Mini Han Wang | Artificial Intelligence | Young Scientist Award

Dr. Mini Han Wang | Artificial Intelligence | Young Scientist Award

Chinese University of Hong Kong, Hong Kong

Dr. Mini Han Wang is a distinguished senior researcher specializing in ophthalmology, artificial intelligence (AI) in medical imaging, and biomolecular pathways in ocular diseases. She holds dual Ph.D.s in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong and Data Science from the City University of Macau, demonstrating her expertise in integrating medical research with AI-driven analytical techniques. Dr. Wang has made significant contributions to age-related macular degeneration (AMD) research, AI-based disease diagnostics, and precision medicine. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with the Beijing Institute of Technology and Jinan University, and Director of the Frontier Science Computing Center at the Chinese Academy of Sciences. Beyond research, she is an experienced lecturer, delivering courses on intelligent data mining, evidence-based medicine, and AI applications in healthcare. Her work is widely published in peer-reviewed journals, and she actively collaborates with leading academic and medical institutions. With a commitment to advancing medical AI technologies and personalized healthcare solutions, Dr. Wang stands out as a leading expert at the intersection of medicine and data science.

Professional Profile

Education

Dr. Mini Han Wang has pursued a multidisciplinary academic journey, combining medical sciences, engineering, and data science. She earned a Ph.D. in Ophthalmology & Visual Sciences from The Chinese University of Hong Kong (2022-2025), where her research focuses on AI-driven diagnostics and molecular mechanisms of retinal diseases. In parallel, she completed a Ph.D. in Data Science at the Institute of Data Science, City University of Macau (2020-2023), further enhancing her ability to develop AI-integrated solutions for medical applications. Before her doctoral studies, Dr. Wang completed an M.Sc. in Management (2016-2018) at City University of Macau, gaining insights into research administration and healthcare management. She also holds dual bachelor’s degrees from Jiangxi Science & Technology Normal University (2012-2016) in Internet of Things (IoT) Engineering and English Literature, showcasing her strong foundation in technology and global scientific communication. As an Outstanding Graduate Representative, her diverse educational background enables her to bridge the gap between medical research, AI innovation, and healthcare management, making her a pioneering figure in modern ophthalmic research.

Professional Experience

Dr. Wang’s professional journey is marked by leadership in research, teaching, and AI-driven medical advancements. She currently serves as a Senior Researcher at Zhuhai People’s Hospital, affiliated with Beijing Institute of Technology and Jinan University, where she leads projects on AI-based ophthalmic disease diagnosis and retinal molecular research. Additionally, she holds the position of Director of the Frontier Science Computing Center at the Chinese Academy of Sciences, overseeing cutting-edge AI applications in medicine and multi-omics data integration. Since 2018, Dr. Wang has collaborated with Shenzhen Institute of Advanced Technology and Zhuhai Institute of Advanced Technology, conducting research on medical imaging, knowledge graphs, and AI-driven predictive modeling. Her academic contributions include guest lectures at Beijing Institute of Technology, Jinan University, and Zhuhai Science & Technology Institute, focusing on intelligent data mining, evidence-based medicine, and AI in disease diagnosis. With her interdisciplinary expertise, Dr. Wang has played a key role in bridging fundamental research with clinical applications, contributing significantly to medical AI advancements and personalized treatment strategies.

Research Interest

Dr. Wang’s research revolves around three core areas: ophthalmology, AI in medical imaging, and biomolecular pathways in ocular diseases. Her primary focus is age-related macular degeneration (AMD) and retinal diseases, where she investigates molecular mechanisms, genetic variations, and metabolic dysregulation. She is also deeply involved in AI-driven predictive modeling to enhance early disease detection and precision therapeutics. In the field of medical imaging, she integrates multi-modal imaging techniques (OCT, UWF Fundus) with AI algorithms to improve retinal disease diagnostics and prognosis. Furthermore, her research extends to biomolecular analysis, where she studies oxidative stress, mitochondrial dysfunction, and complement system activation in ocular diseases. By combining multi-omics data, AI-driven drug discovery, and knowledge graph-driven ophthalmic AI systems, Dr. Wang aims to revolutionize personalized medicine and enhance treatment strategies for degenerative eye diseases.

Research Skills

Dr. Wang possesses a diverse and advanced skill set, allowing her to lead high-impact research in medical AI and ophthalmology. She specializes in AI-based predictive modeling, machine learning for medical imaging, and deep learning for disease classification. Her expertise in biomolecular analysis includes multi-omics data integration, pathway analysis, and molecular crosstalk identification for precision medicine applications. Dr. Wang is also proficient in data mining, statistical modeling, and computational biology, which are essential for her research on retinal diseases and AI-driven diagnostics. Additionally, she has hands-on experience with multi-modal imaging techniques (OCT, UWF, fundus photography) and their integration with AI-based disease detection frameworks. She is well-versed in academic writing, research methodology, and project management, with an extensive record of peer-reviewed publications and collaborative research projects. With these skills, Dr. Wang is able to bridge the gap between clinical research and AI-powered healthcare solutions, making her a leading figure in medical innovation.

Awards and Honors

Dr. Wang has received multiple recognitions for her outstanding research contributions and academic achievements. As an Outstanding Graduate Representative, she was acknowledged for her exceptional performance in data science and medical research. She has been the recipient of research grants and funding awards for her work in ophthalmic AI, biomolecular studies, and precision medicine. Her research on AMD and AI-driven diagnostics has earned recognition from international conferences and peer-reviewed journals. She has been invited as a keynote speaker and panelist at various scientific conferences, where she has shared insights on AI applications in medicine, multi-omics integration, and retinal disease research. Additionally, her collaborations with leading universities and medical institutions have led to numerous institutional awards for excellence in research and innovation. With a strong academic and professional track record, Dr. Wang continues to be recognized as a pioneering researcher at the forefront of AI-driven medical advancements.

Conclusion

Dr. Mini Han Wang is a leading researcher at the intersection of ophthalmology, AI, and biomolecular analysis, making groundbreaking contributions to AMD research, AI-driven diagnostics, and precision medicine. Her multidisciplinary expertise in medical science, data analytics, and computational biology allows her to develop innovative solutions for early disease detection and personalized treatment strategies. As a senior researcher, director, and academic lecturer, she has demonstrated leadership in both research and education, mentoring young scientists and collaborating with top-tier institutions. Her work in AI-integrated ophthalmology and molecular disease modeling is shaping the future of medical research and healthcare technology. While further global collaborations, large-scale clinical applications, and expanded research beyond AMD

Publications Top Notes

  • Title: Place attachment to pseudo establishments: An application of the stimulus-organism-response paradigm to themed hotels
    Authors: J. Sun, P.J. Chen, L. Ren, E.H.W. Shih, C. Ma, H. Wang, N.H. Ha
    Year: 2021
    Citations: 86

  • Title: The effect of online investor sentiment on stock movements: an LSTM approach
    Authors: G. Wang, G. Yu, X. Shen
    Year: 2020
    Citations: 43

  • Title: Big data and predictive analytics for business intelligence: A bibliographic study (2000–2021)
    Authors: Y. Chen, C. Li, H. Wang
    Year: 2022
    Citations: 33

  • Title: AI-based advanced approaches and dry eye disease detection based on multi-source evidence: Cases, applications, issues, and future directions
    Authors: M.H. Wang, L. Xing, Y. Pan, F. Gu, J. Fang, X. Yu, C.P. Pang, K.K.L. Chong
    Year: 2024
    Citations: 32

  • Title: Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey
    Authors: J. Yang, S. Fong, H. Wang, Q. Hu, C. Lin, S. Huang, J. Shi, K. Lan, R. Tang
    Year: 2021
    Citations: 29

  • Title: Research on data security in big data cloud computing environment
    Authors: F. Wang, H. Wang, L. Xue
    Year: 2021
    Citations: 27

  • Title: An explainable artificial intelligence-based robustness optimization approach for age-related macular degeneration detection based on medical IoT systems
    Authors: M.H. Wang, K.K. Chong, Z. Lin, X. Yu, Y. Pan
    Year: 2023
    Citations: 26

  • Title: Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: A case study based on CNN, attention, and CAM mechanism
    Authors: M. Wang, Z. Lin, J. Zhou, L. Xing, P. Zeng
    Year: 2023
    Citations: 13

  • Title: Metamaterials design method based on deep learning database
    Authors: X. Zhou, Q. Xiao, H. Wang
    Year: 2022
    Citations: 10

  • Title: A YOLO-based method for improper behavior predictions
    Authors: M. Wang, Y. Zhao, Q. Wu, G. Chen
    Year: 2023
    Citations: 9

Serhat Kilicarslan | Neural Networks Award | Best Researcher Award

Assoc Prof Dr. Serhat Kilicarslan | Neural Networks Award | Best Researcher Award

Software Engineer at Bandırma Onyedi Eylül University Faculty of Engineering and Natural Sciences, Turkey

Assoc. Prof. Dr. Serhat Kılıçarslan is a highly skilled and accomplished professional in the field of computer science and engineering. With a strong background in research, teaching, and practical applications, Dr. Kılıçarslan has made significant contributions to the field. His research expertise includes computer networks, Wireless Sensor Networks (WSNs), Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning (ML). He is proficient in programming languages such as C, C++, Java, Python, and MATLAB, and has a deep understanding of networking concepts, protocols, and technologies. Dr. Kılıçarslan has published extensively in reputable journals and conferences, showcasing his analytical and problem-solving abilities. Overall, Dr. Kılıçarslan’s expertise and skills have positioned him as a valuable asset in advancing the field of computer science and engineering.

Professional Profiles:

Education:

Assoc. Prof. Dr. Serhat KILIÇARSLAN has a strong academic background in computer engineering, mechatronics engineering, and technical education. He completed his Bachelor’s degree in Computer Engineering at Kocaeli University in June 2017. Following this, he pursued a Master’s degree in Mechatronics Engineering at Gazi Osmanpaşa University, graduating in September 2014. For his Master’s thesis, he developed programming software for microcontroller-based PLCs under the guidance of Assoc. Prof. Dr. Gökhan GELEN. Dr. KILIÇARSLAN continued his academic journey by completing his Ph.D. in Computer Engineering at Erciyes University in September 2021. His doctoral thesis focused on the development of non-linear activation functions for deep learning methods, under the supervision of Assoc. Prof. Dr. Mete ÇELİK.

Experience:

Assoc. Prof. Dr. Serhat KILIÇARSLAN currently serves as a faculty member at Bandırma Onyedi Eylül University, Faculty of Engineering and Natural Sciences, Department of Software Engineering. He joined the university in 2022, where he contributes to the field of software engineering through research, teaching, and academic leadership. Before joining Bandırma Onyedi Eylül University, Dr. KILIÇARSLAN served as a lecturer at Gaziosmanpaşa University. He was involved in the Department of Informatics, where he also held the position of Department Chair. Additionally, he served as a lecturer at Gaziosmanpaşa University, Pazar Vocational School, Department of Computer Technologies, specializing in Computer Programming. Dr. KILIÇARSLAN’s experience in these roles has equipped him with valuable insights and expertise in the field of software engineering and computer programming.

Research Interest:

Assoc. Prof. Dr. Serhat Kılıçarslan has a diverse research background focusing on various aspects of computer science and engineering. His research interests span several key areas, including Wireless Sensor Networks (WSNs), Internet of Things (IoT), Artificial Intelligence (AI), Machine Learning (ML), Software-Defined Networking (SDN), Cloud Computing, Cyber-Physical Systems (CPS), Security, Privacy, and Big Data Analytics. In the realm of WSNs, Dr. Kılıçarslan explores the design, implementation, and optimization of WSNs for applications such as environmental monitoring, healthcare, and industrial automation. In the field of IoT, he delves into the architectures, protocols, and security mechanisms of IoT systems, aiming to enhance their efficiency, reliability, and security.

Skills:

Assoc. Prof. Dr. Serhat Kılıçarslan possesses a diverse set of skills in the field of computer science and engineering, honed through his research, teaching, and professional experiences. Some of his key skills include research skills, where he has a strong track record of publication in reputable journals and conferences. He is adept at formulating research questions, designing experiments, analyzing data, and drawing meaningful conclusions. Dr. Kılıçarslan is also proficient in programming languages such as C, C++, Java, Python, and MATLAB, which he applies in developing software solutions for various research projects. With a focus on computer networks, Dr. Kılıçarslan has expertise in networking concepts, protocols, and technologies, including TCP/IP, routing, switching, and network security. He is experienced in designing, implementing, and optimizing Wireless Sensor Networks (WSNs) and IoT systems for diverse applications, leveraging his knowledge of sensor technologies, communication protocols, and data processing techniques. Dr. Kılıçarslan applies Artificial Intelligence (AI) and Machine Learning (ML) techniques, such as neural networks, deep learning, and reinforcement learning, to solve complex problems in computer networks and related areas. He also has expertise in Software-Defined Networking (SDN), cloud computing, Cyber-Physical Systems (CPS), security, privacy, and Big Data Analytics. Overall, Dr. Kılıçarslan’s skills are integral to his contributions in advancing the field of computer science and engineering, with a focus on enhancing the efficiency, reliability, and security of modern computing systems and networks.

Publications:
  1. Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification
    • Authors: K Adem, S Kılıçarslan, O Cömert
    • Year: 2019
    • Citations: 162
  2. Diagnosis and Classification of Cancer Using Hybrid Model Based on ReliefF and Convolutional Neural Network
    • Authors: S Kiliçarslan, K Adem, M Celik
    • Year: 2020
    • Citations: 82
  3. Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification
    • Authors: S Kiliçarslan, M Celik, S Sahin
    • Year: 2021
    • Citations: 67
  4. RSigELU: A nonlinear activation function for deep neural networks
    • Authors: S Kiliçarslan, M Celik
    • Year: 2021
    • Citations: 63
  5. DIVORCE PREDICTION USING CORRELATION BASED FEATURE SELECTION AND ARTIFICIAL NEURAL NETWORKS
    • Authors: MK Yöntem, K Adem, T İlhan, S Kılıçarslan
    • Year: 2019
    • Citations: 57
  6. An overview of the activation functions used in deep learning algorithms
    • Authors: S KILIÇARSLAN, A Kemal, M Çelik
    • Year: 2021
    • Citations: 24
  7. Detection and Classification of Pneumonia Using Novel Superior Exponential (SupEx) Activation Function in Convolutional Neural Networks
    • Authors: S Kiliçarslan, Cİ Közkurt, S Baş, A Elen
    • Year: 2023
    • Citations: 21
  8. Performance analysis of optimization algorithms on stacked autoencoder
    • Authors: A Kemal, S Kilicarslan
    • Year: 2019
    • Citations: 19
  9. COVID-19 Diagnosis Prediction in Emergency Care Patients using Convolutional Neural Network
    • Authors: A Kemal, S KILIÇARSLAN
    • Year: 2021
    • Citations: 18
  10. Deep learning-based approaches for robust classification of cervical cancer
    • Authors: I Pacal, S Kılıcarslan
    • Year: 2023
    • Citations: 13