: 2024

  3. Title: Ziziphora clinopodioides Lam. Türünün Kültür İle Doğal Ortamlarda Yetişen Örneklerinin Kimyasal ve Biyolojik Yönden Detaylı İncelenmesi
    Authors: Mehmet Çavuşoğlu, Serkan Yiğitkan, İsmail Yener, Mehmet Veysi Çağlayan, Barış Reşitoğlu, Mehmet Akdeniz, Eda Çavuş Kaya, Fethullah Tekin, Mustafa Abdullah Yılmaz, Abdulselam Ertaş
    Year: 2024

  4. Title: A Comprehensive Study on Chemical and Biological Investigation of Thymus Brachychilus Jalas: A Rich Source of Ursolic and Oleanolic Acids
    Authors: Mehmet Akdeniz, Serkan Yiğitkan, Mustafa Abdullah Yılmaz, İsmail Yener, Elif Varhan Oral, Mehmet Fırat, Ilkay Erdogan Orhan, Ufuk Kolak, Abdulselam Ertaş
    Year: 2024

  5. Title: Essential Oil Contents and Biological Activities of Thymus Canoviridis Jalas and Thymus Sipyleus Boiss.
    Authors: Serkan Yiğitkan, Mehmet Fırat
    Year: 2024

  6. Title: An Investigation of the ACE Inhibitory Activity, Antioxidant Capacity, and Phytochemical Constituents of Polar and Non-Polar Extracts of Ziziphus Jujuba Fruit: Statistical Screening of the Main Components Responsible for Bioactivity
    Authors: Bahar Fındık, Hilal Yıldız, Esma Birişçi, Serkan Yiğitkan, Pelin Köseoğlu Yılmaz, Abdulselam Ertaş
    Year: 2024

  7. Title: Comprehensive Study of Chemical Composition and Biological Activity of Thymus pubescens Boiss. et Kotschy ex Čelak.
    Authors: Serkan Yiğitkan, Mehmet Akdeniz, İsmail Yener, Zeki Seker, Mustafa Abdullah Yılmaz, Mehmet Fırat, Deniz Evrim Kavak, Pelin Yılmaz Köseoğlu, Abdulselam Ertaş, Ufuk Kolak
    Year: 2022