Bünyamin Ciçek | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Bünyamin Ciçek | Materials Science | Best Researcher Award

Hitit University, Turkey

Assoc. Prof. Dr. Bünyamin Çiçek is a distinguished academic in the field of Metallurgical and Materials Engineering, currently serving at Hitit University, Turkey. With a strong foundation in manufacturing technologies, powder metallurgy, and welding technologies, he has contributed extensively to material innovation, particularly in biocompatible alloys and composite materials. Over the years, Dr. Çiçek has played key roles in national projects supported by TÜBİTAK and higher education institutions, establishing himself as a leader in applied and experimental research. He has supervised doctoral theses, published over 25 peer-reviewed international articles, and presented at numerous international conferences. His research is recognized for its industrial applicability, particularly in alloy development, corrosion resistance, and biocompatibility. In addition to his academic responsibilities, he has held administrative roles such as Vice Director of a vocational school and Head of Department. Dr. Çiçek has also received prestigious awards, including the “Young Researcher of the Year” and publication incentives from TÜBİTAK and his home institution. His dedication to advancing metal and polymer-based research has positioned him as a key contributor to the scientific and industrial communities.

Professional Profile

Education

Dr. Bünyamin Çiçek holds a Ph.D. in Metallurgical and Materials Engineering from Karabük University, which he completed in 2021. His doctoral research focused on the production and characterization of biocompatible alloys using a newly designed powder injection molding method, under the supervision of Prof. Yavuz Sun. Prior to his doctoral studies, he earned a Master’s degree with thesis from the same university in 2011, where he examined the wear and corrosion behavior of Mg2Si particle-reinforced magnesium alloys. His academic journey began with a Bachelor’s degree in Metal Teaching from Karabük University, completed in 2009. The strong technical emphasis of his undergraduate and graduate training laid the groundwork for his later contributions in advanced manufacturing technologies and materials characterization. Dr. Çiçek’s academic formation combines in-depth metallurgical knowledge with practical applications, enabling him to explore and innovate in areas such as metal injection molding, biocompatibility of alloys, corrosion mechanisms, and additive manufacturing. Throughout his educational career, he has consistently focused on developing solutions to real-world engineering problems, especially in the context of biomedical and structural materials.

Professional Experience

Dr. Bünyamin Çiçek currently serves as an Associate Professor at Hitit University in the Department of Welding Technology. He began his academic career as a lecturer at Gedik University and later joined Hitit University, where he has held several key positions, including Lecturer at Alaca Avni Çelik Vocational School and Vice Director of the same institution. Over the years, Dr. Çiçek has contributed significantly to curriculum development, student mentorship, and industry-academia collaboration. His administrative experience includes serving as Head of the Department of Machinery and Metal Technologies. His work in academic leadership has complemented his teaching, which covers subjects like Powder Metallurgy, Technical Drawing, and Computer-Aided Design. Beyond academia, he has actively participated in national research projects, often taking on roles as project coordinator, consultant, and principal researcher. These experiences have enabled him to develop strong ties with industrial partners and apply academic findings to real-world challenges. His leadership in multidisciplinary projects focused on novel alloy production, corrosion resistance, and 3D printing technologies underscores his broad impact in both educational and applied research domains.

Research Interests

Dr. Çiçek’s research interests are centered around materials science and engineering, with a particular focus on powder metallurgy, biocompatible materials, composite materials, and welding technology. His academic curiosity lies in improving the mechanical, tribological, and corrosion properties of metal matrix composites and magnesium-based biodegradable alloys. A significant portion of his research explores the development and optimization of metal injection molding systems for medical and structural applications. He is also interested in investigating the effects of alloying elements such as rare earth metals on high-entropy alloys and their performance at cryogenic temperatures. In recent years, he has expanded his work to include 3D-printed polymer and metal parts, especially for use in biomedical implants and radiation shielding. His collaboration in TUBITAK-funded projects reflects his dedication to applied research that combines nanotechnology with traditional manufacturing methods. Additionally, Dr. Çiçek actively investigates environmentally friendly materials, including the use of recycled products in aluminum matrix composites. This diversity of interests not only broadens the scope of his research output but also aligns with global scientific trends in sustainable and functional material development.

Research Skills

Dr. Bünyamin Çiçek is highly skilled in experimental techniques and research methodologies that span across several domains of materials science. He has hands-on expertise in powder metallurgy, including metal injection molding processes, alloy synthesis, sintering, and characterization. He is proficient in conducting wear and corrosion tests, mechanical property assessments, and metallographic analyses. His work often incorporates advanced microscopy techniques such as SEM for microstructural investigation. In the realm of additive manufacturing, he has led studies involving stereolithography-based 3D printing and the integration of nano-structured materials to enhance mechanical performance. He also has a solid background in computer-aided design and simulation tools, which he integrates into both teaching and research. Moreover, his ability to manage and coordinate large-scale, multi-institutional research projects demonstrates his strong project management and collaboration skills. Dr. Çiçek is adept at formulating hypotheses, designing experiments, analyzing data, and drawing actionable conclusions—skills that are evidenced by his extensive publication record. His interdisciplinary approach bridges the gap between materials development, biomedical applications, and sustainable engineering solutions.

Awards and Honors

Throughout his academic career, Dr. Çiçek has been the recipient of numerous awards that highlight both his research excellence and publication productivity. In 2024, he was honored by Hitit University for having the highest number of Q1 publications indexed by Web of Science. The same year, he received an innovation award for developing commercially viable products in collaboration with the manufacturing sector, under the theme of specialization in machinery and manufacturing technologies. TÜBİTAK recognized his achievements with multiple Publication Incentive Awards in 2023, 2016, and 2012. Notably, in 2018, he was named “Young Researcher of the Year” by Al-Quds University, Palestine, marking an international acknowledgment of his early-career accomplishments. These accolades reflect his consistent contributions to high-impact research, particularly in the areas of biocompatible materials and industrial applications. His ability to translate academic work into practical solutions has also earned him leadership roles in various national R&D projects. The awards validate not only his scholarly output but also his impact on scientific innovation and industrial relevance.

Conclusion

Assoc. Prof. Dr. Bünyamin Çiçek stands out as a leading researcher whose work intersects materials innovation, biocompatible systems, and industrial manufacturing processes. With over a decade of experience, his multidisciplinary expertise in metallurgy, powder injection molding, and composite materials places him at the forefront of applied research in Turkey and beyond. He has contributed significantly to the scientific community through a prolific publication record and active participation in national research projects. His leadership roles in academia and collaboration with industry partners underline his commitment to knowledge transfer and sustainable development. The numerous awards and recognitions he has received reinforce his status as a dedicated scientist and educator. Dr. Çiçek’s ongoing projects in biocompatible materials and environmentally friendly composites demonstrate his responsiveness to current global challenges. As he continues to mentor students and lead cutting-edge research, his contributions are poised to influence the next generation of materials science innovations. He is undoubtedly a strong candidate for the Best Researcher Award, with a portfolio that exemplifies academic rigor, practical relevance, and long-term impact.

Publications Top Notes

  1. Enhancement of Tribological Characteristics for Fe-0.55C PM Steel via Addition of Mo-Ni under Different Deformation Ratios
    Journal: Journal of Materials Engineering and Performance
    Year: 2025
    Citations: 1
  2. Investigation of Tribological Characteristics of Cu-Fe-Ni-Al-Mn Heat Exchanger Alloys for Automotive Applications in Different Antifreeze Ratios
    Journal: International Journal of Automotive Science and Technology
    Year: 2025

 

 

Zheng Huang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zheng Huang | Materials Science | Best Researcher Award

Assistant Dean from College of Pharmacy, Chongqing University of Arts and Sciences, China

Dr. Zheng Huang is an Associate Professor at the School of Pharmacy and the International Research Institute for Targeted Medicine, Chongqing University of Arts and Sciences. He specializes in the development of multifunctional nanomedicines for the treatment of cancers, focusing particularly on bioenergetic modulation and targeted delivery mechanisms. His work integrates the principles of chemical biology and pharmaceutical nanotechnology to address critical challenges such as multidrug resistance. With a research trajectory that includes a strong foundation in chemistry, advanced training in chemical biology, and academic positions that have steadily progressed from lecturer to associate professor, Dr. Huang has emerged as a prominent young scientist in the field of precision medicine. His innovative research has led to several peer-reviewed publications and a granted patent in China. In addition to being a principal investigator of a competitively funded project supported by the Chongqing Science and Technology Bureau, he actively contributes to the design and synthesis of mitochondria-targeted therapeutics. His efforts have significantly advanced cancer therapy research through novel nanoplatforms and drug delivery mechanisms. With a clear commitment to academic excellence and impactful research, Zheng Huang is a notable contributor to pharmaceutical sciences and biomedical engineering.

Professional Profile

Education

Dr. Zheng Huang pursued his academic training at Sichuan University, one of China’s top-tier research institutions. He completed his Bachelor of Science degree in Chemistry in 2013, where he gained a solid grounding in chemical principles and laboratory techniques. Building upon this foundation, he enrolled in a doctoral program in Chemical Biology at the same university and successfully earned his Ph.D. in June 2018. During his doctoral studies, Dr. Huang engaged in multidisciplinary research that bridged chemistry, biology, and medical applications, setting the stage for his future career in pharmaceutical nanotechnology. His academic training emphasized the synthesis of bioactive compounds, structure-activity relationship studies, and the development of drug delivery systems. This comprehensive education allowed him to develop the theoretical understanding and practical expertise required for innovative research in targeted therapy. The combination of a rigorous undergraduate curriculum and a research-intensive doctoral program equipped him with the skills and knowledge to tackle complex biomedical challenges. Dr. Huang’s academic background continues to influence his current research, providing a strong theoretical and experimental basis for his work on novel drug delivery platforms and cancer therapies. His educational journey has been pivotal in shaping his contributions to biomedical research.

Professional Experience

Dr. Zheng Huang has cultivated a progressive academic career at Chongqing University of Arts and Sciences, particularly within the School of Pharmacy and the International Research Institute for Targeted Medicine. He began his tenure as a Lecturer in July 2018, focusing on pharmaceutical sciences and targeted drug delivery. His appointment was extended from July 2019 to December 2023, reflecting his consistent contributions to teaching and research. In January 2024, he was promoted to the rank of Associate Professor, signifying recognition of his academic achievements and growing leadership in research. Concurrently, he has been a Postdoctoral Fellow at the Chongqing Academy of Chinese Materia Medica since November 2021, further advancing his research in traditional and modern drug systems. Across these roles, Dr. Huang has taken a proactive role in designing and executing research projects, mentoring students, and publishing influential studies. His positions reflect a consistent upward trajectory grounded in scientific rigor and academic service. His interdisciplinary affiliations have enabled him to explore advanced materials, nanotherapeutics, and drug delivery innovations. With dual roles in academia and postdoctoral research, Dr. Huang continues to bridge theoretical advancement and real-world applications, contributing meaningfully to both pharmaceutical education and translational medicine.

Research Interests

Dr. Zheng Huang’s research interests lie at the intersection of nanomedicine, targeted drug delivery, and cancer bioenergetics. He is particularly focused on the design and synthesis of multifunctional nanoplatforms capable of precisely delivering therapeutics to mitochondria within cancer cells. His investigations aim to reverse multidrug resistance through bioenergetic manipulation and redox-responsive systems. Leveraging chemical biology principles, Dr. Huang designs smart drug delivery systems that can respond to the unique microenvironment of tumors, such as elevated reactive oxygen species (ROS) levels or pH changes. His recent work includes developing CPI-613-loaded nanocarriers and co-delivery systems for chemo-photodynamic therapies. These approaches aim not only to enhance drug efficacy but also to minimize off-target toxicity and reduce side effects. Moreover, his work on combining glutathione inhibitors with mitochondria-targeted agents has opened new avenues in photodynamic therapy. Dr. Huang’s interest in structure–activity relationships, gene vectors, and non-viral delivery mechanisms also contributes to the broader field of precision medicine. His research is highly translational, addressing urgent clinical problems while innovating at the molecular level. With an emphasis on therapeutic efficiency and safety, Dr. Huang continues to explore advanced strategies for improving treatment outcomes in breast, pancreatic, and other aggressive cancers.

Research Skills

Dr. Zheng Huang possesses a comprehensive set of research skills that span synthetic chemistry, nanomaterials engineering, and biomedical application development. He is proficient in designing mitochondria-targeted drug delivery systems, with demonstrated success in creating ROS-responsive and bioenergetically active nanocarriers. His expertise includes the fabrication and characterization of nanoparticles, liposomes, and bolasomes for use in cancer therapies. Dr. Huang has strong capabilities in cell culture, fluorescence imaging, cytotoxicity assays, and mitochondrial function analysis, enabling him to evaluate the therapeutic effects of his delivery systems in vitro and in vivo. His proficiency in techniques such as dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV-Vis spectroscopy allows for the precise evaluation of nanostructures and drug release kinetics. Additionally, his understanding of structure–activity relationships informs his rational design of drug molecules and carriers. Dr. Huang is experienced in drafting patents, writing scientific articles, and managing funded research projects, including grant applications and experimental design. His skill set bridges theory and practice, making him well-equipped to develop next-generation nanomedicines. By integrating chemical synthesis with biological evaluation, Dr. Huang continues to contribute meaningfully to the advancement of targeted cancer therapy technologies.

Awards and Honors

While Dr. Zheng Huang has not yet received national academic awards or fellowships, his accomplishments reflect emerging leadership in pharmaceutical nanotechnology. One of his significant achievements includes being the Principal Investigator of a competitively funded research project supported by the Chongqing Science and Technology Bureau under the Chongqing Talent Program. This three-year project, titled “Construction of a multifunctional nanodrug delivery system with controllable energy metabolism for reversing multidrug resistance,” received 100,000 RMB and is currently ongoing from October 2023 to September 2026. In addition, Dr. Huang has successfully secured a Chinese national patent (ZL202110912678.7) for a mitochondria-targeted drug based on CPI-613, highlighting his innovation in targeted cancer therapy. His authorship roles in multiple high-impact journal publications as both sole first author and sole corresponding author further signify his independent research strength and thought leadership. Although national or international honors are yet to be received, the quality and relevance of his contributions suggest strong potential for future recognition. His dedication to solving real-world medical problems through scientific innovation makes him a promising candidate for broader academic and professional accolades.

Conclusion

Dr. Zheng Huang exemplifies the qualities of an emerging leader in targeted drug delivery and pharmaceutical nanotechnology. With a rigorous academic background, progressive professional trajectory, and a growing portfolio of high-impact research, he demonstrates strong potential and scientific merit. His work on mitochondria-targeted therapies and ROS-responsive nanoplatforms addresses some of the most pressing challenges in oncology, such as drug resistance and treatment precision. As a principal investigator of a talent-funded project and the holder of a granted national patent, Dr. Huang’s innovative contributions extend from bench to potential clinical applications. While there is room for expanding his international presence and securing national-level funding such as from NSFC, his current achievements place him among the noteworthy young researchers in biomedical sciences. His publications reflect both technical excellence and relevance to critical health issues. With further support and visibility, Dr. Huang is well-positioned to make significant advances in precision medicine. Based on the evaluation of his academic profile, research outputs, and leadership in innovation, Zheng Huang is a highly suitable nominee for the Best Researcher Award, capable of contributing meaningfully to both scientific discovery and therapeutic development.

Publications Top Notes

1. Novel co‑delivery nanomedicine for photodynamic enlarged immunotherapy by cascade immune activation and efficient immunosuppression reversion

  • Year: 2024 (published Nov 1, 2024)

  • Journal: Bioorganic Chemistry (Volume 153, Article 107978)

  • Authors: Yimei Zhang, Shiyi Xiang, Yayi Wu, Can Yang, Zhongzhu Chen, Dianyong Tang, Zheng Huang

2. Multifunctional Novel Nanoplatform for Effective Synergistic Chemo‑Photodynamic Therapy of Breast Cancer by Enhancing DNA Damage and Disruptions of Its Reparation

  • Year: 2023

  • Journal: Molecules (Basel, Switzerland)

  • Authors: Zheng Huang, Tong Xian, Xiangyi Meng, Huaisong Hu, Yimei Zhang 

3. Carrier‑free nanomedicines self‑assembled from palbociclib dimers and Ce6 for enhanced combined chemo‑photodynamic therapy of breast cancer

  • Year: 2023 (first published January 9, 2023)

  • Journal: RSC Advances

  • Authors: Zheng Huang, Huaisong Hu, Tong Xian, Zhigang Xu, Dianyong Tang, Bochu Wang, Yimei Zhang

 

Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President from New York University, United States

Dr. Juan José de Pablo is a globally recognized leader in molecular engineering, materials science, and chemical engineering, known for his groundbreaking research and extensive leadership in academic and national scientific organizations. Currently serving as the Executive Vice President for Global Science and Technology and Executive Dean at the Tandon School of Engineering, New York University, Dr. de Pablo has had an illustrious academic and professional journey. He is also a senior scientist at Argonne National Laboratory and has held pivotal roles at the University of Chicago and the University of Wisconsin. His work spans multiple research areas, including directed self-assembly of polymers, soft materials, molecular simulation, and biotechnology. Over the years, Dr. de Pablo has established himself as a prolific researcher with over 20 patents, numerous influential publications, and editorial positions in high-impact journals. He is an elected member of prestigious institutions including the U.S. National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences. His leadership has influenced science policy, strategic research initiatives, and interdisciplinary collaborations across the globe. His contributions are not only scientific but visionary, paving the way for future technological advances in materials design, nanotechnology, and energy solutions.

Professional Profile

Education

Dr. de Pablo’s academic foundation is as impressive as his professional accomplishments. He began his education at the National University of Mexico (UNAM), where he earned a Bachelor of Science in Chemical Engineering in 1985. His passion for chemical engineering led him to pursue a doctoral degree at the University of California, Berkeley, where he received his Ph.D. in Chemical Engineering in 1990. After completing his doctorate, he furthered his research capabilities during a postdoctoral fellowship in Materials Science at the Institute for Polymers, ETH Zurich, Switzerland, from 1990 to 1992. These formative years provided him with a robust interdisciplinary background that blends engineering principles with advanced materials science. His exposure to leading institutions in North America and Europe gave him a global perspective early in his career, which continues to shape his international collaborations and leadership roles. The rigorous training he received laid the groundwork for his expertise in thermodynamics, polymer physics, and computational modeling, which would go on to influence countless innovations in both academic and industrial domains.

Professional Experience

Dr. de Pablo’s professional career spans over three decades and includes a distinguished trajectory of teaching, research, and leadership. He began his academic career as an Assistant Professor of Chemical Engineering at the University of Wisconsin in 1992, rising through the ranks to become a full professor and eventually Director of its Materials Research Science and Engineering Center. From 2000 to 2012, he also served as Deputy Director of the Nanoscale Science and Engineering Center. In 2012, he joined the University of Chicago as the Liew Family Professor at the Institute for Molecular Engineering, and later took on pivotal roles including Co-Director of the Center for Hierarchical Materials Design (CHiMaD) and Deputy Director for Education and Outreach. Since 2018, he has also been CEO of UChicago-Argonne LLC. Dr. de Pablo’s influence extends beyond academia into national and global science leadership, particularly through his vice presidency roles related to U.S. National Laboratories and global innovation. In 2024, he was appointed Executive Dean at NYU’s Tandon School of Engineering, a role through which he continues to shape engineering education and research strategy. His extensive professional background reflects a unique combination of scientific innovation and strategic governance.

Research Interests

Dr. de Pablo’s research interests are both broad and deep, focusing on the intersection of molecular engineering, materials science, and computational physics. A primary focus of his work is on the directed self-assembly of block copolymers, a field in which he has pioneered several methodologies now used in nanomanufacturing and lithography. He also investigates thermophysical properties of soft materials, advanced polymer systems, biological interfaces, and molecular thermodynamics. His interest in computational modeling has led to the development of new simulation tools and theoretical frameworks for studying molecular and nanoscale systems, facilitating predictions of material behavior with high accuracy. Additionally, Dr. de Pablo has contributed significantly to biotechnology research, particularly in areas related to cryopreservation, stem cell engineering, and synthetic biology. His interdisciplinary approach allows him to tackle complex problems that span chemistry, physics, and engineering. Through collaborative projects and centers such as CHiMaD, he works closely with experimentalists to translate computational models into real-world applications. His research agenda reflects an enduring commitment to solving fundamental scientific challenges while also addressing practical issues in health, energy, and technology.

Research Skills

Dr. de Pablo possesses an exceptional array of research skills that reflect his training and contributions across multiple scientific disciplines. He is a world leader in computational modeling and molecular simulation, applying these techniques to study the thermodynamic and kinetic behavior of polymers, colloids, and biological systems. His skillset includes advanced knowledge of coarse-grained and multiscale simulations, free energy calculations, and structure-property prediction methods. Beyond computational proficiency, he has deep expertise in thermodynamics, statistical mechanics, and polymer physics. His laboratory and theoretical work complement each other, allowing him to bridge gaps between experimental observations and theoretical predictions. He is also adept at integrating interdisciplinary methods, including those from materials science, chemical engineering, and applied physics. His ability to conceptualize and lead large-scale research initiatives, such as the Materials Genome Initiative, highlights his strengths in research strategy and innovation management. In mentoring and supervision, Dr. de Pablo has guided dozens of Ph.D. students and postdoctoral fellows, instilling in them a rigorous and holistic research methodology. His technical versatility and collaborative mindset are key reasons behind his influential role in shaping modern materials science.

Awards and Honors

Dr. de Pablo has been the recipient of numerous prestigious awards and honors that reflect the depth, breadth, and impact of his scientific career. Early in his career, he received multiple young investigator awards from leading institutions like NSF, IBM, Xerox, 3M, and DuPont, signaling his early promise. He went on to receive the Presidential Faculty Fellow Award from President Bill Clinton and was later elected as a Fellow of the American Physical Society and the American Academy of Arts and Sciences. His research has been recognized through lectureships and invited professorships at top global institutions such as ETH Zurich, Stanford, and the University of Michigan. He has delivered keynote talks and plenary lectures at more than 30 prestigious conferences and universities worldwide. In 2016, he was elected to the U.S. National Academy of Engineering and later to the National Academy of Sciences in 2022. Internationally, he holds honors like the Marie Curie Professorship and the Chevalier de l’Ordre du Mérite (France, 2024). His accolades also include the Polymer Physics Prize from the American Physical Society and numerous distinguished lectureships from Caltech, MIT, Princeton, and others. These honors underline his status as a leading global authority in materials and molecular engineering.

Conclusion

Dr. Juan José de Pablo exemplifies excellence in scientific research, innovation, and leadership. His prolific academic career, paired with his impactful administrative and advisory roles, highlights a rare combination of deep technical expertise and visionary leadership. His contributions to molecular engineering and materials science have not only expanded fundamental scientific understanding but have also enabled new technologies in fields ranging from nanolithography to cryopreservation. With over 20 patents, numerous high-impact publications, and a strong track record of mentorship, Dr. de Pablo has influenced both the academic community and industrial applications. His election to multiple national academies and his global recognition through prestigious awards are testaments to the quality and impact of his work. While already an established authority, he continues to contribute actively through roles in science policy, research strategy, and education at the highest levels. In summary, Dr. de Pablo’s lifelong dedication to advancing science and mentoring the next generation of researchers makes him a truly deserving candidate for the Best Researcher Award. His career serves as an inspiration and a benchmark for excellence in global scientific leadership.

Publications Top Notes

  1. Water-mediated ion transport in an anion exchange membrane
    Nature Communications, 2025
    Citations: 2
  2. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
    Nature Communications, 2025
    Citations: 1
  3. Reflection and refraction of directrons at the interface
    Proceedings of the National Academy of Sciences of the United States of America, 2025
  4. Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
    ACS Catalysis, 2025
  5. Synthetic Active Liquid Crystals Powered by Acoustic Waves
    Advanced Materials, 2025
  6. Current Advances in Genome Modeling Across Length Scales 2025
  7. Chromatin structures from integrated AI and polymer physics model
    PLOS Computational Biology, 2025
    Citations: 1
  8. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
    Journal of Organic Chemistry, 2025
  9. Bio-Based Surfactants via Borrowing Hydrogen Catalysis
    Chemistry – A European Journal, 2025
  10. Efficient sampling of free energy landscapes with functions in Sobolev spaces
    Journal of Chemical Physics, 2025
    Citations: 1

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11