Nadeem Khanday | Computer Science | Best Researcher Award

Assist. Prof. Dr. Nadeem Khanday | Computer Science | Best Researcher Award

Assistant Professor from National Institute of Technology Srinagar, India

Dr. Nadeem Yousuf Khanday is an accomplished academic and researcher in Computer Science & Engineering, currently serving as an Assistant Professor at the School of Computer Science, UPES, Dehradun, India. With a strong academic foundation and a passion for advanced computing technologies, he has contributed extensively to the fields of artificial intelligence, machine learning, and deep visual learning. His research outputs include high-impact journal publications, international conference presentations, patents, and book chapters with globally recognized publishers. Dr. Khanday is deeply involved in exploring innovative AI techniques that address real-world challenges, including healthcare diagnostics, crop disease detection, cloud computing, and smart environments. He is also a certified GATE, UGC-NET, and JK-SET qualifier, emphasizing his academic excellence. Throughout his career, he has taught a variety of technical subjects and mentored students in core areas of computer science. He brings a balanced combination of research, teaching, and applied innovation to the academic domain. With a growing body of interdisciplinary work, Dr. Khanday continues to build his reputation as a future-oriented researcher contributing to both academia and industry. His deep commitment to scholarly excellence and emerging technologies positions him as a deserving candidate for recognition in prestigious research awards.

Professional Profile

Education

Dr. Nadeem Yousuf Khanday has pursued a rigorous academic trajectory in Computer Science & Engineering. He earned his Doctor of Philosophy (Ph.D.) from the prestigious National Institute of Technology (NIT), Srinagar, focusing on advanced computing technologies and artificial intelligence. Prior to his doctorate, he completed his Master of Technology (M.Tech) from Vivekananda Global University, Jaipur, where he achieved an outstanding CGPA of 9.69 in Computer Science & Engineering, demonstrating his academic strength and subject mastery. His undergraduate studies were conducted at Visvesvaraya Technological University (VTU), Belgaum, where he obtained a Bachelor of Engineering (B.E.) degree in Computer Science & Engineering with a commendable academic record. Dr. Khanday has also qualified national-level competitive exams including the Graduate Aptitude Test in Engineering (GATE) and University Grants Commission National Eligibility Test (UGC-NET), as well as JK-SET, qualifying him for Assistant Professorship roles in Indian universities. These qualifications reflect his high-level proficiency in the domain and commitment to continued academic growth. His academic background provides a strong foundation for his research endeavors, enabling him to tackle complex computing problems and advance the frontier of knowledge in artificial intelligence, machine learning, and computer vision.

Professional Experience

Dr. Nadeem Yousuf Khanday possesses diverse and dynamic professional experience across some of India’s reputed institutions. He is currently employed as a Regular Assistant Professor at the School of Computer Science (SoCS), UPES Dehradun since June 2023. Before this, he served as a Lecturer at the University of Kashmir, J&K, where he taught undergraduate and postgraduate computer science courses from March to June 2023. His earlier appointments include his tenure as an Assistant Professor (Contract) at NIT Srinagar from April 2017 to July 2018, and later as a Teaching Assistant (Research Scholar) from July 2018 to February 2023 at the same institute. These roles have helped him accumulate extensive experience in teaching core computer science courses such as Artificial Intelligence, Operating Systems, Data Structures, and Computer Architecture. Throughout his career, Dr. Khanday has skillfully blended teaching with hands-on research, working on projects related to visual learning, deep learning, and intelligent systems. His progressive journey from contract roles to full-time professorship demonstrates his steady academic development and increasing responsibilities. With significant academic leadership and research roles, he is well-positioned to lead innovative educational and research initiatives in AI and computing.

Research Interests

Dr. Nadeem Yousuf Khanday’s research interests lie at the intersection of Artificial Intelligence, Machine Learning, and Computer Vision, with a particular focus on deep visual learning and few-shot learning models. He explores innovative solutions to computational challenges involving limited data samples, aiming to improve learning accuracy and cross-domain generalization. His research extends into practical domains such as healthcare diagnostics, agricultural disease prevention, cloud computing optimization, and smart IoT-based systems. Dr. Khanday has investigated topics including convolutional neural networks for COVID-19 prognosis, metric learning models for classification, and AI-driven smart farming using 5G networks. His recent work has integrated Large Language Models (LLMs) and Generative AI to enhance decision-making systems in medical and industrial contexts. His interdisciplinary approach combines theoretical models with real-world applications, contributing to sustainable development through intelligent computing. Dr. Khanday’s research aims not only to push academic boundaries but also to provide practical, scalable solutions for modern societal challenges. His continuous engagement with cutting-edge technologies and publication in top-tier journals solidify his status as a thought leader in visual intelligence and machine learning systems.

Research Skills

Dr. Nadeem Yousuf Khanday possesses a strong portfolio of research skills that span multiple domains in computing. He is proficient in developing machine learning algorithms, deep learning architectures, and advanced image processing models for varied applications. His expertise includes designing few-shot learning frameworks, enhancing cross-domain classification performance, and deploying convolutional neural networks for medical image analysis and smart diagnostics. He has hands-on experience with AI-based anomaly detection, visual segmentation systems, and cloud environment optimization using hybrid fuzzy and swarm intelligence methods. Dr. Khanday is also skilled in patent writing, having developed innovative systems for crop disease detection and motorcycle safety. His publication record reflects his ability to effectively communicate complex methodologies, backed by data-driven validation and practical implementation. Additionally, his collaboration in multi-author projects and book chapters indicates strong academic teamwork and interdisciplinary engagement. His teaching and research experiences across different institutions have also honed his ability to mentor students and lead academic discussions. Equipped with technical, analytical, and conceptual research skills, Dr. Khanday continues to contribute impactful and scalable innovations across emerging fields like generative AI, IoT systems, and smart computing.

Awards and Honors

Dr. Nadeem Yousuf Khanday has received various forms of recognition for his scholarly achievements and research excellence. Notably, he has qualified multiple national-level eligibility exams, such as GATE, UGC-NET, and JK-SET, highlighting his academic distinction and competency to teach at the university level. In 2023, he was awarded recognition for his impactful contributions to AI-driven visual understanding and applications, as reflected in his high-impact publications and patents. His patent work, including an apparatus for auto-detection of crop diseases and motorcycle safety systems, has been acknowledged for its potential technological and societal value. Dr. Khanday’s research has also gained visibility through SCOPUS- and SCI-indexed publications with top journals like Computer Science Review and Neural Computing and Applications. His invited book chapters published by Taylor and Francis, Springer Nature, and Cambridge University Press underline his reputation among international academic publishers. Furthermore, he has presented at international conferences in Europe and Asia, receiving acclaim for his work on machine vision, fuzzy systems, and cloud intelligence. These accolades reflect both his individual excellence and collaborative impact within the research community.

Conclusion

Dr. Nadeem Yousuf Khanday exemplifies the profile of a high-caliber academician and innovative researcher with notable achievements in the fields of artificial intelligence, deep learning, and computer vision. Through a strong foundation in computer science education and a wealth of research experience, he has consistently contributed to advancing both theory and practice. His multidisciplinary research in healthcare, smart agriculture, and intelligent systems, along with a growing list of high-impact publications, patents, and book contributions, sets him apart as a forward-thinking scholar. His teaching experience across reputed Indian institutions and his ability to combine pedagogy with practical applications further enhance his value to academia. Dr. Khanday’s commitment to solving real-world problems using machine learning and AI tools not only enhances academic discourse but also promotes sustainable innovation. His emerging collaborations, international conference participation, and national recognitions affirm his credibility and future potential. In light of his qualifications, scholarly output, and research relevance, he stands as a highly deserving candidate for the Best Researcher Award, with the capacity to influence the global research community and contribute significantly to technological advancement

  1. Covariance-based Metric Model for Cross-domain Few-shot Classification and Learning-to-generalization
    📘 Journal: Applied Intelligence, 2023
    👥 Authors: Khanday, N.Y.; Sofi, S.A.

  2. Learned Gaussian ProtoNet for Improved Cross-domain Few-shot Classification and Generalization
    📘 Journal: Neural Computing and Applications, 2023
    👥 Authors: Khanday, N.Y.; Sofi, S.A.

  3. Deep Insight: Convolutional Neural Network and Its Applications for COVID-19 Prognosis
    📘 Journal: Biomedical Signal Processing and Control, 2021
    👥 Authors: Khanday, N.Y.; Sofi, S.A.

  4. Taxonomy, State-of-the-art, Challenges and Applications of Visual Understanding: A Review
    📘 Journal: Computer Science Review, 2021
    👥 Authors: Khanday, N.Y.; Sofi, S.A.

Supraja Ballari | Computer Science | Best Researcher Award

Mrs. Supraja Ballari | Computer Science | Best Researcher Award

Assistant Professor from Guru Nanak Institutions Technical Campus, India

Smt. B. Supraja is an experienced academician and researcher in the field of Computer Science and Engineering. With over 15 years of teaching experience at various reputed technical institutions in India, she has consistently contributed to both pedagogy and applied research. Currently serving as an Assistant Professor at Guru Nanak Institutions Technical Campus, Telangana, she is also pursuing her Ph.D. in Computer Science from Dravidian University, Kuppam. Her academic journey is marked by a strong foundation in computer applications and engineering, with a focus on emerging areas such as machine learning, cybersecurity, blockchain, and data mining. She has authored several research papers in reputed journals and holds multiple patents reflecting her commitment to innovation. Her work spans interdisciplinary applications of computing in logistics, vehicular networks, and employee management systems. Known for her diligence and academic integrity, Smt. Supraja combines her teaching skills with active research, mentorship, and curriculum development. Her ability to blend theory with practical applications makes her a valuable asset in academia. Her academic contributions have positioned her as a researcher with great potential for national recognition, including eligibility for research excellence awards.

Professional Profile

Education

Smt. B. Supraja holds a rich academic background that lays the foundation for her current research pursuits. She is presently pursuing a Ph.D. in Computer Science from Dravidian University, Kuppam, with a focus on contemporary issues in cybersecurity, data analytics, and intelligent systems. She completed her M.Tech in Computer Science and Engineering from PBR Visvodaya Engineering College, Kavali (affiliated to JNTUA) between 2011 and 2014, where she deepened her technical knowledge in core computer engineering disciplines. Her postgraduate studies began with a Master of Computer Applications (M.C.A.) from Geethanjali College of PG Studies under Sri Venkateswara University, Nellore (2002–2005). Her academic credentials are well aligned with the technological demands of today’s dynamic research landscape. Her education spans foundational programming, software engineering principles, and advanced technologies, making her a capable researcher and instructor. Throughout her academic journey, she has remained focused on interdisciplinary applications of computer science in real-world contexts. Her continuous academic progression—culminating in her doctoral studies—underscores her lifelong commitment to education and research excellence.

Professional Experience

Smt. Supraja’s professional journey spans nearly two decades in the higher education sector, where she has served in various teaching capacities. She is currently employed as an Assistant Professor at Guru Nanak Institutions Technical Campus, Telangana (since February 2023), where she teaches undergraduate and postgraduate courses in Computer Science. Prior to this, she held the same role at Narayana Engineering College, Nellore from July 2021 to January 2023, and at Krishna Chaitanya Educational Institutions from December 2014 to July 2021, teaching a mix of B.Sc., BCA, and M.Sc. students. Her earlier roles included positions at S. Chaavan Institute of Science & Technology and S.V. Arts & Science College, Gudur, where she taught various computer science subjects to both undergraduate and postgraduate students. In each of these positions, she has contributed to academic instruction, student mentoring, and curriculum development. Her experience reflects a deep engagement with the academic process, ranging from foundational teaching to more research-oriented mentorship. This long-standing teaching career demonstrates not only her pedagogical strengths but also her dedication to shaping the next generation of computer scientists.

Research Interests

Smt. B. Supraja’s research interests span a wide range of cutting-edge domains in computer science. Her primary focus areas include machine learning, cybersecurity, blockchain applications, data mining and data warehousing, fog computing, and cloud-based control systems. Her work reflects a deep interest in the intersection of artificial intelligence with societal and industrial applications. She has conducted research on anomaly detection in software-defined networks, data sharing in vehicular social networks using blockchain, and logistics optimization through structural equation modeling. She also explores areas such as sentiment analysis using Naïve Bayes classifiers, encrypted control systems, and cyberattack prediction through machine learning techniques. These interests align closely with today’s technological priorities such as data protection, automation, and intelligent decision-making. Her work seeks to bridge the gap between academic research and industrial applicability. The diverse yet cohesive nature of her research interests indicates her adaptability and eagerness to explore interdisciplinary applications. These interests not only reflect technical competence but also her sensitivity to real-world challenges that require intelligent, scalable, and secure technological solutions.

Research Skills

Smt. B. Supraja brings a robust set of research skills honed through academic work, project collaborations, and innovation initiatives. She is proficient in programming languages such as Java, C, and C++, and has practical experience with databases like Oracle and MS Access, as well as web technologies like HTML, JavaScript, and XML. Her expertise includes operating within different development environments using tools like Eclipse and Editplus. These technical proficiencies support her capability in implementing machine learning models, simulation systems, and data analysis applications. She has successfully authored and co-authored peer-reviewed publications and book chapters, showing familiarity with scientific writing, research methodology, and collaborative scholarship. In addition, she has contributed to the innovation space through patent filings in areas such as employee churn prediction and cyberattack prevention systems using machine learning algorithms. Her ability to apply theoretical knowledge into practical systems design and her experience in real-world problem solving mark her as a capable and results-oriented researcher. Her academic and technological skills are further strengthened by her consistent teaching of core subjects, which reinforces her depth in fundamental computer science concepts.

Awards and Honors

While a formal list of awards and honors is not provided in her academic profile, Smt. B. Supraja’s achievements in publishing, patenting, and contributing to book chapters reflect strong professional recognition. Her patents—three of which are published between 2022 and 2024—indicate acknowledgment of her work’s novelty and utility in applied computer science. Her scholarly contributions to journals such as the Journal of Engineering Sciences and Design Engineering, alongside collaborative book chapters on contemporary issues like COVID-19’s digital impact, have been positively received in academic circles. These publications are indicative of her growing visibility in the research community. Furthermore, her inclusion in multidisciplinary anthologies and collaborations with senior academicians from diverse fields show a level of trust and professional respect. Although specific awards or titles are not yet documented, her research outputs and innovation track record position her as a strong candidate for future academic honors and distinctions. Her work is gaining momentum, and with further institutional and international engagement, she is well poised for formal recognition through research awards and academic fellowships.

Conclusion

In conclusion, Smt. B. Supraja is a dedicated academic professional and an emerging researcher in the field of computer science. Her profile reflects a balanced integration of long-standing teaching experience and active research engagement. She has demonstrated capability in producing impactful scholarly work through journal publications, book chapters, and patents. Her expertise spans across machine learning, blockchain, cloud systems, and cybersecurity—fields that are not only technologically significant but also socially relevant. While she is still progressing in her doctoral research, her current contributions are commendable and indicate strong future potential. Areas for growth include enhancing research impact through increased citation metrics, obtaining funded projects, and expanding global collaborations. However, the depth and diversity of her current academic efforts strongly support her candidacy for research awards. Smt. Supraja exemplifies the qualities of a modern researcher—technically skilled, pedagogically sound, and oriented towards practical applications. With continued dedication and strategic academic outreach, she is well-positioned to become a recognized contributor to India’s research and innovation landscape.

Publications Top Notes

  1. A vital neurodegenerative disorder detection using speech cues
    BS Jahnavi, BS Supraja, S Lalitha
    2020

  2. Simplified framework for diagnosis brain disease using functional connectivity
    T Swarnalatha, B Supraja, A Akula, R Alubady, K Saikumar, …
    2024

  3. DARL: Effectual deep adaptive reinforcement learning model enabled security and energy-efficient healthcare system in Internet of Things with the aid of modified manta ray
    B Supraja, V Kiran Kumar, N Krishna Kumar
    2025

  4. IoT based effective wearable healthcare monitoring system for remote areas
    S Tiwari, N Jain, N Devi, B Supraja, NT Chitra, A Sharma
    2024

  5. Securing IoT networks in healthcare for enhanced privacy in wearable patient monitoring devices
    V Tiwari, N Jharbade, P Chourasiya, B Supraja, PS Wani, R Maurya
    2024

  6. Machine learning-based prediction of cardiovascular diseases using Flask
    V Sagar Reddy, B Supraja, M Vamshi Kumar, C Krishna Chaitanya
    2023

  7. Real time complexities of research on machine learning algorithm: A descriptive research design
    GP Dr. N. Krishna Kumar, B. Supraja, B.S. Hemanth Kumar, U. Thirupalu
    2022

  8. IT employee job satisfaction survey during Covid-19
    GVMR Dr. N. Krishna Kumar, B. Supraja
    2022

  9. Covid-19 and digital era
    GVMR Dr. N. Krishna Kumar, B. Supraja
    2022

  10. Forwarding detection and identification anomaly in software defined network
    DNKK B. Supraja, A. Venkateswatlu
    2022

  11. Machine learning structural equation modeling algorithm on logistics and supply chain management
    UT B. Supraja, Dr. N. Krishna Kumar, B.S. Hemanth Kumar, B. Saranya, G …
    2022

  12. Sentiment analysis of customer feedback on restaurants using Naïve Bayes classifier
    DNKK A. Venkateswatlu, B. Supraja
    2021

  13. Design and implementation of fog-based encrypted control system in public clouds
    DNKK B. Supraja, A. Venkateswatlu
    2021

  14. Enhancing one to many data sharing using blockchain in vehicular social networks
    DNKK B. Supraja, A. Venkateswatlu
    2021

Chongan Zhang | Computer Science | Best Researcher Award

Mr. Chongan Zhang | Computer Science | Best Researcher Award

Researcher from Zhejiang University, China

Chongan Zhang is an accomplished researcher in the field of Biomedical Engineering with nearly a decade of hands-on experience in the research and development of advanced medical devices. Based at Zhejiang University, he has served as a core team member on numerous high-impact projects at national, provincial, and enterprise levels. His research has focused on the development and translational application of high-end medical endoscopes, surgical navigation systems, and digital processing systems used in endoscopic surgical robots. Chongan’s innovative contributions have led to the publication of 10 academic papers indexed in SCI and EI, covering significant topics such as endoscopy and surgical navigation. He holds one national invention patent, which reflects his ability to bridge the gap between academic research and real-world clinical applications. His interdisciplinary approach combines engineering, computer science, and medicine to address key challenges in minimally invasive surgery. Committed to improving surgical precision and patient outcomes, his work in the development of high-speed digital processing and core navigation components has gained recognition in both academic and industrial domains. With a clear focus on translational research, Chongan continues to strive toward excellence in biomedical device innovation, aligning scientific progress with societal healthcare needs.

Professional Profile

Education

Chongan Zhang pursued his academic journey in the field of Biomedical Engineering at Zhejiang University, one of China’s most prestigious institutions for engineering and medical sciences. His formal education provided him with a strong foundation in engineering principles, biological sciences, and clinical applications relevant to medical device development. During his academic tenure, he focused on courses related to medical instrumentation, imaging systems, embedded systems, and biomechanics, all of which shaped his research direction toward minimally invasive technologies and robotic systems. His graduate research work revolved around designing and optimizing surgical navigation systems and high-resolution endoscopic imaging techniques. This training equipped him with both theoretical knowledge and practical skills in device prototyping, data acquisition, digital signal processing, and interdisciplinary integration. The academic environment at Zhejiang University encouraged collaborative and innovation-driven learning, enabling Chongan to take part in cutting-edge projects and cross-disciplinary research. His thesis and project work often involved real-time system simulation, system control algorithms, and micro-electromechanical system (MEMS)-based designs for surgical applications. Overall, his education has been pivotal in preparing him for a research career at the intersection of biomedical engineering, computer science, and clinical technology, shaping his capacity for innovation and translational application in the healthcare sector.

Professional Experience

Chongan Zhang’s professional experience spans close to ten years in biomedical engineering, with a focus on the research, development, and translation of innovative medical devices. During his career, he has played a key role in multiple scientific and technological projects funded by national, provincial, ministerial, and enterprise-level agencies. At Zhejiang University, he has functioned as a central figure in research groups working on endoscopic surgical robots, minimally invasive surgical instrumentation, and high-speed digital processing systems. His primary responsibilities include system architecture design, component integration, algorithm development, and prototype validation. He has collaborated closely with clinicians, engineers, and industrial partners to ensure that the technologies under development meet real-world clinical needs. Notably, he has contributed significantly to the creation of next-generation medical endoscopes and surgical navigation platforms, ensuring they are both functionally advanced and ergonomically designed for clinical use. His experience also includes preparing documentation for regulatory approvals and technology transfer initiatives. By bridging research with industry, he has helped translate laboratory innovations into deployable healthcare solutions. His practical experience across diverse project scales and domains positions him as a well-rounded biomedical engineer with strong problem-solving skills and a commitment to healthcare advancement through engineering innovation.

Research Interests

Chongan Zhang’s research interests lie primarily in the design, development, and optimization of biomedical devices with a focus on endoscopic technologies and surgical navigation systems. He is particularly interested in the intersection of medical imaging, embedded systems, digital signal processing, and robotics, which collectively drive the innovation of next-generation surgical tools. His current research focuses on developing high-speed digital processing systems that enable real-time data handling during endoscopic procedures. Another key area of his interest is the advancement of surgical navigation systems to enhance accuracy and safety in minimally invasive surgeries. This involves both hardware design and the development of real-time localization and tracking algorithms. Chongan is also keen on translating academic research into clinically deployable technologies and is involved in designing core navigation components for robotic-assisted surgical systems. Furthermore, he is exploring the integration of AI-assisted guidance in endoscopic navigation, aiming to improve decision-making during surgeries. His long-term interest includes the development of patient-specific devices and systems that can adapt to diverse surgical environments. By bridging engineering and medicine, he seeks to contribute to the evolution of smart surgical environments and better patient outcomes through technical excellence and user-centered design.

Research Skills

Chongan Zhang possesses a comprehensive skill set that supports his research in biomedical device development and surgical system innovation. He is proficient in the design and fabrication of medical devices, particularly high-performance endoscopes and surgical navigation platforms. His technical capabilities include embedded system programming, high-speed digital signal processing, sensor integration, and real-time data acquisition, all of which are critical for surgical applications. He is also skilled in system modeling, simulation, and validation, enabling him to iterate quickly and efficiently through the research and development cycle. His experience with CAD tools, hardware prototyping, and microcontroller-based system design strengthens his ability to create customized solutions for complex clinical challenges. Chongan is adept in image processing techniques used in endoscopy and navigation, and he frequently applies machine learning methods for optimizing navigation accuracy. Additionally, he has strong competencies in managing interdisciplinary research projects and collaborating with cross-functional teams, including surgeons, regulatory specialists, and industrial engineers. His skill in writing academic papers and securing intellectual property rights through patent applications also reflects his well-rounded research acumen. With a firm grasp of both software and hardware aspects, Chongan is well-equipped to innovate in the highly demanding field of medical device engineering.

Awards and Honors

Throughout his career, Chongan Zhang has earned recognition for his contributions to the biomedical engineering field, particularly in surgical technology innovation. While early in his career relative to more senior researchers, he has already secured a national invention patent, which highlights the originality and practical impact of his research. His participation in multiple government-funded and enterprise-sponsored research projects reflects institutional trust and professional esteem in his capabilities. Furthermore, his ten SCI and EI-indexed academic publications demonstrate that his work meets rigorous scientific standards and contributes to global knowledge in endoscopy and surgical navigation. Though not yet decorated with widely known individual research awards, his track record of successful project execution, research output, and innovation places him on a trajectory for future recognition at national and international levels. His involvement in interdisciplinary teams and industry partnerships has also brought praise for his ability to effectively bridge academic research with real-world application. As his portfolio continues to grow, he is likely to be a strong candidate for awards recognizing innovation, translational research, and medical technology advancement. His achievements to date serve as a foundation for even greater impact and recognition in the biomedical and engineering communities.

Conclusion

Chongan Zhang is a highly competent and innovative researcher whose work in biomedical engineering—especially in the development of surgical navigation systems and endoscopic technologies—demonstrates both depth and practical relevance. With nearly a decade of experience and active involvement in multi-tiered research projects, he exemplifies the qualities of a forward-thinking biomedical engineer. His research is driven by the need for high-precision, minimally invasive surgical tools that can transform clinical practice and improve patient outcomes. He combines strong technical skills with a clear vision for translational research, evidenced by his publications, patent, and collaborative project roles. While still building an international reputation, his consistent academic contributions and technical innovations already place him among the promising researchers in his field. His ability to work across disciplines and his focus on both hardware and software elements of surgical systems make him uniquely equipped to contribute to the future of intelligent surgical environments. With continued support and expanded visibility, he has the potential to become a leading figure in biomedical device innovation. Based on his experience, output, and innovation potential, he is a worthy nominee for the Best Researcher Award and an asset to the global biomedical research community.

Publications Top Notes

📘 Registration, Path Planning and Shape Reconstruction for Soft Tools in Robot-Assisted Intraluminal Procedures: A Review

  • Authors: Chongan Zhang, Xiaoyue Liu, Zuoming Fu, Guoqing Ding, Liping Qin, Peng Wang, Hong Zhang, Xuesong Ye

  • Publication Year: 2025