Assist. Prof. Dr. Panagiotis Bousoulas is an emerging scientific leader in the field of developmental biology and epigenetics, with a research program focused on understanding novel DNA and RNA modifications and their role in neural function, development, and disease. His academic foundation spans prestigious institutions, beginning with a BSc in Medical Genetics from the University of Leicester, followed by doctoral training at the University of Cambridge, UK, where he completed PhD rotations under globally recognized pioneers, including Sir John B. Gurdon, Sarah Bray, and Azim Surani. Prior to this, he studied Physics at the University of Stuttgart, Germany—a multidisciplinary background that contributes to his systems-level scientific approach. Dr. Bousoulas’ professional trajectory includes advanced postdoctoral research at major international institutions such as the Gurdon Institute (Cambridge), Yale University, and the Broad Institute/Harvard University, where he worked with Sir John B. Gurdon, Antonio Giraldez, and John Rinn—leading authorities in developmental biology and genomics. He currently serves as a Principal Investigator at the Chinese Institute for Brain Research (CIBR), where he leads an independent research group supported by multiple competitive funding awards, including the Beijing Natural Science Foundation, Human Frontiers Long-Term Fellowship, Isaac Newton Trust, and a major BBSRC project grant exceeding £830,000. His groundbreaking work contributed to the discovery of methylated deoxyadenosine (m6dA) in vertebrate genomes, reported in Koziol et al., 2015, which opened an entirely novel field in vertebrate epigenetics. His research continues to advance global understanding of how DNA and RNA chemical modifications regulate brain development and contribute to neurological disease, with potential applications in diagnostics and therapeutics. Recognized for excellence early in his career, Dr. Bousoulas has received awards from the AAAS Science Journal, Queen Elizabeth II, the Wellcome Trust, and Cambridge European Trust. His research has significant societal impact, contributing to improved understanding of molecular mechanisms underlying brain disorders and offering potential routes toward medical innovation.