Mr. Shahnwaz Afzal | Computer Science | Best Researcher Award
Department of computer Science, Aligarh Muslim University, India
Shahnawaz Afzal is an emerging researcher in the field of computer science with a strong focus on cryptography, artificial intelligence, and IoT security, having contributed to the development of lightweight cryptographic frameworks and secure communication models for resource-constrained environments. He is currently pursuing his Ph.D. in Computer Science at Aligarh Muslim University, where he has already completed four years of research, building on his academic foundation with an MCA (8.38 CGPA) and a B.Sc. (Hons) in Computer Applications from the same institution. His professional journey includes serving as an Assistant Professor at Aligarh College of Education (2020–2021), where he taught key courses such as Database Management Systems, Networking, Operating Systems, Java, and C++, along with a decade of tutoring experience for academic and competitive examinations. His research interests span lightweight cryptography, AI, machine learning, graph neural networks, and secure healthcare and agricultural applications, supported by skills in Python, R, C, C++, Java, and PHP, as well as expertise in IoT, data science, and deep learning. Afzal has authored seven journal and conference papers indexed in reputed outlets including PLoS One, Security and Privacy, and SN Computer Science, with a citation count of 15 and an h-index of 3, reflecting his growing academic impact. He has also qualified UGC NET and earned the prestigious MANF JRF, later upgraded to Senior Research Fellowship in 2024, alongside university-level merit awards. With seven documents published, recognized citations, and consistent academic achievements, Shahnawaz Afzal is well positioned to contribute impactful innovations in cryptography and AI-driven secure systems, making him a strong candidate for international research recognition.
Profile: Scopus | ORCID | Google Scholar
Featured Publications
- lightweight stream ciphers for use in IoT. Proceedings of the 10th International Conference on Computing for Sustainable Global Development (INDIACom). [Citations: 6 | h-index: 5].
- Bokhari, M. U., & Afzal, S. (2023). Performance of software and hardware oriented lightweight stream cipher in constraint environment: A review. Proceedings of the 10th International Conference on Computing for Sustainable Global Development (INDIACom). [Citations: 5 | h-index: 5].
- Bokhari, M. U., Yadav, G., Zeyauddin, & Afzal, S. (2024). Enhancing mental health prognosis: An investigation of advanced hybrid classifiers with cutting-edge feature engineering and fusion strategies. International Journal of Information Technology, 1–20. [Citations: 4 | h-index: 5].
- Bokhari, M. U., Afzal, S., & Yadav, G. (2024). ChaosForge: A lightweight stream cipher fusion of chaotic dynamics and NLFSRs for secure IoT communication. International Journal of Information Technology, 1–11. [Citations: 3 | h-index: 5].
- Bokhari, M. U., Afzal, S., Khan, I., & Khan, M. Z. (2025). Securing IoT communications: A novel lightweight stream cipher using DNA cryptography and Grain-80 cipher. SN Computer Science, 6(2), 88. [Citations: 2 | h-index: 5].