A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Dr. A.V.L.N. SUJITH | Computer Science | Best Researcher Award

Associate Professor from Mallareddy University, India

Dr. A.V.L.N. Sujith is a seasoned academic and researcher in the field of Computer Science and Engineering with over 12 years of experience, including 7 years in leadership roles as Head of Department. He is currently serving as the Head of the Information Technology Department at Malla Reddy University, Hyderabad. Known for his dynamic teaching style and commitment to research, Dr. Sujith has successfully balanced administrative responsibilities with a productive research output. His contributions include over 36 international journal publications, five patents, two textbooks, and significant involvement in funded projects. With a focus on cloud computing, artificial intelligence, and machine learning, he has developed interdisciplinary solutions that bridge technology and real-world applications. His work has earned him national recognition, including prestigious mentoring awards for student innovation competitions. Moreover, Dr. Sujith actively participates in organizing conferences, delivering FDPs, designing curricula, and setting academic strategies to enhance teaching and learning. His publication record includes 633 citations on Google Scholar and over 380 citations on Scopus. He has also completed a post-doctoral fellowship at the University of Louisiana, USA. Through a blend of academic excellence, administrative acumen, and innovative research, Dr. Sujith exemplifies the qualities of a leading academician and is highly regarded in his field.

Professional Profile

Education

Dr. A.V.L.N. Sujith has pursued a strong academic path in Computer Science and Engineering, demonstrating a continuous progression of specialization and expertise. He completed his B.Tech and M.Tech in Computer Science and Engineering from JNTUA University, Ananthapuram, in 2011 and 2013, respectively, securing competitive percentages of 65.57% and 77.35%. He was awarded a Ph.D. in Computer Science and Engineering by the same university in May 2021, further solidifying his foundation in advanced computing research. In addition, he broadened his global exposure and research capabilities by completing a prestigious post-doctoral fellowship at the University of Louisiana at Lafayette, USA, from October 2022 to October 2023. Prior to his higher education, Dr. Sujith completed his Intermediate studies with a 70.02% score and secured 73.5% in SSC, laying the groundwork for his academic journey. His academic trajectory reflects not only a strong technical foundation but also a commitment to lifelong learning and international collaboration. Through his educational background, Dr. Sujith has gained a comprehensive understanding of theoretical and applied aspects of computer science, enabling him to contribute meaningfully to teaching, research, and institutional development.

Professional Experience

Dr. Sujith’s professional journey spans over 13 years in teaching and research across several esteemed institutions in India. His current role is Head of the Department of Information Technology at Malla Reddy University, Hyderabad, starting from May 2024. Prior to this, he served as Head of the CSE Department at Narsimha Reddy Engineering College and Anantha Lakshmi Institute of Technology and Sciences, where he led curriculum reforms, coordinated NBA accreditations, and fostered industry-academia linkages through MoUs. His contributions also include organizing student tech-fests, innovation cells, and securing multiple awards through mentorship in national-level competitions. As an Assistant Professor at Sri Venkateswara College of Engineering, he played a pivotal role in institutional events like Smart India Hackathon and the Chhatra Vishwakarma Awards. He has also served in teaching roles at Vignan Institute of Information Technology, JNTUA College of Engineering, and Sree Vidyanikethan College of Engineering. In each role, Dr. Sujith has demonstrated his strengths in both pedagogy and academic leadership. His ability to drive institutional excellence, mentor faculty and students, and deliver high-impact research outcomes has made him a key contributor to academic innovation and quality education.

Research Interests

Dr. A.V.L.N. Sujith’s research interests are rooted in cutting-edge areas of computer science that have significant real-world applications. His primary focus areas include artificial intelligence, machine learning, cloud computing, virtualization technologies, deep learning, data science, and smart systems. He is particularly interested in the integration of AI with healthcare, agriculture, and business analytics, as evidenced by his interdisciplinary publications and funded projects. His research also extends to intelligent service composition in dynamic cloud environments, green energy systems using nanomaterials, and high-performance computing solutions. Dr. Sujith’s work emphasizes the use of advanced algorithms, hybrid metaheuristic methods, and systematic reviews to address complex computational problems. He has also conducted studies involving QoS-aware service discovery, fuzzy-based models, and fast intra prediction mode decisions in multimedia coding. Moreover, he is engaged in developing pedagogical tools for teaching these advanced technologies, reflecting his dual commitment to research and academic instruction. His diverse research portfolio positions him to contribute significantly to emerging trends in AI and cloud ecosystems, particularly in developing cost-effective, intelligent, and sustainable technological solutions.

Research Skills

Dr. Sujith possesses a wide array of research skills that enhance his effectiveness as a scholar and innovator. His expertise in designing and analyzing algorithms, data modeling, system architecture, and intelligent computing frameworks equips him to solve real-world problems across various domains. He is proficient in using technologies such as VMware, VSphere, Citrix Xen, and Amazon Web Services for cloud deployment, and has hands-on experience with Python, Java, C, and C++ for developing scalable solutions. Dr. Sujith is also skilled in tools like Rational Rose, Apache Tomcat, and SQL/DB2 for enterprise development and database management. His experience in teaching subjects like artificial intelligence, data warehousing, and cloud computing enhances his technical depth. Furthermore, he employs modern research methodologies such as systematic literature reviews, comparative analyses, and modeling using hybrid machine learning algorithms. His published works demonstrate familiarity with various software tools and platforms for data visualization, performance evaluation, and predictive analytics. With certifications from IBM, Microsoft, Google, and NASSCOM, Dr. Sujith continues to upgrade his technical competencies, ensuring that his research remains relevant and impactful in an ever-evolving digital landscape.

Awards and Honors

Dr. Sujith has earned several accolades that highlight his dedication to academic excellence and innovation. Notably, he received the Best Project Mentor Award from the then Vice President of India, Dr. M. Venkaiah Naidu, for mentoring the award-winning project “Automated Agriculture and Sericulture System Using IoT” under the AICTE-ECI-ISTE Chhatra Vishwakarma Awards 2018. He also received the Best Mentor Award in Smart India Hackathon 2018 for leading a team in the hardware category. Additionally, Dr. Sujith was honored with the Best Research Paper Award at a CSI India-organized conference for his contribution to quantum cryptography research. He has also secured funding from DST-IEDC for two innovative agricultural IoT projects. His awards and recognitions reflect his ability to translate academic knowledge into impactful real-world applications. These accomplishments are not just limited to individual recognition but extend to institutional and student success, reinforcing his role as a catalyst for innovation and academic achievement. His leadership in organizing FDPs, conferences, and seminars has further strengthened his standing in the academic community, making him a sought-after mentor and collaborator.

Conclusion

Dr. A.V.L.N. Sujith emerges as a well-rounded academician, combining a rich blend of teaching, research, administrative leadership, and community engagement. His journey from assistant professor to department head is marked by a consistent record of excellence, innovation, and scholarly impact. With an impressive publication portfolio, extensive citation record, and recognized mentorship in national competitions, he has firmly established himself as a leader in the fields of AI, cloud computing, and data science. His proactive role in curriculum design, accreditation, and institutional development further underlines his strategic vision and academic commitment. Dr. Sujith’s ability to secure research funding, author books, and develop skill-based courses showcases his multifaceted approach to academic growth and societal impact. While there is scope for deeper global collaboration and expansion into high-impact journals, his current achievements provide a strong foundation for future advancements. Dr. Sujith represents the ideal profile of a modern educator and researcher—innovative, inspiring, and impact-driven. His contributions continue to elevate the standards of computer science education and research in India, making him a deserving candidate for prestigious academic recognitions and awards.

Publications Top Notes

1. Integrating Nanomaterial and High-Performance Fuzzy-Based Machine Learning Approach for Green Energy Conversion
Authors: Sujith, A.V.L.N.; Swathi, R.; Venkatasubramanian, R.; Venu, N.; Hemalatha, S.; George, T.; Hemlathadhevi, A.; Madhu, P.; Karthick, A.; Muhibbullah, M.; et al.
Year: 2022

2. A Comparative Analysis of Business Machine Learning in Making Effective Financial Decisions Using Structural Equation Model (SEM)
Authors: A.V.L.N. Sujith; Naila Iqbal Qureshi; Venkata Harshavardhan Reddy Dornadula; Abinash Rath; Kolla Bhanu Prakash; Sitesh Kumar Singh; Rana Muhammad Aadil
Year: 2022

3. Multi-temporal Image Analysis for LULC Classification and Change Detection
Authors: Vivekananda, G.N.; Swathi, R.; Sujith, A.V.L.N.
Year: 2021

4. A Multilevel Principal Component Analysis Based QoS Aware Service Discovery and Ranking Framework in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

5. An Enhanced Faster-RCNN Based Deep Learning Model for Crop Diseases Detection and Classification
Authors: Harish, M.; Sujith, A.V.L.N.; Santhi, K.
Year: 2019

6. EGCOPRAS: QoS-aware Hybrid MCDM Model for Cloud Service Selection in Multi-cloud Environment
Authors: Sujith, A.V.L.N.; Rama Mohan Reddy, A.; Madhavi, K.
Year: 2019

7. QoS-driven Optimal Multi-cloud Service Composition Using Discrete and Fuzzy Integrated Cuckoo Search Algorithm
Authors: Sujith, A.V.L.N.; Reddy, A.R.M.; Madhavi, K.
Year: 2019

8. A Novel Hybrid Quantum Protocol to Enhance Secured Dual Party Computation over Cloud Networks
Authors: Sudhakar Reddy, N.; Padmalatha, V.L.; Sujith, A.V.L.N.
Year: 2018

Farhad Soleimanian Gharehchopogh | Artificial Intelligent | Best Researcher Award

Assoc. Prof. Dr. Farhad Soleimanian Gharehchopogh | Artificial Intelligent | Best Researcher Award

Dean of Faculty at Urmia Branch, Islamic Azad University, Iran

Dr. Farhad Soleimanian Gharehchopogh is a distinguished academic with a profound background in computer science and software engineering. He is renowned for his contributions to machine learning, artificial intelligence, and computational intelligence. His research focuses on solving complex problems using evolutionary algorithms and optimization techniques. Dr. Soleimanian is also an active participant in academic circles, serving on the editorial boards of several prestigious journals and regularly presenting his findings at international conferences. With numerous publications in high-impact journals, he has significantly influenced his field. His dedication to research and education has earned him accolades, making him a respected figure among peers and students alike.

Professional Profile

Education

Dr. Farhad Soleimanian Gharehchopogh holds a Ph.D. in Computer Science, specializing in Software Engineering from Urmia University, Iran. His doctoral research focused on advanced optimization techniques and their applications in artificial intelligence. Prior to his Ph.D., he completed a Master of Science in Software Engineering at Islamic Azad University, Tabriz Branch, where he developed a strong foundation in programming, data structures, and algorithm design. He earned his Bachelor of Science in Computer Science from Islamic Azad University, Urmia Branch, where he first explored his interest in computational intelligence. His academic journey has been characterized by a consistent focus on deepening his understanding of complex computational systems.

Professional Experience

Dr. Farhad Soleimanian Gharehchopogh has held various academic positions throughout his career, contributing to the growth of computer science education and research. He has served as an Assistant Professor at Islamic Azad University, Urmia Branch, where he taught undergraduate and graduate courses in software engineering and computer science. In addition to teaching, he has supervised numerous master’s and Ph.D. students, guiding their research in areas like machine learning and optimization algorithms. He has also collaborated with international researchers on various projects, aiming to solve real-world problems using advanced computational methods. His professional experience is marked by a commitment to fostering innovation in both academic and practical applications of computer science.

Research Interest

Dr. Soleimanian’s research interests are centered around machine learning, artificial intelligence, and computational optimization. He is particularly interested in developing new algorithms for data mining, evolutionary computing, and swarm intelligence. His work often explores how optimization techniques, such as genetic algorithms, particle swarm optimization, and ant colony optimization, can be applied to solve complex problems in various fields. Additionally, he is passionate about deep learning and its applications in pattern recognition, natural language processing, and image analysis. Dr. Soleimanian continually seeks to advance the field through innovative research, aiming to bridge the gap between theoretical concepts and practical implementations.

Research Skills

Dr. Farhad Soleimanian Gharehchopogh possesses a wide array of research skills that make him a leader in computational intelligence and software engineering. He has extensive experience in developing and implementing optimization algorithms, leveraging his expertise in evolutionary computing and metaheuristics. Proficient in programming languages such as Python, MATLAB, and C++, he applies these skills to simulate and analyze complex models. Dr. Soleimanian is also skilled in statistical analysis and data visualization, enabling him to derive meaningful insights from large datasets. His ability to collaborate effectively with other researchers and his strong analytical mindset have allowed him to make significant contributions to his field.

Awards and Honors

Dr. Soleimanian’s excellence in research and education has been recognized with several awards and honors throughout his career. He has received accolades for his high-quality research papers presented at international conferences and published in peer-reviewed journals. His contributions to the field have been acknowledged with best paper awards and recognition from academic societies. He has also been honored for his outstanding teaching and mentoring, guiding students towards academic and professional success. Dr. Soleimanian’s dedication to advancing computer science and his commitment to academic excellence have made him a recipient of numerous prestigious awards, highlighting his impact in both research and education.

Conclusion

Dr. Farhad Soleimanian Gharehchopogh is a strong candidate for the Best Researcher Award, given his extensive research output, mentorship of graduate students, and recognition among the top-cited scientists globally. His consistent contributions to the academic and research community, particularly in computer engineering, make him well-suited for this award. Addressing the minor areas for improvement, such as updating student mentorship records and highlighting recent publications, would further solidify his application.

Publications Top Notes

  • Recent applications and advances of African Vultures Optimization Algorithm
    Authors: AG Hussien, FS Gharehchopogh, A Bouaouda, S Kumar, G Hu
    Journal: Artificial Intelligence Review 57 (12), 1-51
    Year: 2024
    Citations: Not specified
  • An Improved Artificial Rabbits Optimization Algorithm with Chaotic Local Search and Opposition-Based Learning for Engineering Problems and Its Applications in Breast Cancer
    Authors: FA Özbay, E Özbay, FS Gharehchopogh
    Journal: CMES-Computer Modeling in Engineering & Sciences 141 (2)
    Year: 2024
    Citations: Not specified
  • Chaotic RIME optimization algorithm with adaptive mutualism for feature selection problems
    Authors: M Abdel-Salam, G Hu, E Çelik, FS Gharehchopogh, IM El-Hasnony
    Journal: Computers in Biology and Medicine 179, 108803
    Year: 2024
    Citations: 6
  • A hybrid principal label space transformation-based ridge regression and decision tree for multi-label classification
    Authors: SHS Ebrahimi, K Majidzadeh, FS Gharehchopogh
    Journal: Evolving Systems, 1-37
    Year: 2024
    Citations: Not specified
  • Multifeature Fusion Method with Metaheuristic Optimization for Automated Voice Pathology Detection
    Authors: E Özbay, FA Özbay, N Khodadadi, FS Gharehchopogh, S Mirjalili
    Journal: Journal of Voice
    Year: 2024
    Citations: Not specified
  • A Quasi-Oppositional Learning-based Fox Optimizer for QoS-aware Web Service Composition in Mobile Edge Computing
    Authors: RH Sharif, M Masdari, A Ghaffari, FS Gharehchopogh
    Journal: Journal of Grid Computing 22 (3), 64
    Year: 2024
    Citations: Not specified
  • A novel offloading strategy for multi-user optimization in blockchain-enabled Mobile Edge Computing networks for improved Internet of Things performance
    Authors: AM Rahmani, J Tanveer, FS Gharehchopogh, S Rajabi, M Hosseinzadeh
    Journal: Computers and Electrical Engineering 119, 109514
    Year: 2024
    Citations: 5
  • An Intrusion Detection System on The Internet of Things Using Deep Learning and Multi-objective Enhanced Gorilla Troops Optimizer
    Authors: H Asgharzadeh, A Ghaffari, M Masdari, FS Gharehchopogh
    Journal: Journal of Bionic Engineering 21 (5), 2658-2684
    Year: 2024
    Citations: 2
  • Visualization and classification of mushroom species with multi-feature fusion of metaheuristics-based convolutional neural network model
    Authors: E Özbay, FA Özbay, FS Gharehchopogh
    Journal: Applied Soft Computing 164, 111936
    Year: 2024
    Citations: 1
  • A software defect prediction method using binary gray wolf optimizer and machine learning algorithms
    Authors: H Wang, B Arasteh, K Arasteh, FS Gharehchopogh, A Rouhi
    Journal: Computers and Electrical Engineering 118, 109336
    Year: 2024
    Citations: 1