XUEYING MAO | Biological Sciences | Best Researcher Award

Prof . XUEYING MAO | Biological Sciences | Best Researcher Award

Professor from China Agricultural University, China

Professor Xueying Mao is a distinguished academic and researcher at the College of Food Science and Nutritional Engineering, China Agricultural University. With over two decades of academic experience, she has built a strong profile in the field of dairy science, particularly in the study of milk fat globule membranes, food digestion, and nutritional bioactivity. Her scientific contributions have gained recognition through publications in top-tier journals like Trends in Food Science & Technology and Food Chemistry, where she has consistently served as the sole corresponding author. Professor Mao has shown a focused commitment to research that addresses the compositional and interfacial properties of milk, enhancing the understanding of dairy functionality and nutritional outcomes. She is currently a participating investigator in a major National Natural Science Foundation of China (NSFC) Key Project on ultra-high temperature sterilized milk proteins. Her long-standing academic involvement, rigorous scientific inquiry, and impactful publications have solidified her reputation as a leader in food science research. She has also made significant contributions to academic mentorship and the development of food technology education in China. Professor Mao’s work reflects both scientific depth and practical relevance, making her an exemplary candidate for prestigious recognitions such as the Best Researcher Award.

Professional Profile

Education

Professor Xueying Mao has pursued a progressive academic path with a strong foundation in both animal and food sciences. She earned her Bachelor’s degree in Animal Nutrition from Hebei Agricultural University in 1993, where she began her early academic engagement in nutritional studies. Continuing her academic journey, she obtained a Master’s degree in Animal Nutrition from Huazhong Agricultural University in 1996, developing deeper expertise in the biological and nutritional sciences of livestock and food production. She culminated her formal academic training with a Ph.D. in Food Science and Engineering from China Agricultural University in 2003. Her doctoral studies marked a transition into the food science discipline, integrating her background in animal nutrition with modern food processing and biochemical research. To further enhance her research capabilities, she completed a postdoctoral fellowship at Peking University from 2003 to 2005, where she likely broadened her interdisciplinary exposure and laboratory experience. This blend of education across different institutions and specialties has provided Professor Mao with a comprehensive understanding of food and nutritional sciences, from fundamental animal-based studies to advanced food engineering. Her educational background has laid a robust scientific and technical foundation for her extensive research career in dairy and nutritional engineering.

Professional Experience

Professor Xueying Mao has accumulated extensive professional experience in academia and research, marked by a steady progression through teaching and research roles. Her professional journey began in 1996 at the College of Animal Science and Technology, Hebei Agricultural University, where she served as a Lecturer. During this period, she focused on teaching and foundational research in animal nutrition. In 2005, she joined the College of Food Science and Nutritional Engineering at China Agricultural University as an Associate Professor. Her appointment marked a significant transition into food science, allowing her to apply her background in animal nutrition to emerging topics in food digestion and dairy processing. In 2013, she was promoted to Full Professor, a role she continues to hold today. Her professional growth reflects a trajectory of increasing leadership, mentorship, and research responsibilities. Notably, Professor Mao has been actively involved in several national-level research projects and has led or co-authored numerous influential publications. Her long-term association with China Agricultural University, a leading institution in agricultural and food sciences, has allowed her to contribute substantially to academic development, curriculum design, and collaborative research. Her career exemplifies sustained academic excellence and dedication to advancing food science in China.

Research Interest

Professor Xueying Mao’s research interests lie at the intersection of dairy science, food chemistry, and nutritional bioengineering. She is particularly focused on the composition, structural behavior, and functional properties of milk fat globule membranes (MFGM). Her work investigates the differences between natural and processed milk, with special attention to how interfacial properties affect digestion, bioactivity, and overall health benefits. A core component of her research explores comparative lipid digestion and immunomodulatory effects between goat and cow milk, providing valuable insights for both nutritional science and the dairy industry. In recent years, she has delved into the mechanisms of protein complex formation during ultra-high temperature (UHT) treatment and how these changes influence the development of aged gels, which are relevant in food storage and processing. Her current involvement in a National Natural Science Foundation of China (NSFC) Key Project exemplifies her leadership in addressing fundamental questions in food biochemistry. Professor Mao’s research bridges basic scientific understanding with practical applications in dairy processing, human health, and food formulation. Her studies contribute to the development of more functional and digestible dairy products, and she remains committed to expanding knowledge on food interfaces, emulsions, and bioactive food components.

Research Skills

Professor Xueying Mao possesses a robust set of research skills that support her work in food science and dairy technology. She is highly proficient in proteomic analysis, biochemical characterization, and structural evaluation of food emulsions, particularly milk fat globule membranes (MFGM). Her ability to study interfacial behavior at the molecular level enables her to unravel complex digestion and bioactivity mechanisms of dairy products. Professor Mao is skilled in designing and conducting comparative digestion studies, in vitro simulations, and analyzing the impact of food processing techniques such as ultra-high temperature (UHT) treatment on protein-lipid complexes. Her scientific approach is systematic and interdisciplinary, integrating analytical chemistry, nutritional biology, and food engineering. She is adept at using modern laboratory instruments for mass spectrometry, chromatography, and advanced microscopy, enabling high-precision evaluations of food structure and functionality. In addition, she has extensive experience in scientific writing, journal publication, and grant proposal development. Her leadership in collaborative research projects also highlights her capabilities in project coordination, data interpretation, and academic mentoring. Overall, Professor Mao’s technical expertise and methodological rigor place her among the leading researchers in the field of food and nutritional sciences.

Awards and Honors

While specific named awards are not listed in the provided information, Professor Xueying Mao’s career achievements reflect substantial academic recognition through prestigious project involvement and high-impact publications. She is currently a principal participant in a Key Project funded by the National Natural Science Foundation of China (NSFC), which signifies a competitive and prestigious acknowledgment of her research capabilities at the national level. Her repeated role as the sole corresponding author in internationally renowned journals like Trends in Food Science & Technology and Food Chemistry demonstrates a high degree of academic leadership and international recognition. These roles are typically reserved for researchers who contribute significantly to experimental design, data interpretation, and manuscript preparation. Her promotion to Full Professor at China Agricultural University and her long-standing tenure at this elite institution also point to continued institutional trust and acknowledgment of her research excellence. Although no formal awards are explicitly mentioned, her scholarly impact, project leadership, and publication record collectively affirm her status as a highly respected researcher in her domain. Additional documented honors or recognitions, if available, would further reinforce her qualifications for high-level academic awards and honors.

Conclusion

Professor Xueying Mao stands out as a seasoned researcher whose contributions to dairy science and nutritional engineering are both scientifically significant and socially relevant. Her focused research on the behavior of milk fat globule membranes and lipid digestion addresses key challenges in food functionality, health impact, and industrial processing. With a strong academic background, leadership in national research initiatives, and a series of impactful publications as sole corresponding author, Professor Mao exemplifies the qualities of a high-caliber researcher. Her methodical approach to studying food structure and digestion bridges basic science and applied technology, supporting innovations in food design and public nutrition. Though there is room to enhance her profile through broader project leadership or increased industry collaboration, her consistent academic excellence and subject matter depth firmly establish her as a leading figure in her field. She is well-qualified for consideration for the Best Researcher Award, and her career trajectory continues to reflect a strong commitment to scientific advancement and academic service. With continued support and recognition, Professor Mao is poised to make even greater contributions to the advancement of food science and engineering in China and internationally.

Publications Top Notes

  1. Title: The effect of degree of esterification of pectin on the grainy properties of post-heated fermented milk
    Authors: Gao, Fei; Mao, Xueying; Wang, Pengjie; Song, Sijia; Li, Dongdong
    Journal: Food Hydrocolloids
    Year: 2025

  2. Title: Changes in the interfacial properties of camel milk fat globules induced by homogenization and thermal processing: Implications for digestive characteristics
    Authors: Jiang, Hui; Xu, Yunxuan; Chen, Gangliang; Mao, Xueying
    Journal: Food Chemistry
    Year: 2025

  3. Title: Camel milk endogenous peptides ameliorated hyperglycemia in high-fat diet-fed C57BL/6 J mice in association with modulation of gut microbiota and the IRS/Akt and JNK/p38 pathways
    Authors: Zheng, Qianwen; Chen, Gangliang; Mao, Xueying
    Journal: Food Research International
    Year: 2025

  4. Title: Preheating intensity affects the properties of age gelation formed in direct ultra-high-temperature skim milk
    Authors: Liu, Xiaohan; Gong, Han; Hu, Yifan; Ren, Fazheng; Mao, Xueying
    Journal: International Dairy Journal
    Year: 2025

  5. Title: The compositions of milk fat globule membrane determine the interfacial behavior, digestive properties, and bioactivities: Natural versus processed forms (Review)
    Authors: Ma, Zhiyuan; Gong, Han; Liu, Biao; Mao, Xueying
    Year: 2025
    Citations: 2

  6. Title: Corrigendum to “Differences in proteomic profiles and immunomodulatory activity of goat and cow milk fat globule membrane” Food Chemistry 455 (2024) 139885
    Authors: Jiang, Hui; Gong, Han; Li, Qin; Gao, Jingxin; Mao, Xueying
    Journal: Food Chemistry (Corrigendum)
    Year: 2025

Sukhes Mukherjee | Molecular Biology | Outstanding Scientist Award

Dr. Sukhes Mukherjee | Molecular Biology | Outstanding Scientist Award

Additional Professor at All India Institute Of Medical Sciences Bhopal, India

Dr. Sukhes Mukherjee is a distinguished academic and researcher in the field of biochemistry, with a focus on clinical biochemistry and molecular biology. He currently holds the position of Additional Professor at the All India Institute of Medical Sciences (AIIMS), Bhopal, India. Dr. Mukherjee has built an impressive career over the past 16 years, with substantial contributions to research and education. His work has been widely recognized, earning him numerous awards and honors. He is also known for his leadership in teaching and mentoring students, particularly at the postgraduate level. Dr. Mukherjee’s research focuses on advancing molecular techniques in biochemistry, with an emphasis on health diagnostics and disease management. He has authored over 80 peer-reviewed papers and frequently contributes to conferences and seminars both nationally and internationally.

Professional Profile

Education

Dr. Mukherjee’s educational journey is anchored in biochemistry and molecular biology. He completed his undergraduate and postgraduate education in India, earning a Master’s degree in Medical Biochemistry, followed by a Ph.D. in Biochemistry. His academic training has provided him with a strong foundation in both theoretical knowledge and hands-on laboratory skills. Dr. Mukherjee’s education is complemented by postdoctoral research experiences that have enriched his expertise in clinical biochemistry and molecular diagnostics. He has actively engaged in interdisciplinary training programs and research initiatives, which have shaped his current position as a thought leader in the field.

Professional Experience

Dr. Mukherjee’s professional experience spans more than 16 years, during which he has worked at various prestigious institutions, most notably at AIIMS, Bhopal. In his current role, he is responsible for overseeing clinical biochemistry research, teaching, and administration. Dr. Mukherjee has taught a wide range of courses, from basic biochemistry to advanced molecular biology, guiding both undergraduate and postgraduate students. Additionally, he has served on various academic and research committees, contributing to the development of new curricula and research protocols. His career also includes serving as a mentor to numerous graduate students and postdoctoral researchers, helping them advance their scientific careers.

Research Interests

Dr. Mukherjee’s primary research interests lie in the fields of clinical biochemistry, molecular biology, and health diagnostics. His work focuses on understanding the molecular mechanisms of disease, with particular attention to neurochemistry and biochemical pathways in neurological disorders. He is involved in exploring novel diagnostic biomarkers and therapies to improve patient care. Dr. Mukherjee’s research also covers the application of cutting-edge molecular biology techniques to better understand human health and disease at the cellular and biochemical levels. His interdisciplinary approach includes collaborations with clinicians and other researchers to bridge the gap between benchside research and clinical applications.

Research Skills

Dr. Mukherjee is highly skilled in a range of laboratory techniques and methodologies that are integral to biochemistry and molecular biology. These include protein chemistry, molecular cloning, enzyme assays, and biochemical profiling. He is proficient in various advanced diagnostic techniques, such as mass spectrometry and PCR-based methods, that are essential in clinical research. Dr. Mukherjee also has extensive experience in bioinformatics and data analysis, utilizing computational tools to interpret complex biological data. His research skills are complemented by his ability to manage large-scale research projects and collaborate effectively with multidisciplinary teams.

Awards and Honors

Dr. Mukherjee’s contributions to biochemistry and molecular biology have been recognized through numerous awards and honors. Notably, he received the Best Paper Award from the Association of Clinical Biochemists of India in 2008. He has been a recipient of various travel fellowships to attend and present at international conferences, including those in the US and South Korea. Dr. Mukherjee is a Fellow of the Linnean Society of London, reflecting his international stature in the scientific community. His work continues to attract recognition, both in India and globally, for its impact on advancing clinical biochemistry and molecular diagnostics.

Conclusion

Dr. Sukhes Mukherjee is undoubtedly a highly deserving candidate for the Best Researcher Award, with an impressive record of research contributions, academic excellence, and professional recognition. His extensive research, leadership, and dedication to advancing the field of clinical biochemistry set him apart as a pioneer in his field. With a bit more focus on interdisciplinary research and mentorship, Dr. Mukherjee could have an even more profound influence on both the scientific community and society at large. This nomination reflects his exemplary contributions and positions him as a role model for future researchers in the field.

Publication Top Notes

  1. Alcoholism and its effects on the central nervous system
    Authors: S Mukherjee
    Journal: Current Neurovascular Research 10 (3), 256-262
    Year: 2013
    Citations: 138
  2. Consequences of alcohol consumption on neurotransmitters-an overview
    Authors: S Mukherjee, SK Das, K Vaidyanathan, DM Vasudevan
    Journal: Current Neurovascular Research 5 (4), 266-272
    Year: 2008
    Citations: 86
  3. Evaluation of blood oxidative stress‐related parameters in alcoholic liver disease and non‐alcoholic fatty liver disease
    Authors: SK Das, V Balakrishnan, S Mukherjee, DM Vasudevan
    Journal: Scandinavian Journal of Clinical and Laboratory Investigation 68 (4), 323-334
    Year: 2008
    Citations: 81
  4. Oxidative stress is the primary event: effects of ethanol consumption in brain
    Authors: SK Das, KR Hiran, S Mukherjee, DM Vasudevan
    Journal: Indian Journal of Clinical Biochemistry 22, 99-104
    Year: 2007
    Citations: 77
  5. Comparison of haematological parameters in patients with non-alcoholic fatty liver disease and alcoholic liver
    Authors: SK Das, S Mukherjee, DM Vasudevan, V Balakrishnan
    Journal: Singapore Med J 52 (3), 175-181
    Year: 2011
    Citations: 73
  6. Medicinal properties of milk thistle with special reference to silymarin–an overview
    Authors: SK Das, S Mukherjee, DM Vasudevan
    Publisher: CSIR
    Year: 2008
    Citations: 70
  7. Evolving interplay between dietary polyphenols and gut microbiota—an emerging importance in healthcare
    Authors: SK Ray, S Mukherjee
    Journal: Frontiers in Nutrition 8, 634944
    Year: 2021
    Citations: 68
  8. Biochemical and immunological basis of silymarin effect, a milk thistle (Silybum marianum) against ethanol-induced oxidative damage
    Authors: SK Das, S Mukherjee
    Journal: Toxicology Mechanisms and Methods 22 (5), 409-413
    Year: 2012
    Citations: 63
  9. Protective effect of resveratrol and vitamin E against ethanol-induced oxidative damage in mice: biochemical and immunological basis
    Authors: SK Das, S Mukherjee, G Gupta, DN Rao, DM Vasudevan
    Publisher: CSIR
    Year: 2010
    Citations: 55
  10. Effects of chronic ethanol exposure on renal function tests and oxidative stress in kidney
    Authors: SK Das, S Varadhan, L Dhanya, S Mukherjee, DM Vasudevan
    Journal: Indian Journal of Clinical Biochemistry 23, 341-344
    Year: 2008
    Citations: 49