Pi-Wan Cheng | Molecular Biology | Best Researcher Award

Prof. Dr. Pi-Wan Cheng | Molecular Biology | Best Researcher Award

Professor at University of Nebraska Medical Center, United States

Dr. Pi Wan Cheng is a distinguished biochemist and molecular biologist with over four decades of experience in research and academia. He currently holds a professorship at the University of Nebraska Medical Center (UNMC) and has contributed significantly to the field of glycobiology. Dr. Cheng has made pivotal advancements in understanding glycan biosynthesis and its role in health, diseases, and cancer. His work, which bridges basic and translational research, is supported by multiple research grants and patents. He has also been an active member of several professional organizations, underscoring his influence in the scientific community. Dr. Cheng’s research focuses on how glycosylation affects immune responses and cancer progression, with a special emphasis on the development of Siglec-7-based therapies for pancreatic cancer.

Professional Profile

Education:

Dr. Pi Wan Cheng obtained his Ph.D. in Biochemistry from Case Western Reserve University, Cleveland, Ohio, in 1975. Prior to that, he earned his M.S. in Biochemistry from National Taiwan University in 1968, following his B.S. in Agricultural Chemistry from the same institution in 1965. Throughout his educational journey, Dr. Cheng worked under the mentorship of prominent scientists such as Dr. Don M. Carlson and Dr. Kuo Huang Ling, which shaped his academic and professional growth in biochemistry and molecular biology.

Professional Experience:

Dr. Cheng’s career spans numerous prestigious academic institutions. He has held faculty positions at Case Western Reserve University, the University of North Carolina, and UNMC. At UNMC, he has been a professor in the Department of Biochemistry and Molecular Biology since 1995, where he was granted tenure in 1997. He also served as a research chemist at the Veterans Affairs Nebraska Western Iowa Health Care System from 2011 to 2017. His role at UNMC also includes courtesy appointments in the College of Pharmacy and the Eppley Institute for Cancer Research, where he has fostered collaborations and contributed to the institution’s research landscape.

Research Interest:

Dr. Cheng’s primary research interest lies in glycobiology, specifically the mechanisms of glycan biosynthesis and its impact on health and disease. His work focuses on understanding how glycans, particularly sialylated O-glycans, influence immune responses and contribute to the progression of diseases such as cancer. He investigates how specific glycans, induced by factors like interleukin-6 and alcohol, can protect cancer cells from immune surveillance and promote tumor growth. His innovative research is also exploring therapies targeting Siglec-7 for pancreatic cancer treatment, with potential applications in immunotherapy and cancer prevention.

Research Skills:

Dr. Cheng possesses a comprehensive skill set in biochemistry, molecular biology, and glycobiology. He is skilled in techniques related to protein biochemistry, glycan analysis, immunology, and cancer research. His expertise includes the development of molecular models to understand glycan interactions with immune cells, as well as employing various biochemical assays to assess glycan expression in disease states. Dr. Cheng’s proficiency extends to experimental design, grant writing, and leading interdisciplinary research teams. He has also contributed to the field through patents, underscoring his ability to translate fundamental discoveries into real-world applications.

Awards and Honors:

Throughout his career, Dr. Cheng has received numerous accolades for his groundbreaking research in glycobiology. His work has been supported by prestigious grants, including those from the Nebraska Department of Health and Human Services, where he has led multiple research projects related to cancer and immune function. He holds patents in biologically active molecule delivery, reflecting his innovative contributions to science. Dr. Cheng is a lifetime member of the Society for Glycobiology and the Society of Chinese Bioscientists in America, and he has been recognized for his service to the scientific community through various professional society memberships and community volunteer work.

Conclusion:

Dr. Pi Wan Cheng is a highly qualified candidate for the Best Researcher Award, with a distinguished career marked by significant research contributions in glycobiology, a track record of continuous funding, and active involvement in the scientific community. His innovative research, particularly in cancer immunology and glycosylation, holds great promise for medical advancements. While there is room for further interdisciplinary collaboration and publication visibility, his foundational work in glycobiology makes him a deserving nominee for this prestigious award.

Publication Top Notes

  1. Markers of malignant prostate cancer cells: Golgi localization of α-mannosidase 1A at GM130-GRASP65 site and appearance of high mannose N-glycans on cell surface
    • Authors: Cheng, P.-W., Davidson, S., Bhat, G.
    • Year: 2020
    • Citations: 12
  2. Inhibitory activity of salivary glycoproteins on phytohemagglutins (PHA): Possible molecules to enhance nutritional quality of red kidney beans
    • Authors: Chachadi, V.B., Nayanegali, T.R., Pujari, B.G., Inamdar, S.R., Cheng, P.-W.
    • Year: 2020
    • Citations: 3
  3. p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance
    • Authors: Miller, D.R., Ingersoll, M.A., Chatterjee, A., Oberley-Deegan, R.E., Lin, M.-F.
    • Year: 2019
    • Citations: 18
  4. Shifted Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65 results in formation of high mannose N-glycans in aggressive prostate cancer cells
    • Authors: Bhat, G., Hothpet, V.-R., Lin, M.-F., Cheng, P.-W.
    • Year: 2017
    • Citations: 18
  5. The role of Rab6a and phosphorylation of non-muscle myosin IIA tailpiece in alcohol-induced Golgi disorganization
    • Authors: Petrosyan, A., Casey, C.A., Cheng, P.-W.
    • Year: 2016
    • Citations: 22
  6. Downregulation of the small GTPase SAR1A: A key event underlying alcohol-induced Golgi fragmentation in hepatocytes
    • Authors: Petrosyan, A., Cheng, P.-W., Clemens, D.L., Casey, C.A.
    • Year: 2015
    • Citations: 20
  7. Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands
    • Authors: Chachadi, V.B., Bhat, G., Cheng, P.-W.
    • Year: 2015
    • Citations: 15
  8. Keratin 1 plays a critical role in Golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail
    • Authors: Petrosyan, A., Ali, M.F., Cheng, P.-W.
    • Year: 2015
    • Citations: 20
  9. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis
    • Authors: Petrosyan, A., Holzapfel, M.S., Muirhead, D.E., Cheng, P.-W.
    • Year: 2014
    • Citations: 64
  10. Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyltransferases
    • Authors: Petrosyan, A., Cheng, P.-W.
    • Year: 2014
    • Citations: 24