Mini Han Wang | Artificial Intelligence | Young Scientist Award

Dr. Mini Han Wang | Artificial Intelligence | Young Scientist Award

Chinese University of Hong Kong, Hong Kong

Dr. Mini Han Wang is a distinguished senior researcher specializing in ophthalmology, artificial intelligence (AI) in medical imaging, and biomolecular pathways in ocular diseases. She holds dual Ph.D.s in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong and Data Science from the City University of Macau, demonstrating her expertise in integrating medical research with AI-driven analytical techniques. Dr. Wang has made significant contributions to age-related macular degeneration (AMD) research, AI-based disease diagnostics, and precision medicine. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with the Beijing Institute of Technology and Jinan University, and Director of the Frontier Science Computing Center at the Chinese Academy of Sciences. Beyond research, she is an experienced lecturer, delivering courses on intelligent data mining, evidence-based medicine, and AI applications in healthcare. Her work is widely published in peer-reviewed journals, and she actively collaborates with leading academic and medical institutions. With a commitment to advancing medical AI technologies and personalized healthcare solutions, Dr. Wang stands out as a leading expert at the intersection of medicine and data science.

Professional Profile

Education

Dr. Mini Han Wang has pursued a multidisciplinary academic journey, combining medical sciences, engineering, and data science. She earned a Ph.D. in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong (2022-2025), where her research focuses on AI-driven diagnostics and molecular mechanisms of retinal diseases. In parallel, she completed a Ph.D. in Data Science at the Institute of Data Science, City University of Macau (2020-2023), further enhancing her ability to develop AI-integrated solutions for medical applications. Before her doctoral studies, Dr. Wang completed an M.Sc. in Management (2016-2018) at City University of Macau, gaining insights into research administration and healthcare management. She also holds dual bachelor’s degrees from Jiangxi Science & Technology Normal University (2012-2016) in Internet of Things (IoT) Engineering and English Literature, showcasing her strong foundation in technology and global scientific communication. As an Outstanding Graduate Representative, her diverse educational background enables her to bridge the gap between medical research, AI innovation, and healthcare management, making her a pioneering figure in modern ophthalmic research.

Professional Experience

Dr. Wang’s professional journey is marked by leadership in research, teaching, and AI-driven medical advancements. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with Beijing Institute of Technology and Jinan University, where she leads projects on AI-based ophthalmic disease diagnosis and retinal molecular research. Additionally, she holds the position of Director of the Frontier Science Computing Center at the Chinese Academy of Sciences, overseeing cutting-edge AI applications in medicine and multi-omics data integration. Since 2018, Dr. Wang has collaborated with Shenzhen Institute of Advanced Technology and Zhuhai Institute of Advanced Technology, conducting research on medical imaging, knowledge graphs, and AI-driven predictive modeling. Her academic contributions include guest lectures at Beijing Institute of Technology, Jinan University, and Zhuhai Science & Technology Institute, focusing on intelligent data mining, evidence-based medicine, and AI in disease diagnosis. With her interdisciplinary expertise, Dr. Wang has played a key role in bridging fundamental research with clinical applications, contributing significantly to medical AI advancements and personalized treatment strategies.

Research Interest

Dr. Wang’s research revolves around three core areas: ophthalmology, AI in medical imaging, and biomolecular pathways in ocular diseases. Her primary focus is age-related macular degeneration (AMD) and retinal diseases, where she investigates molecular mechanisms, genetic variations, and metabolic dysregulation. She is also deeply involved in AI-driven predictive modeling to enhance early disease detection and precision therapeutics. In the field of medical imaging, she integrates multi-modal imaging techniques (OCT, UWF Fundus) with AI algorithms to improve retinal disease diagnostics and prognosis. Furthermore, her research extends to biomolecular analysis, where she studies oxidative stress, mitochondrial dysfunction, and complement system activation in ocular diseases. By combining multi-omics data, AI-driven drug discovery, and knowledge graph-driven ophthalmic AI systems, Dr. Wang aims to revolutionize personalized medicine and enhance treatment strategies for degenerative eye diseases.

Research Skills

Dr. Wang possesses a diverse and advanced skill set, allowing her to lead high-impact research in medical AI and ophthalmology. She specializes in AI-based predictive modeling, machine learning for medical imaging, and deep learning for disease classification. Her expertise in biomolecular analysis includes multi-omics data integration, pathway analysis, and molecular crosstalk identification for precision medicine applications. Dr. Wang is also proficient in data mining, statistical modeling, and computational biology, which are essential for her research on retinal diseases and AI-driven diagnostics. Additionally, she has hands-on experience with multi-modal imaging techniques (OCT, UWF, fundus photography) and their integration with AI-based disease detection frameworks. She is well-versed in academic writing, research methodology, and project management, with an extensive record of peer-reviewed publications and collaborative research projects. With these skills, Dr. Wang is able to bridge the gap between clinical research and AI-powered healthcare solutions, making her a leading figure in medical innovation.

Awards and Honors

Dr. Wang has received multiple recognitions for her outstanding research contributions and academic achievements. As an Outstanding Graduate Representative, she was acknowledged for her exceptional performance in data science and medical research. She has been the recipient of research grants and funding awards for her work in ophthalmic AI, biomolecular studies, and precision medicine. Her research on AMD and AI-driven diagnostics has earned recognition from international conferences and peer-reviewed journals. She has been invited as a keynote speaker and panelist at various scientific conferences, where she has shared insights on AI applications in medicine, multi-omics integration, and retinal disease research. Additionally, her collaborations with leading universities and medical institutions have led to numerous institutional awards for excellence in research and innovation. With a strong academic and professional track record, Dr. Wang continues to be recognized as a pioneering researcher at the forefront of AI-driven medical advancements.

Conclusion

Dr. Mini Han Wang is a leading researcher at the intersection of ophthalmology, AI, and biomolecular analysis, making groundbreaking contributions to AMD research, AI-driven diagnostics, and precision medicine. Her multidisciplinary expertise in medical science, data analytics, and computational biology allows her to develop innovative solutions for early disease detection and personalized treatment strategies. As a senior researcher, director, and academic lecturer, she has demonstrated leadership in both research and education, mentoring young scientists and collaborating with top-tier institutions. Her work in AI-integrated ophthalmology and molecular disease modeling is shaping the future of medical research and healthcare technology. While further global collaborations, large-scale clinical applications, and expanded research beyond AMD

Publications Top Notes

  • Title: Place attachment to pseudo establishments: An application of the stimulus-organism-response paradigm to themed hotels
    Authors: J. Sun, P.J. Chen, L. Ren, E.H.W. Shih, C. Ma, H. Wang, N.H. Ha
    Year: 2021
    Citations: 86

  • Title: The effect of online investor sentiment on stock movements: an LSTM approach
    Authors: G. Wang, G. Yu, X. Shen
    Year: 2020
    Citations: 43

  • Title: Big data and predictive analytics for business intelligence: A bibliographic study (2000–2021)
    Authors: Y. Chen, C. Li, H. Wang
    Year: 2022
    Citations: 33

  • Title: AI-based advanced approaches and dry eye disease detection based on multi-source evidence: Cases, applications, issues, and future directions
    Authors: M.H. Wang, L. Xing, Y. Pan, F. Gu, J. Fang, X. Yu, C.P. Pang, K.K.L. Chong
    Year: 2024
    Citations: 32

  • Title: Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey
    Authors: J. Yang, S. Fong, H. Wang, Q. Hu, C. Lin, S. Huang, J. Shi, K. Lan, R. Tang
    Year: 2021
    Citations: 29

  • Title: Research on data security in big data cloud computing environment
    Authors: F. Wang, H. Wang, L. Xue
    Year: 2021
    Citations: 27

  • Title: An explainable artificial intelligence-based robustness optimization approach for age-related macular degeneration detection based on medical IoT systems
    Authors: M.H. Wang, K.K. Chong, Z. Lin, X. Yu, Y. Pan
    Year: 2023
    Citations: 26

  • Title: Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: A case study based on CNN, attention, and CAM mechanism
    Authors: M. Wang, Z. Lin, J. Zhou, L. Xing, P. Zeng
    Year: 2023
    Citations: 13

  • Title: Metamaterials design method based on deep learning database
    Authors: X. Zhou, Q. Xiao, H. Wang
    Year: 2022
    Citations: 10

  • Title: A YOLO-based method for improper behavior predictions
    Authors: M. Wang, Y. Zhao, Q. Wu, G. Chen
    Year: 2023
    Citations: 9

Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assist Prof Dr. Abid Iqbal | Artificial Intelligence | Best Researcher Award

Assistant Professor at King Faisal University, Saudi Arabia

Dr. Abid Iqbal is an accomplished Assistant Professor at the University of Engineering and Technology Peshawar, specializing in Electrical Engineering and artificial intelligence. He earned his Ph.D. from Griffith University, Australia, where he researched piezoelectric energy harvesters. With a strong academic background, he ranked first in his Master’s program at Ghulam Ishaq Khan Institute, Pakistan. Dr. Iqbal has a diverse professional experience, including roles as an Electrical Design Engineer and Research Assistant. His expertise encompasses developing embedded devices and innovative teaching methodologies, mentoring students, and conducting impactful research. He has successfully secured funding for multiple projects in AI applications for health and agriculture. Dr. Iqbal’s publication record includes numerous papers in reputable journals, reflecting his commitment to advancing knowledge in his field. His technical skills in programming and software further enhance his research capabilities, making him a valuable asset to academia and industry.

Profile

Education

Dr. Abid Iqbal is a highly accomplished academic with a solid educational foundation in electrical and electronics engineering. He earned his Ph.D. from the Queensland Micro- and Nanotechnology Centre at Griffith University, Australia, from April 2013 to February 2017. His doctoral research focused on the design, fabrication, and analysis of aluminum nitride (AlN)/silicon carbide (SiC)-based piezoelectric energy harvesters, contributing significantly to renewable energy technologies. Prior to his Ph.D., Dr. Iqbal completed his Master’s degree in Electronics Engineering at the Ghulam Ishaq Khan Institute in Topi, Swabi, Pakistan, graduating with a remarkable GPA of 3.88/4 and securing the top position in his class. His academic journey began with a Bachelor’s degree in Electrical Engineering from the University of Engineering & Technology in Peshawar, Pakistan, where he was recognized as an outstanding student. Dr. Iqbal’s educational background reflects his dedication and expertise in his field, laying a strong foundation for his professional career.

Professional Experience

Dr. Abid Iqbal is an accomplished electrical engineer currently serving as an Assistant Professor at the University of Engineering and Technology Peshawar since August 2019. In this role, he has been instrumental in teaching undergraduate courses in Electrical Engineering, developing innovative teaching methods, and mentoring students on research projects. Prior to this position, he worked as an Electrical Design Engineer at Alliance Power and Data in Australia, focusing on ERGON and NBN projects. He also contributed to the development of embedded systems for individuals with disabilities while employed as an Electronic Engineer at Community Lifestyle Support. His research experience includes a significant role as a Research Assistant at Griffith University, where he worked on piezoelectric devices for harsh environments and gained expertise in various semiconductor fabrication processes. Additionally, he has served as a lecturer at Comsat Institute of Information Technology and worked as a research associate at the City University of Hong Kong, demonstrating a robust and diverse professional background in academia and industry.

Research Interest

Dr. Abid Iqbal’s research interests lie at the intersection of electrical engineering and artificial intelligence, focusing on the development of innovative technologies that enhance energy efficiency and improve healthcare outcomes. His work includes designing and fabricating advanced piezoelectric energy harvesters using AlN/SiC materials, aimed at harnessing renewable energy sources. Additionally, Dr. Iqbal is deeply involved in projects utilizing artificial intelligence for agricultural applications, such as real-time disease detection in crops, and developing telehealth systems that leverage IoT technology to monitor patient health remotely. He has a keen interest in embedded systems and the design of hardware for assistive technologies, including portable ventilators and muscle sensors for individuals with disabilities. Through his research, Dr. Iqbal aims to contribute to sustainable energy solutions and advancements in healthcare technology, fostering a multidisciplinary approach that integrates engineering principles with artificial intelligence for practical applications.

Research Skills

Dr. Abid Iqbal possesses a robust set of research skills that underscore his expertise in Electrical Engineering and artificial intelligence. His extensive experience in designing and fabricating piezoelectric energy harvesters highlights his proficiency in materials science and device characterization. Dr. Iqbal is adept at using advanced simulation tools such as COMSOL, Ansys, and Coventorware, which facilitate in-depth analysis and optimization of microelectromechanical systems (MEMS). His work on artificial intelligence applications in telehealth and agricultural systems showcases his ability to integrate machine learning techniques with practical engineering solutions. Additionally, Dr. Iqbal has a strong background in programming languages such as Python and MATLAB, enhancing his capability to develop innovative software solutions for complex engineering problems. His involvement in funded projects and numerous publications further illustrates his commitment to advancing research and contributing to knowledge in his field. Overall, Dr. Iqbal’s diverse skills position him as a valuable asset to any research team.

Award and Recognition

Dr. Abid Iqbal is a distinguished electrical engineer and academic known for his significant contributions to the field of electrical and electronics engineering. He has received multiple accolades for his research and academic excellence, including the IGNITE funding for four innovative projects focused on machine learning applications in health and agriculture. Dr. Iqbal was awarded publication scholarships and prestigious Griffith University PhD scholarships, recognizing his outstanding academic performance during his doctoral studies. Additionally, he ranked first among his peers in the Master’s program at Ghulam Ishaq Khan Institute, further demonstrating his commitment to excellence in engineering. His dedication to teaching and mentoring future engineers is evident in his role as an Assistant Professor at the University of Engineering and Technology Peshawar, where he has developed innovative curricula and guided numerous student research projects. Dr. Iqbal’s work has been widely published, contributing significantly to advancements in artificial intelligence, embedded systems, and renewable energy technologies.

Conclusion

Dr. Abid Iqbal is a highly qualified candidate for the Best Researcher Award, demonstrating exceptional expertise in Electrical Engineering and a strong commitment to research and education. His accomplishments in renewable energy research, successful project management, and dedication to mentoring future engineers make him a standout choice. While he has areas for growth, particularly in expanding collaborative networks and enhancing commercialization efforts, his current achievements and potential for future contributions position him as an inspiring figure in his field. This award would not only recognize his past efforts but also encourage his continued pursuit of excellence in research and education.

Publication Top Notes

  1. Enhanced TumorNet: Leveraging YOLOv8s and U-net for superior brain tumor detection and segmentation utilizing MRI scans
    • Authors: Zafar, W., Husnain, G., Iqbal, A., AL-Zahrani, M.S., Naidu, R.S.
    • Year: 2024
    • Journal: Results in Engineering
    • Volume/Page: 24, 102994
  2. Novel dual absorber configuration for eco-friendly perovskite solar cells: design, numerical investigations and performance of ITO-C60-MASnI3-RbGeI3-Cu2O-Au
    • Authors: Hasnain, S.M., Qasim, I., Iqbal, A., Amin Mir, M., Abu-Libdeh, N.
    • Year: 2024
    • Journal: Solar Energy
    • Volume/Page: 278, 112788

 

 

 

Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom, Princess Nourah bint Abdulrahman University, Saudi Arabia

Assoc Prof Dr. Mona Jamjoom is an accomplished researcher in the field of artificial intelligence, recognized for her innovative contributions and impactful studies. With a strong focus on machine learning and data analytics, she has published numerous papers in leading journals and has been awarded the Best Researcher Award for her groundbreaking work. Mona is passionate about harnessing AI to solve complex problems and improve decision-making processes across various industries. Her commitment to advancing technology while addressing ethical considerations makes her a prominent figure in the AI community.

Profile:

Scholar

Academics:

Assoc Prof Dr. Mona Jamjoom holds a PhD in Artificial Intelligence from King Saud University, awarded in May 2016. She also earned her Master’s degree in Computer Science from the same institution in 2004, following her Bachelor’s degree in Computer Science, which she completed in 1992. Her academic background provides a strong foundation for her research and contributions to the field of AI.

Professional Experiences:

Assoc Prof Dr. Mona Jamjoom has extensive professional experience in academia. Since 2021, she has served as an Associate Professor at Princess Nourah bint Abdulrahman University in Riyadh, Saudi Arabia. Prior to this, she was an Assistant Professor at the same institution from 2017 to 2021. Mona began her academic career as a Lecturer at Princess Nourah bint Abdulrahman University from 2007 to 2016, and before that, she worked as a Teaching Assistant from 1998 to 2007. Her career in the field began in 1993, when she provided technical support at the university, further solidifying her commitment to education and technology.

Activities:

Assoc Prof Dr. Mona Jamjoom is actively engaged in various professional activities that enhance her contributions to the field of artificial intelligence. In 2024, she joined the work team at the Center for Advanced Studies in Artificial Intelligence at King Saud University, collaborating on the KSU AI Satellite Lab project with SDAIA. She served as an external examiner for a doctoral thesis on deep learning applications for visual pollution detection in Riyadh. Additionally, she reviewed applications for the Apple Developer Academy’s second challenge for female students and participated in consulting sessions during the Gulf Hackathon Program focused on AI in public education. Mona also acted as a consultant for the UNESCO project “AI Capacity Building in Arabic-speaking Countries,” supported by Huawei Technologies. She has reviewed numerous papers for ISI journals and attended the research day at Princess Nourah bint Abdulrahman University. Furthermore, she co-supervised a PhD student specializing in Cognitive Computing at Universiti Kuala Lumpur, Malaysia.

Publication Top Notes:

M. Adil, Z. Yinjun, M. M. Jamjoom, and Z. Ullah. “OptDevNet: An Optimized Deep Event-Based Network Framework for Credit Card Fraud Detection.” IEEE Access, vol. 12, pp. 132421-132433, 2024. doi: 10.1109/ACCESS.2024.3458944.

Rabbani, H., Shahid, M. F., Khanzada, T. J. S., Siddiqui, S., Jamjoom, M. M., Ashari, R. B., Ullah, Z., Mukati, M. U., and Nooruddin, M. “Enhancing Security in Financial Transactions: A Novel Blockchain-Based Federated Learning Framework for Detecting Counterfeit Data in Fintech.” PeerJ Computer Science, vol. 10, e2280, 2024.

Malik, M. S. I., Nawaz, A., and Jamjoom, M. M. “Hate Speech and Target Community Detection in Nastaliq Urdu Using Transfer Learning Techniques.” IEEE Access, 2024.

Kurtoğlu, A., Eken, Ö., Çiftçi, R., Çar, B., Dönmez, E., Kılıçarslan, S., Jamjoom, M. M., Abdel Samee, N., Hassan, D. S. M., and Mahmoud, N. F. “The Role of Morphometric Characteristics in Predicting 20-Meter Sprint Performance Through Machine Learning.” Scientific Reports, vol. 14, no. 1, 16593, 2024.

Shah, S. M. A. H., Khan, M. Q., Rizwan, A., Jan, S. U., Samee, N. A., and Jamjoom, M. M. “Computer-Aided Diagnosis of Alzheimer’s Disease and Neurocognitive Disorders with Multimodal Bi-Vision Transformer (BiViT).” Pattern Analysis and Applications, vol. 27, no. 3, 76, 2024.

Ishtiaq, A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Product Helpfulness Detection with Novel Transformer Based BERT Embedding and Class Probability Features.” IEEE Access, 2024.

Abbas, M. A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Novel Transformer Based Contextualized Embedding and Probabilistic Features for Depression Detection from Social Media.” IEEE Access, 2024.

Elhadad, A., Jamjoom, M., and Abulkasim, H. “Reduction of NIFTI Files Storage and Compression to Facilitate Telemedicine Services Based on Quantization Hiding of Downsampling Approach.” Scientific Reports, vol. 14, no. 1, 5168, 2024.

Malik, M. S. I., Younas, M. Z., Jamjoom, M. M., and Ignatov, D. I. “Categorization of Tweets for Damages: Infrastructure and Human Damage Assessment Using Fine-Tuned BERT Model.” PeerJ Computer Science, vol. 10, e1859, 2024.

Malik, M. S. I., Nawaz, A., Jamjoom, M. M., and Ignatov, D. I. “Effectiveness of ELMo Embeddings and Semantic Models in Predicting Review Helpfulness.” Intelligent Data Analysis, (Preprint), 1-21, 2023.

Ali Ghandi | Artificial intelligence | Best Researcher Award

Ali Ghandi | Artificial intelligence | Best Researcher Award

PhD, Sharif University of Technology, Iran.

Ali Ghandi is an innovative researcher and educator specializing in Artificial Intelligence, particularly in reinforcement learning and generative AI. Currently pursuing his Ph.D. at Sharif University of Technology, he is known for his groundbreaking work that enhances reinforcement learning processes by leveraging side-channel data. Ali’s academic journey began with a B.Sc. in Digital System Design, followed by an M.Sc. in Machine Learning, where he excelled as one of the top students. He has taught courses in Neural Networks and Deep Generative Models, effectively sharing his knowledge with students. His research has been recognized through publications in reputable journals and presentations at significant conferences, such as the Iran Workshop on Communication and Information Theory. Ali’s accomplishments include a top rank in a national entrance exam and membership in Iran’s National Elites Foundation, underscoring his exceptional capabilities and contributions to the field of AI and his commitment to advancing technology for practical applications.

Profile:

 

Education

Ali Ghandi has an impressive academic background in electrical and computer engineering, with a particular focus on Artificial Intelligence. He is currently pursuing a Ph.D. at Sharif University of Technology (SUT) in Tehran, where he is conducting innovative research aimed at improving reinforcement learning processes using side-channel data. Prior to his doctoral studies, Ali earned his Master’s degree in Machine Learning from SUT, where his thesis focused on analyzing IoT systems through location-based data, effectively modeling traffic based on dynamic maps and registered commutes. He completed his Bachelor’s degree in Digital System Design at the same university, where he developed an online coordinate system for managing thermal loads in IoT applications. Throughout his educational journey, Ali has consistently demonstrated academic excellence, evidenced by his top rankings in national examinations and competitive academic events, establishing him as a leading figure among his peers in the field of electrical engineering and AI.

Professional Experiences

Ali Ghandi has an impressive academic background in electrical and computer engineering, with a particular focus on Artificial Intelligence. He is currently pursuing a Ph.D. at Sharif University of Technology (SUT) in Tehran, where he is conducting innovative research aimed at improving reinforcement learning processes using side-channel data. Prior to his doctoral studies, Ali earned his Master’s degree in Machine Learning from SUT, where his thesis focused on analyzing IoT systems through location-based data, effectively modeling traffic based on dynamic maps and registered commutes. He completed his Bachelor’s degree in Digital System Design at the same university, where he developed an online coordinate system for managing thermal loads in IoT applications. Throughout his educational journey, Ali has consistently demonstrated academic excellence, evidenced by his top rankings in national examinations and competitive academic events, establishing him as a leading figure among his peers in the field of electrical engineering and AI.

 

Research skills

Ali Ghandi possesses a strong set of research skills that position him as a leading figure in the field of Artificial Intelligence. His primary focus is on reinforcement learning, where he has developed innovative approaches, such as utilizing side-channel data to enhance the learning process. Ali’s expertise extends to deep generative models, where he explores the potential of generative AI in various applications. Additionally, he is adept at massive data mining, allowing him to extract valuable insights from large datasets, which is crucial in today’s data-driven world. His research also includes analyzing IoT systems, particularly in modeling traffic using location-based data. This multifaceted skill set enables Ali to approach complex problems with a comprehensive perspective, combining theoretical knowledge with practical applications. His ability to publish in reputable journals and present at conferences demonstrates his commitment to advancing the field and contributing to the academic community.

 

Awards And Recoginition

Ali Ghandi has received numerous accolades that underscore his academic excellence and contributions to the field of Artificial Intelligence. He achieved a remarkable 68th rank in a highly competitive university entrance exam, placing him among the top candidates out of 250,000 participants. His outstanding performance in the International A-lympiad, where he ranked third, showcases his proficiency in applied mathematics within a global context. Additionally, Ali has been a member of Iran’s National Elites Foundation since 2013, reflecting his recognition as a leading talent in his field. His academic journey at Sharif University of Technology has been marked by multiple distinctions, including first place among students in his Digital Systems minor and second place among all M.Sc. Electrical Engineering students. These honors highlight Ali’s commitment to excellence in research and education, positioning him as a promising contributor to the advancement of Artificial Intelligence.

Conclusion

In conclusion, Ali Ghandi possesses a solid foundation of academic excellence, innovative research, and early recognition in his field. His focus on advanced topics within AI positions him well for the Best Researcher Award. By addressing areas for improvement, such as increasing the practical impact of his work and expanding his collaborative efforts, Ali can further enhance his candidacy for this prestigious recognition. His commitment to advancing knowledge in AI and machine learning makes him a strong contender for the award.

Publication Top Notes

  • Title: Ex-RL: Experience-based Reinforcement Learning
    Authors: Ghandi, A., Shouraki, S.B., Gholampour, I., Kamranian, A., Riazati, M.
    Year: 2025
    Citation: Information Sciences, 689, 121479 📚🤖
  • Title: Deep ExRL: Experience-Driven Deep Reinforcement Learning in Control Problems
    Authors: Ghandi, A., Shouraki, S.B., Riazati, M.
    Year: 2024
    Citation: 12th Iran Workshop on Communication and Information Theory (IWCIT 2024) 📄🔍

Karimeh Ata | Artificial Intelligence | Best Researcher Award

Dr. Karimeh Ata | Artificial Intelligence | Best Researcher Award

Researcher at UPM, Jordan

Dr. Karimeh Ata is a Computer and Artificial Intelligence Engineering Ph.D. candidate at Universiti Putra Malaysia (UPM), specializing in deep learning and big data analytics for urban mobility and vehicle flow optimization. With a strong academic foundation, she holds a Master’s degree in Computer Engineering and Embedded Systems from UPM and a Bachelor’s degree in Computer Engineering from Fahad Bin Sultan University, Saudi Arabia, where she graduated with first-class honors. Dr. Ata’s research focuses on solving complex problems using advanced algorithms like Dijkstra’s and Ant Colony Optimization, contributing to various high-impact projects. In addition to her academic achievements, she has experience as an AI trainer and lecturer, and her work is highlighted by numerous publications in top-tier journals and conferences. Proficient in technologies like Microsoft Azure, GIS, Python, and Raspberry Pi, Dr. Ata is committed to driving innovation in the fields of artificial intelligence and computer engineering.

Profile

Education

Dr. Karimeh Ata is currently pursuing her Ph.D. in Computer Engineering and Artificial Intelligence at Universiti Putra Malaysia (UPM), with an expected completion in June 2024. Her doctoral research focuses on traffic flow prediction using deep learning and big data analysis, and she has maintained an outstanding GPA of 4.00 throughout her studies. Prior to this, she earned a Master of Computer Engineering and Embedded Systems from UPM in 2019, where she addressed challenges in vehicle navigation and parking optimization using algorithms like Dijkstra’s and Ant Colony Optimization, achieving a GPA of 3.57. Dr. Ata holds a Bachelor of Computer Engineering from Fahad Bin Sultan University (FBSU) in Saudi Arabia, where she graduated with first-class honors and a GPA of 4.91, also receiving the Prince Fahad Bin Sultan Scholarship for academic excellence.

Professional Experience

Dr. Karimeh Ata has a diverse range of professional experience in the fields of artificial intelligence and computer engineering. From December 2018 to January 2020, she served as an Artificial Intelligence Trainer at Hass Resources Corporation in Malaysia, where she supervised and trained teams on AI applications in education. In early 2019, she was a member of the Technical Committee for the Symposium on Control Systems and Signal Processing in Malaysia, bringing together experts to discuss advancements in AI, signal processing, and control systems. Dr. Ata has also contributed to academia as a Computer Engineering Lecturer at Universiti Putra Malaysia (UPM) from November 2022 to September 2023, where she designed and delivered courses on subjects such as Programming Fundamentals, Digital Logic Design, and Machine Learning, while also supervising laboratory sessions. Additionally, she worked as a Research Assistant at UPM from July 2021 to October 2022, where she ensured the quality, integrity, and security of research data and guided teams in preparing findings for top-tier journals and conferences. Dr. Ata’s professional experience highlights her leadership in project management, research ethics, and AI integration.

Research Interest

Dr. Karimeh Ata’s research interests focus on leveraging advanced technologies to address complex challenges in urban mobility, traffic flow optimization, and artificial intelligence. Her work primarily centers around deep learning and big data analytics, with a particular emphasis on traffic flow prediction and vehicle optimization. She has explored algorithms such as Dijkstra’s and Ant Colony Optimization to calculate the shortest paths and improve transportation efficiency in urban environments. Additionally, Dr. Ata is interested in applying AI-driven solutions to enhance brain stroke detection, lithium iron phosphate battery electrode performance, and spatial-temporal traffic flow prediction through multi-layer models. Her research aims to innovate in fields like smart transportation systems, deep learning, and AI for real-world problem-solving.

Research Skills

Dr. Karimeh Ata possesses extensive research skills in deep learning, big data analytics, and artificial intelligence, with a focus on solving complex problems in urban mobility and traffic flow optimization. She is proficient in designing and implementing deep learning models for traffic prediction and vehicle flow using large datasets to ensure accuracy. Dr. Ata has expertise in optimizing algorithms such as Dijkstra’s and Ant Colony Optimization to calculate efficient paths in transportation networks. Her research capabilities extend to developing innovative AI models for brain stroke detection and lithium battery performance evaluation, along with spatial-temporal data analysis using advanced machine learning techniques like CNN-GRU and dynamic KNN-Bi-LSTM. Dr. Ata’s skills reflect a deep understanding of integrating AI into real-world applications.

Award and Recognition

Dr. Karimeh Ata has been recognized for her academic excellence and contributions to research in the fields of computer engineering and artificial intelligence. She was awarded the prestigious Prince Fahad Bin Sultan Scholarship during her undergraduate studies for her outstanding academic performance, graduating with a first honor distinction. Additionally, her research work has been acknowledged through notable publications in top-tier journals, reflecting her deep expertise in areas such as traffic flow prediction and smart indoor parking systems. Dr. Ata’s achievements underscore her commitment to advancing the field of AI and computer engineering through innovative research and impactful projects.

Conclusion

Given Dr. Karimeh Ata’s strong academic background, innovative research contributions, and extensive skills in AI and big data, she is a suitable candidate for the Best Researcher Award. Her work not only demonstrates technical proficiency but also showcases her ability to solve complex, real-world problems, making a significant impact in the field of AI and computer engineering.

Publications Top Notes

  • Title: Smart Indoor Parking System Based on Dijkstra’s Algorithm
    Authors: K.M. Ata, A.C. Soh, A. Ishak, H. Jaafar, N. Khairuddin
    Cited By: 19
    Year: 2019
  • Title: Performance Evaluation of Two Mobile Ad-hoc Network Routing Protocols: Ad-hoc On-Demand Distance Vector Dynamic Source Routing
    Authors: J. Alamri, A.S. Al-Johani, K.I. Ata
    Cited By: 13
    Year: 2020
  • Title: Radio Frequency Identification (RFID) Indoor Parking Control System
    Authors: H.M.M. El-Hageen, K. Ibrahim, M. Ata, A. Chesoh, H. Jaafar
    Cited By: 3
    Year: 2017
  • Title: A Smart Guidance Indoor Parking System Based on Dijkstra’s Algorithm and Ant Colony Algorithm
    Authors: K.I. Ata, A.C. Soh, A.J. Ishak, H. Jaafar
    Cited By: 1
    Year: 2020
  • Title: Investigation of Loading Variation Effect on Lithium Iron Phosphate Battery Electrodes Using Long Short Term Memory
    Authors: K.A.A. Md Azizul Hoque, Mohd Khair Hassan, Muhesh Dhaarwind, Abdulrahman Hajjo
    Year: 2024
  • Title: Enhancing Brain Stroke Detection: A Novel Deep Neural Network with Weighted Binary Cross Entropy Training
    Authors: A.N. Qasim, S. Alani, S.N. Mahmood, S.S. Mohammed, D.A. Aziz, K.I.M. Ata
    Year: 2024
  • Title: Guidance System Based on Dijkstra-Ant Colony Algorithm with Binary Search Tree for Indoor Parking System
    Authors: H.J. K. Ibrahim Ata, A. Che Soh, A.J. Ishak
    Year: 2021

 

Fahd Alharithi | Artificial Intelligence | Best Researcher Award

Assoc Prof Dr. Fahd Alharithi | Artificial Intelligence | Best Researcher Award

Department chair at Taif University, Saudi Arabia

Dr. Fahd Saad Alharithi is an accomplished researcher and academic with a Ph.D. in Computer Science from Florida Institute of Technology and extensive experience in both teaching and research. Currently an Assistant Professor at Taif University, his research spans a wide array of topics, including medical data categorization, oil spill detection, COVID-19 diagnosis, and IoT security. Dr. Alharithi has published numerous papers in high-impact journals such as Sensors and Remote Sensing, showcasing his innovative approaches and significant contributions to his field. In addition to his research, he has a strong background in teaching, having served as a lecturer and teaching assistant at various institutions. His involvement in volunteer work and leadership roles further highlights his commitment to community service. While his diverse research and impactful publications are noteworthy, highlighting research grants and awards could strengthen his profile for recognition.

Profile

Education

Dr. Fahd Saad Alharithi completed his educational journey with a strong foundation in Computer Science. He earned his Ph.D. from the Florida Institute of Technology, USA, in 2019, where he focused on advanced topics in the field. Prior to that, he obtained his Master of Science degree in Computer Science from the University of New Haven, USA, in 2013. His academic journey began with a Bachelor of Science degree in Computer Science from Taif University, Saudi Arabia, in 2008. This comprehensive educational background, spanning both international and local institutions, has equipped Dr. Alharithi with a robust theoretical and practical understanding of Computer Science, paving the way for his subsequent research and teaching career. His diverse educational experiences contribute significantly to his expertise and innovative approaches in the field.

Professional Experience

Dr. Fahd Saad Alharithi has garnered extensive experience in academia and education, currently serving as an Assistant Professor in the Computer Science Department at Taif University since 2019. His career began with roles as a Lecturer and Teacher Assistant at Taif University and the University of New Haven, where he honed his teaching and research skills. Dr. Alharithi has also contributed as a Trainer at New Horizons Institute, showcasing his versatility in the field. His professional journey is marked by significant research achievements, including innovative publications in medical data categorization, AI-assisted algorithms, and IoT security. His role extends beyond teaching, encompassing volunteer work with the Hemaya Group and leadership positions like President of the Saudi Student Club. Dr. Alharithi’s career reflects a robust blend of research excellence, educational dedication, and active community involvement.

Research Interest

Dr. Fahd Saad Alharithi’s research interests primarily focus on advancing computational methods and applications across various domains. His work explores medical data categorization using flexible mixture models, oil spill detection through SAR image analysis, and the development of hybrid convolutional neural network models for diagnosing diseases from chest X-ray images. Dr. Alharithi is also deeply involved in enhancing IoT security with AI-assisted bio-inspired algorithms and addressing environmental challenges through intelligent garbage detection systems. His research extends to secure communication protocols and energy-efficient solutions for sensor networks, demonstrating a strong emphasis on both practical and theoretical advancements. By integrating innovative methodologies such as deep learning and AI, Dr. Alharithi aims to address complex problems in medical imaging, environmental monitoring, and network security, reflecting a broad and impactful approach to computational science.

Research Skills

Dr. Fahd Saad Alharithi exhibits a robust set of research skills, underscored by his extensive work in computer science and related fields. His proficiency in advanced methodologies, including deep learning, AI-assisted algorithms, and hybrid models, highlights his capacity for innovative problem-solving. Dr. Alharithi’s experience with diverse data types and applications, such as medical data categorization, oil spill detection, and IoT security, demonstrates his ability to tackle complex, interdisciplinary challenges. His strong analytical skills are evident from his impactful publications in high-impact journals like Sensors and Remote Sensing. Additionally, his adeptness in leveraging various computational techniques and his commitment to exploring novel solutions further underscore his research capabilities. Dr. Alharithi’s contributions reflect a deep understanding of both theoretical and practical aspects of his field, positioning him as a skilled researcher with a significant impact on advancing technology and knowledge.

Award and Recognition

Dr. Fahd Saad Alharithi’s research has garnered considerable recognition within the academic community. He has published extensively in high-impact journals, including Sensors, Remote Sensing, and Computers, Materials & Continua, showcasing his significant contributions to fields such as medical data categorization, oil spill detection, and AI-assisted algorithms. His innovative work, particularly in developing hybrid convolutional neural network models and intelligent systems for garbage detection, underscores his leadership in advancing technology. Although specific awards and formal recognitions are not detailed in his resume, Dr. Alharithi’s influential publications and his role in mentoring and educating future researchers highlight his exceptional impact in computer science. His involvement in volunteer activities and community service further demonstrates his commitment to fostering academic and professional excellence.

Conclusion

Dr. Taimoor Asim is a strong candidate for the Best Researcher Award due to his substantial contributions to Mechanical Engineering, particularly in fluid dynamics and renewable energy systems. His extensive research experience, leadership roles, and professional achievements make him a noteworthy contender. To strengthen his candidacy, he could focus on broadening his research impact, exploring diverse research areas, and enhancing community engagement related to his work. Overall, Dr. Asim’s profile reflects a high level of expertise and dedication, aligning well with the criteria for the Best Researcher Award.

Publications Top Notes

  1. Machine learning approaches for advanced detection of rare genetic disorders in whole-genome sequencing
    • Authors: Alzahrani, A.A., Alharithi, F.S.
    • Journal: Alexandria Engineering Journal
    • Year: 2024
    • Volume: 106, pp. 582–593
  2. IoT-enabled healthcare systems using blockchain-dependent adaptable services
    • Authors: Arul, R., Alroobaea, R., Tariq, U., Alharithi, F.S., Shoaib, U.
    • Journal: Personal and Ubiquitous Computing
    • Year: 2024
    • Volume: 28(1), pp. 43–57
    • Citations: 13
  3. A comprehensive cost performance analysis for a QoS-based scheme in network mobility (NEMO)
    • Authors: Hussein, L.F., Abass, I.A.M., Aissa, A.B., Alzahrani, A.A., Alharithi, F.S.
    • Journal: Alexandria Engineering Journal
    • Year: 2023
    • Volume: 76, pp. 349–360
    • Citations: 1
  4. Performance Analysis of Machine Learning Approaches in Automatic Classification of Arabic Language
    • Authors: Alharithi, F.S.
    • Journal: Information Sciences Letters
    • Year: 2023
    • Volume: 12(3), pp. 1563–1578
    • Citations: 1
  5. A blockchain-based hybrid platform for multimedia data processing in IoT-Healthcare
    • Authors: Taloba, A.I., Elhadad, A., Rayan, A., Alharithi, F.S., Park, C.
    • Journal: Alexandria Engineering Journal
    • Year: 2023
    • Volume: 65, pp. 263–274
    • Citations: 74
  6. Optimal Sizing and Deployment of Renewable Energy Generators in Practical Transmission Network Using Grid-Oriented Multiobjective Harmony Search Algorithm for Loss Reduction and Voltage Profile Improvements
    • Authors: Kumar, P., Swarnkar, N.K., Mahela, O.P., Mazon, J.L.V., Alharithi, F.S.
    • Journal: International Transactions on Electrical Energy Systems
    • Year: 2023
    • Volume: 2023, 6315918
    • Citations: 1
  7. Energy-Aware Live VM Migration Using Ballooning in Cloud Data Center
    • Authors: Gupta, N., Gupta, K., Qahtani, A.M., Singh, A., Goyal, N.
    • Journal: Electronics (Switzerland)
    • Year: 2022
    • Volume: 11(23), 3932
    • Citations: 4
  8. NLP-Based Application for Analyzing Private and Public Banks Stocks Reaction to News Events in the Indian Stock Exchange
    • Authors: Dogra, V., Alharithi, F.S., Álvarez, R.M., Singh, A., Qahtani, A.M.
    • Journal: Systems
    • Year: 2022
    • Volume: 10(6), 233
    • Citations: 7
  9. Deep learned BLSTM for online handwriting modeling simulating the Beta-Elliptic approach
    • Authors: Hamdi, Y., Boubaker, H., Rabhi, B., Dhahri, H., Alimi, A.M.
    • Journal: Engineering Science and Technology, an International Journal
    • Year: 2022
    • Volume: 35, 101215
    • Citations: 6
  10. A software for thorax images analysis based on deep learning
    • Authors: Almulihi, A.H., Alharithi, F.S., Mechti, S., Alroobaea, R., Rubaiee, S.
    • Book Chapter: Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention
    • Year: 2022
    • Pages: 1166–1178

 

Serhat Kilicarslan | Neural Networks Award | Best Researcher Award

Assoc Prof Dr. Serhat Kilicarslan | Neural Networks Award | Best Researcher Award

Software Engineer at Bandırma Onyedi Eylül University Faculty of Engineering and Natural Sciences, Turkey

Assoc. Prof. Dr. Serhat Kılıçarslan is a highly skilled and accomplished professional in the field of computer science and engineering. With a strong background in research, teaching, and practical applications, Dr. Kılıçarslan has made significant contributions to the field. His research expertise includes computer networks, Wireless Sensor Networks (WSNs), Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML). He is proficient in programming languages such as C, C++, Java, Python, and MATLAB, and has a deep understanding of networking concepts, protocols, and technologies. Dr. Kılıçarslan has published extensively in reputable journals and conferences, showcasing his analytical and problem-solving abilities. Overall, Dr. Kılıçarslan’s expertise and skills have positioned him as a valuable asset in advancing the field of computer science and engineering.

Professional Profiles:

Education:

Assoc. Prof. Dr. Serhat KILIÇARSLAN has a strong academic background in computer engineering, mechatronics engineering, and technical education. He completed his Bachelor’s degree in Computer Engineering at Kocaeli University in June 2017. Following this, he pursued a Master’s degree in Mechatronics Engineering at Gazi Osmanpaşa University, graduating in September 2014. For his Master’s thesis, he developed programming software for microcontroller-based PLCs under the guidance of Assoc. Prof. Dr. Gökhan GELEN. Dr. KILIÇARSLAN continued his academic journey by completing his Ph.D. in Computer Engineering at Erciyes University in September 2021. His doctoral thesis focused on the development of non-linear activation functions for deep learning methods, under the supervision of Assoc. Prof. Dr. Mete ÇELİK.

Experience:

Assoc. Prof. Dr. Serhat KILIÇARSLAN currently serves as a faculty member at Bandırma Onyedi Eylül University, Faculty of Engineering and Natural Sciences, Department of Software Engineering. He joined the university in 2022, where he contributes to the field of software engineering through research, teaching, and academic leadership. Before joining Bandırma Onyedi Eylül University, Dr. KILIÇARSLAN served as a lecturer at Gaziosmanpaşa University. He was involved in the Department of Informatics, where he also held the position of Department Chair. Additionally, he served as a lecturer at Gaziosmanpaşa University, Pazar Vocational School, Department of Computer Technologies, specializing in Computer Programming. Dr. KILIÇARSLAN’s experience in these roles has equipped him with valuable insights and expertise in the field of software engineering and computer programming.

Research Interest:

Assoc. Prof. Dr. Serhat Kılıçarslan has a diverse research background focusing on various aspects of computer science and engineering. His research interests span several key areas, including Wireless Sensor Networks (WSNs), Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Software-Defined Networking (SDN), Cloud Computing, Cyber-Physical Systems (CPS), Security, Privacy, and Big Data Analytics. In the realm of WSNs, Dr. Kılıçarslan explores the design, implementation, and optimization of WSNs for applications such as environmental monitoring, healthcare, and industrial automation. In the field of IoT, he delves into the architectures, protocols, and security mechanisms of IoT systems, aiming to enhance their efficiency, reliability, and security.

Skills:

Assoc. Prof. Dr. Serhat Kılıçarslan possesses a diverse set of skills in the field of computer science and engineering, honed through his research, teaching, and professional experiences. Some of his key skills include research skills, where he has a strong track record of publication in reputable journals and conferences. He is adept at formulating research questions, designing experiments, analyzing data, and drawing meaningful conclusions. Dr. Kılıçarslan is also proficient in programming languages such as C, C++, Java, Python, and MATLAB, which he applies in developing software solutions for various research projects. With a focus on computer networks, Dr. Kılıçarslan has expertise in networking concepts, protocols, and technologies, including TCP/IP, routing, switching, and network security. He is experienced in designing, implementing, and optimizing Wireless Sensor Networks (WSNs) and IoT systems for diverse applications, leveraging his knowledge of sensor technologies, communication protocols, and data processing techniques. Dr. Kılıçarslan applies Artificial Intelligence (AI) and Machine Learning (ML) techniques, such as neural networks, deep learning, and reinforcement learning, to solve complex problems in computer networks and related areas. He also has expertise in Software-Defined Networking (SDN), cloud computing, Cyber-Physical Systems (CPS), security, privacy, and Big Data Analytics. Overall, Dr. Kılıçarslan’s skills are integral to his contributions in advancing the field of computer science and engineering, with a focus on enhancing the efficiency, reliability, and security of modern computing systems and networks.

Publications:
  1. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification
    • Authors: K Adem, S Kılıçarslan, O Cömert
    • Year: 2019
    • Citations: 162
  2. Diagnosis and Classification of Cancer Using Hybrid Model Based on ReliefF and Convolutional Neural Network
    • Authors: S Kiliçarslan, K Adem, M Celik
    • Year: 2020
    • Citations: 82
  3. Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification
    • Authors: S Kiliçarslan, M Celik, S Sahin
    • Year: 2021
    • Citations: 67
  4. RSigELU: A nonlinear activation function for deep neural networks
    • Authors: S Kiliçarslan, M Celik
    • Year: 2021
    • Citations: 63
  5. DIVORCE PREDICTION USING CORRELATION BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORKS
    • Authors: MK Yöntem, K Adem, T İlhan, S Kılıçarslan
    • Year: 2019
    • Citations: 57
  6. An overview of the activation functions used in deep learning algorithms
    • Authors: S KILIÇARSLAN, A Kemal, M Çelik
    • Year: 2021
    • Citations: 24
  7. Detection and Classification of Pneumonia Using Novel Superior Exponential (SupEx) Activation Function in Convolutional Neural Networks
    • Authors: S Kiliçarslan, Cİ Közkurt, S Baş, A Elen
    • Year: 2023
    • Citations: 21
  8. Performance analysis of optimization algorithms on stacked autoencoder
    • Authors: A Kemal, S Kilicarslan
    • Year: 2019
    • Citations: 19
  9. COVID-19 Diagnosis Prediction in Emergency Care Patients using Convolutional Neural Network
    • Authors: A Kemal, S KILIÇARSLAN
    • Year: 2021
    • Citations: 18
  10. Deep learning-based approaches for robust classification of cervical cancer
    • Authors: I Pacal, S Kılıcarslan
    • Year: 2023
    • Citations: 13