Dr. Shehzad Ahmed | Energy | Best Researcher Award
Shanghai Jiaotong University | China
Dr. Shehzad Ahmed is a materials scientist whose research advances fundamental and applied understanding of amorphous and energy-storage materials, with a particular emphasis on phase-change memory systems, transition-metal carbides, porous carbon frameworks, and advanced battery technologies. His work investigates atomic-scale structure, electronic behavior, and crystallization kinetics in disordered materials using state-of-the-art computational tools, including density functional theory, multiscale modeling, and high-precision simulation packages such as VASP, CP2K, Materials Studio, and VMD. Dr. Ahmed completed research training across internationally recognized laboratories, contributing to projects spanning condensed matter physics, nanomaterials engineering, and theoretical chemistry. He has authored numerous peer-reviewed publications in reputable journals such as Physical Chemistry Chemical Physics, Nanoscale, npj Computational Materials, Materials Today Chemistry, Small, Optics Express, and Journal of Physical Chemistry C, demonstrating both scientific depth and multidisciplinary reach. His work has also appeared in special issues dedicated to advances in photonic phase-change materials and structural evolution in Sb–Te alloys, highlighting his expertise in memory materials relevant to future high-speed photonic and electronic devices. He maintains active collaborations with researchers in China, Pakistan, Europe, and beyond, contributing theoretical insights to experimental and engineering groups working on batteries, metasurfaces, photonics, and electrocatalysis. Dr. Ahmed’s research initiatives address globally relevant technological challenges, including sustainable energy storage, next-generation data memory systems, and efficient optoelectronic platforms. Through computational materials discovery, he contributes pathways for designing high-capacity anodes, high-performance cathodes, 3D porous structures, and tunable nanophotonic elements. His scientific output, supported by continuous collaborations and diverse research environments, reflects a growing impact on the broader materials science community. Collectively, his work advances the international effort to develop more efficient, durable, and sustainable materials for energy and information technologies, reinforcing his position as an emerging researcher with significant contributions to modern materials research.
Featuered Publications
Ali, L., Ali, B., Liu, X., Ahmed, S., & Shah, M. A. (2022). Analysis of bio-convective MHD Blasius and Sakiadis flow with Cattaneo–Christov heat flux model and chemical reaction. Chinese Journal of Physics, 77, 1963–1975.
Idrees, M., Batool, S., Din, M. A. U., Javed, M. S., Ahmed, S., & Chen, Z. (2023). Material-structure-property integrated additive manufacturing of batteries. Nano Energy, 109, 108247.
Farooq, U., Shah, U. A., Ishaq, M., Hu, J. G., Ahmed, S., Chen, S., Zheng, Z. H., Su, Z. H., … (2023). Defects passivation by solution-processed titanium doping strategy towards high efficiency kesterite solar cells. Chemical Engineering Journal, 451, 139109.
Younis, U., Muhammad, I., Wu, W., Ahmed, S., Sun, Q., & Jena, P. (2020). Assembling Si₂BN nanoribbons into a 3D porous structure as a universal anode material for both Li- and Na-ion batteries with high performance. Nanoscale, 12(37), 19367–19374.
Ali, A., Liang, Y., Ahmed, S., Yang, B., Guo, B., & Yang, Y. (2020). Mutual contaminants relational realization and photocatalytic treatment using Cu₂MgSnS₄ decorated BaTiO₃. Applied Materials Today, 18, 100534.