Mini Han Wang | Artificial Intelligence | Young Scientist Award

Dr. Mini Han Wang | Artificial Intelligence | Young Scientist Award

Chinese University of Hong Kong, Hong Kong

Dr. Mini Han Wang is a distinguished senior researcher specializing in ophthalmology, artificial intelligence (AI) in medical imaging, and biomolecular pathways in ocular diseases. She holds dual Ph.D.s in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong and Data Science from the City University of Macau, demonstrating her expertise in integrating medical research with AI-driven analytical techniques. Dr. Wang has made significant contributions to age-related macular degeneration (AMD) research, AI-based disease diagnostics, and precision medicine. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with the Beijing Institute of Technology and Jinan University, and Director of the Frontier Science Computing Center at the Chinese Academy of Sciences. Beyond research, she is an experienced lecturer, delivering courses on intelligent data mining, evidence-based medicine, and AI applications in healthcare. Her work is widely published in peer-reviewed journals, and she actively collaborates with leading academic and medical institutions. With a commitment to advancing medical AI technologies and personalized healthcare solutions, Dr. Wang stands out as a leading expert at the intersection of medicine and data science.

Professional Profile

Education

Dr. Mini Han Wang has pursued a multidisciplinary academic journey, combining medical sciences, engineering, and data science. She earned a Ph.D. in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong (2022-2025), where her research focuses on AI-driven diagnostics and molecular mechanisms of retinal diseases. In parallel, she completed a Ph.D. in Data Science at the Institute of Data Science, City University of Macau (2020-2023), further enhancing her ability to develop AI-integrated solutions for medical applications. Before her doctoral studies, Dr. Wang completed an M.Sc. in Management (2016-2018) at City University of Macau, gaining insights into research administration and healthcare management. She also holds dual bachelor’s degrees from Jiangxi Science & Technology Normal University (2012-2016) in Internet of Things (IoT) Engineering and English Literature, showcasing her strong foundation in technology and global scientific communication. As an Outstanding Graduate Representative, her diverse educational background enables her to bridge the gap between medical research, AI innovation, and healthcare management, making her a pioneering figure in modern ophthalmic research.

Professional Experience

Dr. Wang’s professional journey is marked by leadership in research, teaching, and AI-driven medical advancements. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with Beijing Institute of Technology and Jinan University, where she leads projects on AI-based ophthalmic disease diagnosis and retinal molecular research. Additionally, she holds the position of Director of the Frontier Science Computing Center at the Chinese Academy of Sciences, overseeing cutting-edge AI applications in medicine and multi-omics data integration. Since 2018, Dr. Wang has collaborated with Shenzhen Institute of Advanced Technology and Zhuhai Institute of Advanced Technology, conducting research on medical imaging, knowledge graphs, and AI-driven predictive modeling. Her academic contributions include guest lectures at Beijing Institute of Technology, Jinan University, and Zhuhai Science & Technology Institute, focusing on intelligent data mining, evidence-based medicine, and AI in disease diagnosis. With her interdisciplinary expertise, Dr. Wang has played a key role in bridging fundamental research with clinical applications, contributing significantly to medical AI advancements and personalized treatment strategies.

Research Interest

Dr. Wang’s research revolves around three core areas: ophthalmology, AI in medical imaging, and biomolecular pathways in ocular diseases. Her primary focus is age-related macular degeneration (AMD) and retinal diseases, where she investigates molecular mechanisms, genetic variations, and metabolic dysregulation. She is also deeply involved in AI-driven predictive modeling to enhance early disease detection and precision therapeutics. In the field of medical imaging, she integrates multi-modal imaging techniques (OCT, UWF Fundus) with AI algorithms to improve retinal disease diagnostics and prognosis. Furthermore, her research extends to biomolecular analysis, where she studies oxidative stress, mitochondrial dysfunction, and complement system activation in ocular diseases. By combining multi-omics data, AI-driven drug discovery, and knowledge graph-driven ophthalmic AI systems, Dr. Wang aims to revolutionize personalized medicine and enhance treatment strategies for degenerative eye diseases.

Research Skills

Dr. Wang possesses a diverse and advanced skill set, allowing her to lead high-impact research in medical AI and ophthalmology. She specializes in AI-based predictive modeling, machine learning for medical imaging, and deep learning for disease classification. Her expertise in biomolecular analysis includes multi-omics data integration, pathway analysis, and molecular crosstalk identification for precision medicine applications. Dr. Wang is also proficient in data mining, statistical modeling, and computational biology, which are essential for her research on retinal diseases and AI-driven diagnostics. Additionally, she has hands-on experience with multi-modal imaging techniques (OCT, UWF, fundus photography) and their integration with AI-based disease detection frameworks. She is well-versed in academic writing, research methodology, and project management, with an extensive record of peer-reviewed publications and collaborative research projects. With these skills, Dr. Wang is able to bridge the gap between clinical research and AI-powered healthcare solutions, making her a leading figure in medical innovation.

Awards and Honors

Dr. Wang has received multiple recognitions for her outstanding research contributions and academic achievements. As an Outstanding Graduate Representative, she was acknowledged for her exceptional performance in data science and medical research. She has been the recipient of research grants and funding awards for her work in ophthalmic AI, biomolecular studies, and precision medicine. Her research on AMD and AI-driven diagnostics has earned recognition from international conferences and peer-reviewed journals. She has been invited as a keynote speaker and panelist at various scientific conferences, where she has shared insights on AI applications in medicine, multi-omics integration, and retinal disease research. Additionally, her collaborations with leading universities and medical institutions have led to numerous institutional awards for excellence in research and innovation. With a strong academic and professional track record, Dr. Wang continues to be recognized as a pioneering researcher at the forefront of AI-driven medical advancements.

Conclusion

Dr. Mini Han Wang is a leading researcher at the intersection of ophthalmology, AI, and biomolecular analysis, making groundbreaking contributions to AMD research, AI-driven diagnostics, and precision medicine. Her multidisciplinary expertise in medical science, data analytics, and computational biology allows her to develop innovative solutions for early disease detection and personalized treatment strategies. As a senior researcher, director, and academic lecturer, she has demonstrated leadership in both research and education, mentoring young scientists and collaborating with top-tier institutions. Her work in AI-integrated ophthalmology and molecular disease modeling is shaping the future of medical research and healthcare technology. While further global collaborations, large-scale clinical applications, and expanded research beyond AMD

Publications Top Notes

  • Title: Place attachment to pseudo establishments: An application of the stimulus-organism-response paradigm to themed hotels
    Authors: J. Sun, P.J. Chen, L. Ren, E.H.W. Shih, C. Ma, H. Wang, N.H. Ha
    Year: 2021
    Citations: 86

  • Title: The effect of online investor sentiment on stock movements: an LSTM approach
    Authors: G. Wang, G. Yu, X. Shen
    Year: 2020
    Citations: 43

  • Title: Big data and predictive analytics for business intelligence: A bibliographic study (2000–2021)
    Authors: Y. Chen, C. Li, H. Wang
    Year: 2022
    Citations: 33

  • Title: AI-based advanced approaches and dry eye disease detection based on multi-source evidence: Cases, applications, issues, and future directions
    Authors: M.H. Wang, L. Xing, Y. Pan, F. Gu, J. Fang, X. Yu, C.P. Pang, K.K.L. Chong
    Year: 2024
    Citations: 32

  • Title: Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey
    Authors: J. Yang, S. Fong, H. Wang, Q. Hu, C. Lin, S. Huang, J. Shi, K. Lan, R. Tang
    Year: 2021
    Citations: 29

  • Title: Research on data security in big data cloud computing environment
    Authors: F. Wang, H. Wang, L. Xue
    Year: 2021
    Citations: 27

  • Title: An explainable artificial intelligence-based robustness optimization approach for age-related macular degeneration detection based on medical IoT systems
    Authors: M.H. Wang, K.K. Chong, Z. Lin, X. Yu, Y. Pan
    Year: 2023
    Citations: 26

  • Title: Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: A case study based on CNN, attention, and CAM mechanism
    Authors: M. Wang, Z. Lin, J. Zhou, L. Xing, P. Zeng
    Year: 2023
    Citations: 13

  • Title: Metamaterials design method based on deep learning database
    Authors: X. Zhou, Q. Xiao, H. Wang
    Year: 2022
    Citations: 10

  • Title: A YOLO-based method for improper behavior predictions
    Authors: M. Wang, Y. Zhao, Q. Wu, G. Chen
    Year: 2023
    Citations: 9

Karimeh Ata | Artificial Intelligence | Best Researcher Award

Dr. Karimeh Ata | Artificial Intelligence | Best Researcher Award

Researcher at UPM, Jordan

Dr. Karimeh Ata is a Computer and Artificial Intelligence Engineering Ph.D. candidate at Universiti Putra Malaysia (UPM), specializing in deep learning and big data analytics for urban mobility and vehicle flow optimization. With a strong academic foundation, she holds a Master’s degree in Computer Engineering and Embedded Systems from UPM and a Bachelor’s degree in Computer Engineering from Fahad Bin Sultan University, Saudi Arabia, where she graduated with first-class honors. Dr. Ata’s research focuses on solving complex problems using advanced algorithms like Dijkstra’s and Ant Colony Optimization, contributing to various high-impact projects. In addition to her academic achievements, she has experience as an AI trainer and lecturer, and her work is highlighted by numerous publications in top-tier journals and conferences. Proficient in technologies like Microsoft Azure, GIS, Python, and Raspberry Pi, Dr. Ata is committed to driving innovation in the fields of artificial intelligence and computer engineering.

Profile

Education

Dr. Karimeh Ata is currently pursuing her Ph.D. in Computer Engineering and Artificial Intelligence at Universiti Putra Malaysia (UPM), with an expected completion in June 2024. Her doctoral research focuses on traffic flow prediction using deep learning and big data analysis, and she has maintained an outstanding GPA of 4.00 throughout her studies. Prior to this, she earned a Master of Computer Engineering and Embedded Systems from UPM in 2019, where she addressed challenges in vehicle navigation and parking optimization using algorithms like Dijkstra’s and Ant Colony Optimization, achieving a GPA of 3.57. Dr. Ata holds a Bachelor of Computer Engineering from Fahad Bin Sultan University (FBSU) in Saudi Arabia, where she graduated with first-class honors and a GPA of 4.91, also receiving the Prince Fahad Bin Sultan Scholarship for academic excellence.

Professional Experience

Dr. Karimeh Ata has a diverse range of professional experience in the fields of artificial intelligence and computer engineering. From December 2018 to January 2020, she served as an Artificial Intelligence Trainer at Hass Resources Corporation in Malaysia, where she supervised and trained teams on AI applications in education. In early 2019, she was a member of the Technical Committee for the Symposium on Control Systems and Signal Processing in Malaysia, bringing together experts to discuss advancements in AI, signal processing, and control systems. Dr. Ata has also contributed to academia as a Computer Engineering Lecturer at Universiti Putra Malaysia (UPM) from November 2022 to September 2023, where she designed and delivered courses on subjects such as Programming Fundamentals, Digital Logic Design, and Machine Learning, while also supervising laboratory sessions. Additionally, she worked as a Research Assistant at UPM from July 2021 to October 2022, where she ensured the quality, integrity, and security of research data and guided teams in preparing findings for top-tier journals and conferences. Dr. Ata’s professional experience highlights her leadership in project management, research ethics, and AI integration.

Research Interest

Dr. Karimeh Ata’s research interests focus on leveraging advanced technologies to address complex challenges in urban mobility, traffic flow optimization, and artificial intelligence. Her work primarily centers around deep learning and big data analytics, with a particular emphasis on traffic flow prediction and vehicle optimization. She has explored algorithms such as Dijkstra’s and Ant Colony Optimization to calculate the shortest paths and improve transportation efficiency in urban environments. Additionally, Dr. Ata is interested in applying AI-driven solutions to enhance brain stroke detection, lithium iron phosphate battery electrode performance, and spatial-temporal traffic flow prediction through multi-layer models. Her research aims to innovate in fields like smart transportation systems, deep learning, and AI for real-world problem-solving.

Research Skills

Dr. Karimeh Ata possesses extensive research skills in deep learning, big data analytics, and artificial intelligence, with a focus on solving complex problems in urban mobility and traffic flow optimization. She is proficient in designing and implementing deep learning models for traffic prediction and vehicle flow using large datasets to ensure accuracy. Dr. Ata has expertise in optimizing algorithms such as Dijkstra’s and Ant Colony Optimization to calculate efficient paths in transportation networks. Her research capabilities extend to developing innovative AI models for brain stroke detection and lithium battery performance evaluation, along with spatial-temporal data analysis using advanced machine learning techniques like CNN-GRU and dynamic KNN-Bi-LSTM. Dr. Ata’s skills reflect a deep understanding of integrating AI into real-world applications.

Award and Recognition

Dr. Karimeh Ata has been recognized for her academic excellence and contributions to research in the fields of computer engineering and artificial intelligence. She was awarded the prestigious Prince Fahad Bin Sultan Scholarship during her undergraduate studies for her outstanding academic performance, graduating with a first honor distinction. Additionally, her research work has been acknowledged through notable publications in top-tier journals, reflecting her deep expertise in areas such as traffic flow prediction and smart indoor parking systems. Dr. Ata’s achievements underscore her commitment to advancing the field of AI and computer engineering through innovative research and impactful projects.

Conclusion

Given Dr. Karimeh Ata’s strong academic background, innovative research contributions, and extensive skills in AI and big data, she is a suitable candidate for the Best Researcher Award. Her work not only demonstrates technical proficiency but also showcases her ability to solve complex, real-world problems, making a significant impact in the field of AI and computer engineering.

Publications Top Notes

  • Title: Smart Indoor Parking System Based on Dijkstra’s Algorithm
    Authors: K.M. Ata, A.C. Soh, A. Ishak, H. Jaafar, N. Khairuddin
    Cited By: 19
    Year: 2019
  • Title: Performance Evaluation of Two Mobile Ad-hoc Network Routing Protocols: Ad-hoc On-Demand Distance Vector Dynamic Source Routing
    Authors: J. Alamri, A.S. Al-Johani, K.I. Ata
    Cited By: 13
    Year: 2020
  • Title: Radio Frequency Identification (RFID) Indoor Parking Control System
    Authors: H.M.M. El-Hageen, K. Ibrahim, M. Ata, A. Chesoh, H. Jaafar
    Cited By: 3
    Year: 2017
  • Title: A Smart Guidance Indoor Parking System Based on Dijkstra’s Algorithm and Ant Colony Algorithm
    Authors: K.I. Ata, A.C. Soh, A.J. Ishak, H. Jaafar
    Cited By: 1
    Year: 2020
  • Title: Investigation of Loading Variation Effect on Lithium Iron Phosphate Battery Electrodes Using Long Short Term Memory
    Authors: K.A.A. Md Azizul Hoque, Mohd Khair Hassan, Muhesh Dhaarwind, Abdulrahman Hajjo
    Year: 2024
  • Title: Enhancing Brain Stroke Detection: A Novel Deep Neural Network with Weighted Binary Cross Entropy Training
    Authors: A.N. Qasim, S. Alani, S.N. Mahmood, S.S. Mohammed, D.A. Aziz, K.I.M. Ata
    Year: 2024
  • Title: Guidance System Based on Dijkstra-Ant Colony Algorithm with Binary Search Tree for Indoor Parking System
    Authors: H.J. K. Ibrahim Ata, A. Che Soh, A.J. Ishak
    Year: 2021