RAVI VARALA | Chemistry | Best Researcher Award

Dr. RAVI VARALA | Chemistry | Best Researcher Award

SCIENTIST from SCRIPS PHARMA, India

Dr. Ravi Varala is a seasoned researcher in synthetic organic chemistry, with over 25 years of academic and industrial experience. He currently serves as an R&D Scientist at Scrips Pharma, Hyderabad, and as Director of Marketing at Swastha Biosciences. His career spans international postdoctoral roles, visiting researcher positions, and teaching appointments in reputed institutions across India, Portugal, Spain, Malaysia, and Brazil. Dr. Varala’s work includes the synthesis of biologically relevant heterocyclic compounds, sigmatropic rearrangements, and anticancer agents like Staurosporinone. He has made impactful contributions through his interdisciplinary collaboration, student mentorship, and laboratory innovation. His training includes hands-on expertise with modern chemical instrumentation and cheminformatics. With a Ph.D. from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, and multiple roles as a scientific investigator and researcher, he brings a unique combination of scholarly excellence and industrial insight. Dr. Varala has demonstrated strengths in problem-solving, manuscript writing, and research guidance. His professional journey reflects a commitment to advancing scientific knowledge and fostering academic-industry synergy. With a focus on meaningful scientific innovation, he stands out as a distinguished professional in the field of pharmaceutical and chemical sciences. He is currently active in international collaborations and continues to contribute significantly to his domain.

Professional Profile

Education

Dr. Ravi Varala holds a Ph.D. in Chemistry from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, awarded in 2006. His doctoral thesis, titled “A Facile Synthesis of Biologically Active Phthalimides & Its Analogues – A Study,” involved the development of novel heterocyclic compounds with therapeutic relevance, emphasizing the design and synthesis of N-phthaloyl-based structures. Prior to his doctorate, he completed his M.Sc. in Organic Chemistry from Kakatiya University (1997–1999), where he earned a First Class distinction. His undergraduate degree, B.Sc., was completed at Osmania University between 1993 and 1996, also with First Class distinction. He began his academic journey with distinction in his Intermediate (1991–1993) and SSC (1991) under the Board of Intermediate and Secondary Education respectively. Dr. Varala’s educational path reflects a consistent record of academic excellence and specialization in synthetic organic chemistry. His strong foundation in organic synthesis laid the groundwork for his future research in pharmaceutical and medicinal chemistry. His academic journey has not only been marked by scholarly rigor but also by early exposure to research, which has greatly influenced his research direction and professional trajectory in chemical sciences.

Professional Experience

Dr. Ravi Varala’s professional experience is both diverse and expansive, encompassing academic research, teaching, and industrial roles. He is currently working as an R&D Scientist at Scrips Pharma, Hyderabad, while also serving as the Director of Marketing at Swastha Biosciences, a dual role that showcases his versatility in both scientific innovation and strategic business development. Since December 2023, he has been a Research Fellow at INTI International University, Malaysia. His academic contributions include a significant tenure as a Contract Lecturer at TS-IIIT from January 2011 to July 2019, where he contributed to undergraduate education in chemistry. Internationally, he served as a Visiting Researcher at the prestigious University of São Paulo, Brazil (2015–2016), working under Prof. Osvaldo N. Oliveira Jr., an eminent scientist with an h-index of 85. His earlier industry experience includes positions as Associate Scientist at Laxai-Avanti Pharma and Research Scientist at Sapala Organics. Between 2007 and 2009, he worked as a Postdoctoral Research Associate in Portugal and Spain. Dr. Varala’s professional journey demonstrates his capacity to contribute across multiple sectors—academic, industrial, and global research—highlighting a comprehensive and impactful career in chemistry and pharmaceuticals.

Research Interest

Dr. Ravi Varala’s research interests lie predominantly in the field of synthetic organic chemistry, with a strong focus on heterocyclic compounds, natural product synthesis, and anticancer molecules. His early doctoral and postdoctoral research focused on the design and development of biologically active molecules such as N-phthaloyl analogues, and indolocarbazole alkaloids like Staurosporinone and K252d, which are known for their anticancer properties. He has also worked extensively on sigmatropic rearrangements, a crucial mechanism in modern organic synthesis. Dr. Varala’s work combines classical synthetic methods with modern catalytic processes and aims at building structurally complex, bioactive molecules. He is passionate about developing efficient synthetic pathways that improve yield and reduce environmental impact. In addition, his role as a research guide has allowed him to shape the research interests of young scholars, fostering innovation in both academia and the pharmaceutical industry. His interests also extend to structure-activity relationship (SAR) studies and target-based drug design, making his research valuable for therapeutic development. With international experience and a collaborative mindset, he is keen on multidisciplinary research that bridges chemistry with life sciences, aiming for translational impact in medical and pharmaceutical applications.

Research Skills

Dr. Ravi Varala possesses a robust skill set tailored to modern chemical research and pharmaceutical development. He is highly trained in multi-step organic synthesis, utilizing contemporary techniques and methodologies to construct complex molecular frameworks. His operational expertise includes sophisticated analytical and structural elucidation instruments such as NMR, IR, UV spectroscopy, and Polarimeter, essential for validating synthetic products. Dr. Varala is adept at cheminformatics tools including SciFinder, Beilstein, Web of Knowledge, and ISIS-based software, which he uses to plan, model, and refine synthetic strategies. He also demonstrates strong capabilities in manuscript writing, research proposal development, and experimental planning, reflecting his academic rigor. His experience spans both bench-level chemistry and supervisory roles, making him well-versed in managing research teams and guiding students through problem-solving in laboratory settings. In teaching and curriculum development, he shows an innovative approach by integrating modern pedagogical strategies like TLET/SSDP. His balanced experience in academic mentoring, industrial application, and research publication positions him as a highly skilled and versatile researcher. His comprehensive understanding of chemical synthesis and analytical techniques makes him a valuable asset to any scientific or industrial organization.

Awards and Honors

While specific awards and honors have not been explicitly detailed in the provided profile, Dr. Ravi Varala’s career reflects significant international recognition and academic trust, as demonstrated by his appointments and research fellowships. His selection as a Visiting Researcher at the University of São Paulo, Brazil—ranked among the world’s top 100 universities—is a prestigious academic endorsement. Moreover, his postdoctoral positions at the University of New Lisbon, Portugal, and ICIQB, Spain, underscore his strong reputation within European academic circles. These appointments are highly competitive and typically awarded based on a rigorous selection process evaluating scientific merit, publication record, and potential for collaboration. His role as a Research Fellow at INTI International University, Malaysia, further signifies recognition of his ongoing contributions to chemical sciences. Additionally, his continued involvement as a research guide, project lead, and director-level professional indicates professional trust and leadership standing. Though direct awards such as national honors or competitive research grants are not listed, the combination of his appointments, leadership roles, and international affiliations point to a career distinguished by peer recognition and academic achievement at a global level.

Conclusion

In conclusion, Dr. Ravi Varala exemplifies the qualities of a high-caliber researcher whose contributions span both academic excellence and industry relevance. With over two decades of dedicated work in synthetic organic chemistry, he has cultivated a unique blend of deep scientific knowledge, hands-on research expertise, and collaborative international experience. His consistent academic track record, involvement in cross-continental research initiatives, and leadership in both teaching and industry reflect a well-rounded professional trajectory. Dr. Varala’s work in anticancer drug development, heterocyclic synthesis, and sigmatropic rearrangements highlights his focus on impactful, application-driven science. His ability to train and mentor young researchers, paired with his fluency in modern chemical instrumentation and digital research tools, marks him as an asset to any academic or industrial setting. Although specific publication metrics or award citations could further support his profile, the depth and breadth of his career are unmistakable. Dr. Varala’s dedication to chemistry, his multidisciplinary approach, and his leadership across institutions make him a worthy candidate for the Best Researcher Award and a continued contributor to global scientific advancement.

Publications Top Notes

1. Recent Advances in Di-tert-butyl Peroxide (DTBP)-Promoted C-C Bond Formation Reactions

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohamed Hussien, Mohammed Mujahid Alam

2. Tris(pentafluorophenyl)borane [B(C₆F₅)₃]-catalyzed Organic Transformations: A Triennial Update (2021 Onwards)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam, Narsimhaswamy Dubasi

3. Research Progress of DBU in C─C, C–Heteroatom, and Heteroatom–Heteroatom Bond Formations

  • Journal: Chemistry & Biodiversity

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Hari Babu Bollikolla, Shreyas Shridharrao Mahurkar, Mohamed Hussein, Mohammed Mujahid Alam

4. Visible Light‐Driven Multicomponent Reactions for the Synthesis of Diverse Heterocyclic Frameworks

  • Journal: European Journal of Organic Chemistry

  • Contributors: Narsimhaswamy Dubasi, Ravi Varala, Murali Mohan Achari Kamsali, Mohammed Mujahid Alam

5. Recent Advances in the Chemistry of Tetrazole Derivatives—A Quinquennial Update [Mid-2019 to date]

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Mohamed Hussein, Ravi Varala, Murali Mohan Achari Kamsali, Vittal Seema, Durga Prasad Beda, Mastan Ali Syed, Mohammed Mujahid Alam

6. Applications of Selectfluor in Organic Synthesis—A Quadrennial Update

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam

7. Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction

  • Journal: Current Organic Chemistry

  • DOI: 10.2174/0113852728322422240816060345

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Ramanaiah Seella, Mohammed Mujahid Alam

8. Metal-free Oxidations with m-CPBA: An Octennial Update

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Mohamed Hussein, Mostafa A. Ismail, Mohammed Mujahid Alam

9. Biocatalysis in Bioorthogonal Reactions: Use of Hydrolases and Transferases for Selective Modifications

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Abir B. Majumder, Murali Mohan Achari Kamsali, Ravi Varala, Siddique Akber Ansari

10. Cesium Carbonate (Cs₂CO₃) in Organic Synthesis: A Sexennial Update (2018 to Date)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohammed Hussein, Mohammed Mujahid Alam, Seella Ramanaiah

 

Xialiang Li | Chemistry | Best Researcher Award

Mr. Xialiang Li | Chemistry | Best Researcher Award

Associate Professor from Shaanxi Normal University, China

Dr. Xialiang Li is an accomplished scholar and Associate Professor at the School of Chemistry and Chemical Engineering, Shaanxi Normal University, China. He serves as the chief professor and doctoral supervisor of the molecular simulation and solar energy conversion research team. His academic focus lies primarily in the intersection of chemistry and energy sciences, particularly targeting small molecule activation processes for sustainable energy applications. Dr. Li is widely recognized for his methodical approach to the synthesis and characterization of molecular complexes and solid-state materials. His work involves a balanced combination of theoretical insights and practical experimentation, aimed at resolving critical challenges in the fields of catalysis and bioinorganic chemistry. Over the years, he has built an extensive portfolio of high-impact publications in leading international journals, including the Journal of the American Chemical Society, Angewandte Chemie International Edition, and ACS Catalysis. Dr. Li’s ongoing efforts are supported by several national-level funding agencies, and he continues to contribute significantly to the academic landscape through mentoring, research leadership, and active participation in advanced scientific projects. His expertise, dedication to excellence, and forward-looking research trajectory make him a strong contender for prestigious recognitions such as the Best Researcher Award.

Professional Profile

Education

Dr. Xialiang Li has a robust academic foundation, built through successive degrees from reputable Chinese institutions. He began his academic journey at Changchun University of Science and Technology, where he earned his Bachelor’s degree from 2009 to 2013. During this period, he gained fundamental knowledge and developed an early interest in chemistry and materials science. He continued his postgraduate studies at Lanzhou Jiaotong University, where he pursued a Master’s degree from 2013 to 2016. There, he delved deeper into specialized research methodologies, analytical techniques, and experimental approaches that prepared him for advanced research. To further enhance his expertise and explore complex topics in energy conversion and catalysis, Dr. Li enrolled at Shaanxi Normal University for his doctoral studies, which he completed between 2016 and 2019. His Ph.D. research was instrumental in shaping his long-term academic trajectory, leading to significant contributions in bioinorganic chemistry and molecular catalysis. Throughout his education, Dr. Li consistently demonstrated academic excellence, innovative thinking, and a strong commitment to pushing the boundaries of scientific knowledge. His educational path reflects a well-rounded and focused progression that has equipped him with the skills and perspective necessary for high-impact research in energy-related chemical sciences.

Professional Experience

Dr. Xialiang Li has accumulated a range of academic and research experiences that underscore his professional growth and leadership in the field of chemistry. After obtaining his doctoral degree in 2019, he joined Shaanxi Normal University as a postdoctoral researcher, a position he held until 2022. During this phase, he expanded his research activities into new areas, working on high-priority projects related to small molecule activation and catalysis. His postdoctoral work solidified his expertise in cutting-edge techniques such as spectroscopic analysis, crystallography, and electrochemical testing, allowing him to produce insightful findings on catalytic mechanisms. In 2022, he was promoted to the role of Associate Professor at the same institution, a testament to his academic achievements and growing reputation as a research leader. In this capacity, he supervises doctoral candidates, coordinates interdisciplinary projects, and leads a dynamic research group dedicated to solar energy conversion. His work has been supported by major funding sources, and he continues to contribute to the university’s mission through teaching, mentoring, and scientific collaboration. Dr. Li’s professional journey demonstrates a steady and impactful progression, marked by academic rigor, leadership ability, and dedication to solving pressing energy-related challenges through innovative chemical research.

Research Interests

Dr. Xialiang Li’s research interests are centered on bioinorganic chemistry and catalysis, with a primary focus on energy-related small molecule activation. He is particularly interested in the design, synthesis, and functionalization of molecular complexes and solid-state materials that can serve as efficient catalysts for processes such as water splitting, oxygen reduction, and carbon dioxide reduction. These reactions are critical to sustainable energy conversion and storage technologies, including hydrogen production and carbon capture. At the core of his research is a desire to understand and manipulate the underlying principles of catalysis to improve efficiency and selectivity. As the head of the molecular simulation and solar energy conversion team at Shaanxi Normal University, he leads investigations that integrate experimental and computational approaches to explore structure–activity relationships. His work involves leveraging crystallographic data, electrochemical behavior, and spectroscopic signatures to derive mechanistic insights that can inform the design of next-generation catalytic systems. Dr. Li’s research not only contributes to fundamental chemical knowledge but also offers practical solutions to real-world energy challenges. By focusing on catalytic innovations with broad environmental and industrial applications, he stands at the forefront of a transformative area of modern chemistry.

Research Skills

Dr. Xialiang Li possesses a comprehensive set of research skills that position him as a leading expert in the field of catalytic energy conversion. His core competencies include the synthesis of molecular and solid-state materials, crystallographic analysis, and a range of advanced electrochemical techniques. He is proficient in the use of multiple spectroscopic methods, such as UV-Vis, FTIR, NMR, and EPR, which allow him to characterize the electronic structure and reactive behavior of catalytic systems in detail. His ability to connect structural features with catalytic performance enables him to establish precise structure–activity relationships, which are essential for rational catalyst design. In addition, Dr. Li has extensive experience in computational modeling and molecular simulation, tools that complement his experimental work by offering predictive insights into reaction mechanisms and kinetics. His methodological rigor is supported by a strong foundation in physical chemistry and thermodynamics, which he applies to optimize catalyst efficiency under practical conditions. These versatile skills empower him to tackle complex research questions, develop novel materials, and push the boundaries of what is achievable in green and sustainable chemistry. His integrated approach reflects a balance between theoretical understanding and practical application.

Awards and Honors

Dr. Xialiang Li’s scholarly excellence has been recognized through various national and institutional awards, research grants, and honors. His work has attracted funding from several prestigious organizations, including the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. These grants not only reflect the innovative nature of his proposals but also his ability to deliver high-impact results in strategically important research areas. In addition to these national-level grants, Dr. Li has received internal support from Shaanxi Normal University under its Fundamental Research Funds for the Central Universities program, which supports cutting-edge investigations in emerging scientific fields. While he has not listed specific award titles, his publication record in top-tier journals such as Angewandte Chemie, JACS, ACS Catalysis, and Accounts of Chemical Research stands as a testament to his scholarly recognition in the global chemistry community. His research achievements have also led to his appointment as a doctoral supervisor and key faculty member within his institution. Dr. Li’s growing influence, backed by strong funding and consistent publication output, underscores his status as a rising star in the field of catalysis and sustainable chemistry.

Conclusion

Dr. Xialiang Li is a distinguished academic whose work bridges fundamental chemistry and applied energy science. His trajectory from a strong academic foundation to a leadership role in research demonstrates consistent growth, innovation, and impact. He has successfully developed a research niche in bioinorganic catalysis, tackling some of the most urgent global challenges related to clean energy and environmental sustainability. His ability to secure competitive research funding, publish in leading international journals, and lead a vibrant research team reflects his commitment to scientific advancement and academic excellence. While there is still room for expanding international collaborations and industrial applications, his current portfolio already positions him as a strong candidate for broader scientific recognition. By combining deep technical expertise with a clear vision for the future of sustainable chemistry, Dr. Li embodies the ideals of a modern scientific leader. He is highly deserving of the Best Researcher Award, not only for his research contributions but also for his potential to shape future directions in catalytic science and energy conversion technologies. His continued work is expected to deliver both theoretical breakthroughs and practical innovations with long-term global relevance.

Publications Top Notes

  • Electrocatalytic Syngas Production Using Metalloporphyrins with Controllable H₂/CO Ratios
    Authors: Zhimeng Wang, Benxing Mei, Yuhan Xu, Yuze Liu, Xialiang Li, Rui Cao
    Year: 2025
  • Improving Electrocatalytic CO₂ Reduction over Iron Tetraphenylporphyrin with Triethanolamine as a CO₂ Shuttle
    Authors: Zhiyuan Yin, Mengchun Zhang, Yuchi Long, Haitao Lei, Xialiang Li, Xue-Peng Zhang, Wei Zhang, Ulf-Peter Apfel, Rui Cao
    Year: 2025
  • Revealing Significant Electronic Effects on the Oxygen Reduction Reaction with Iron Porphyrins
    Authors: Zhiyuan Yin, Yuchi Long, Haitao Lei, Xue-Peng Zhang, Xialiang Li, Rui Cao
    Year: 2025

Hiroshi Nishihara | Chemistry | Best Researcher Award

Prof. Dr. Hiroshi Nishihara | Chemistry | Best Researcher Award

Vice President from Tokyo, Japan

Professor Hiroshi Nishihara is a distinguished Japanese chemist renowned for his pioneering work in electrochemistry, coordination chemistry, and materials science. Over a career spanning more than four decades, he has made substantial contributions to fundamental and applied research in organometallic and supramolecular chemistry. Beginning his academic journey at the University of Tokyo, he has held prominent academic and leadership roles in Japan and internationally. As a prolific scholar, he has authored 490 original research papers and led several high-impact national projects. His research has helped develop innovative materials such as coordination nanosheets and hybrid 2D materials with advanced electronic, photonic, and chemical functionalities. Prof. Nishihara has been recognized globally for his academic excellence, holding honorary and visiting professorships in Europe and Asia, and receiving multiple prestigious awards. He is currently Professor and Director at the Research Institute for Science and Technology (RIST), Tokyo University of Science, and also serves as the Vice President of the institution. Beyond research, he has demonstrated a strong commitment to science education and academic leadership, serving in top roles within key scientific societies. His interdisciplinary expertise and visionary leadership have positioned him as one of the leading figures in modern chemical science.

Professional Profile

Education

Professor Hiroshi Nishihara completed his Doctor of Science (D.Sc.) degree in 1982 from the prestigious University of Tokyo, Japan. This strong academic foundation in chemistry laid the groundwork for his extensive research and teaching career. The University of Tokyo, known for its rigorous academic training and excellence in scientific research, played a vital role in shaping Prof. Nishihara’s scientific perspective, particularly in the fields of coordination chemistry and electrochemistry. His early academic training focused on understanding the intricate behaviors of molecular and supramolecular systems, which later became central themes in his professional research endeavors. His doctoral work equipped him with both theoretical and practical skills necessary for advanced chemical synthesis and analysis. The influence of this rigorous doctoral education is evident in the methodological precision and innovation found throughout his academic contributions. His advanced education also enabled him to engage with global scholars and institutions at an early stage in his career, supporting his later appointments and recognitions abroad. The University of Tokyo remains a critical pillar in his academic trajectory, not only as the alma mater where he began his journey but also as the institution where he returned as a full professor and served until his retirement in 2020.

Professional Experience

Professor Hiroshi Nishihara’s professional journey reflects a distinguished and progressive academic career. He began as a Research Associate at Keio University in 1982, shortly after receiving his doctoral degree. He was later promoted to Lecturer in 1990 and Associate Professor in 1992 at the same institution. In 1996, he was appointed as a Professor at the School of Science, University of Tokyo, where he served until his retirement in 2020. Since then, he has continued to be active in academia as an Emeritus Professor at the University of Tokyo and as a Professor and Director of the Research Institute for Science and Technology (RIST) at Tokyo University of Science. He is also the current Vice President of Tokyo University of Science. His international experience includes serving as a Visiting Research Associate at the University of North Carolina at Chapel Hill (1987–1989). He has held professorships at the University of Bordeaux and University of Strasbourg in France, and a distinguished lectureship at Hong Kong Baptist University. His appointment as Honorary Chair Professor at National Sun-Yat-sen University (2024–2027) further attests to his global academic influence. Throughout his career, he has held numerous leadership roles in professional societies and research projects.

Research Interests

Professor Hiroshi Nishihara’s research interests span several interdisciplinary areas of modern chemistry, with a particular focus on electrochemistry, coordination chemistry, organometallic chemistry, photochemistry, and materials science. A central theme in his research is the design and synthesis of novel molecular and supramolecular systems with advanced functionalities. He has made pioneering contributions to the development of coordination nanosheets and hybrid organic-inorganic 2D materials, which exhibit unique electronic and optical properties. His work aims to understand and manipulate electron transfer processes at the molecular level, leading to innovations in electronic devices, energy storage, and sensing technologies. The intersection of coordination chemistry with nanotechnology is a hallmark of his research approach, as he continuously explores how molecular structure can be harnessed to control physical behavior. He has also contributed significantly to the field of photofunctional materials and molecular electronics. In recent years, his research has emphasized the creation of hetero-structured nanosheets and conjugated polymers with potential applications in energy storage and catalysis. These interests not only reflect his deep theoretical understanding but also his drive toward real-world applications. His work is at the forefront of molecular materials chemistry, bridging traditional chemical disciplines with advanced materials science.

Research Skills

Professor Hiroshi Nishihara possesses an exceptional range of research skills that have positioned him at the forefront of chemical science and materials research. His expertise in the synthesis of coordination compounds, organometallic complexes, and supramolecular assemblies forms the foundation of his experimental approach. He is highly skilled in applying electrochemical techniques to study redox-active materials and electron transfer processes. His ability to design and fabricate novel 2D materials, such as coordination nanosheets and hybrid organic-inorganic systems, highlights his proficiency in nanomaterial synthesis and structural control. He also demonstrates strong analytical capabilities in characterizing complex systems using spectroscopy, electrochemical analysis, and crystallography. Moreover, Prof. Nishihara has led large-scale, interdisciplinary research projects that require advanced project management, innovation planning, and cross-functional collaboration. He is adept at translating fundamental chemical insights into technologically relevant applications, including electronic devices and high-energy-density batteries. His experience in leading government-funded projects reflects his strategic thinking and ability to identify emerging research opportunities. Additionally, his mentoring of young researchers and involvement in chemical education showcases his skills in scientific communication and pedagogy. Overall, his research toolkit integrates deep chemical knowledge with innovative problem-solving and leadership in collaborative environments.

Awards and Honors

Professor Hiroshi Nishihara has received numerous prestigious awards and honors in recognition of his exceptional contributions to chemical science. He was awarded the Docteur Honoris Causa by the University of Bordeaux in 2011, reflecting his international influence and collaborative scientific achievements. In 2014, he received the Commendation for Science and Technology by Japan’s Minister of Education, Culture, Sports, Science and Technology. This was followed by the Japan Society of Coordination Chemistry Award in 2015 and The Chemical Society of Japan Award in 2016, both of which honor his innovative contributions to coordination chemistry. In 2020, he received The Chemical Society of Japan Award for Chemical Education, acknowledging his efforts in mentoring and educational leadership. He also received the Kato Memorial Award in 2022. Prof. Nishihara is a Fellow of the Royal Society of Chemistry (2014) and the Electrochemical Society of Japan (2020). His academic service includes serving as Vice President of the International Society of Electrochemistry and The Chemical Society of Japan, and President of the Electrochemical Society of Japan and the Japan Society of Coordination Chemistry. These recognitions collectively highlight his wide-ranging impact on both scientific research and the chemical community.

Conclusion

Professor Hiroshi Nishihara exemplifies excellence in scientific research, education, and academic leadership. With a prolific output of 490 original research papers and a distinguished track record of leading major research initiatives, he has significantly advanced the fields of electrochemistry, coordination chemistry, and materials science. His work has not only contributed to foundational scientific understanding but also to the development of functional materials with practical applications. Through his international collaborations, he has fostered global academic exchange, further enhancing the visibility and impact of his research. His service to academic societies and commitment to educating the next generation of chemists are additional testaments to his comprehensive contributions to science. Despite his retirement from the University of Tokyo, his ongoing roles as Professor, Vice President, and Director at Tokyo University of Science reflect his continued leadership in academia. While more public visibility of recent high-impact publications or patent activity could add further depth to his profile, his overall accomplishments make him a strong and deserving candidate for the Best Researcher Award. His career serves as a model of sustained excellence, interdisciplinary innovation, and dedicated service to the advancement of chemistry.

Publications Top Notes

  • Synthesis of Bis(diimino)palladium Nanosheets as Highly Active Electrocatalysts for Hydrogen Evolution
    Chemistry – A European Journal, 2025.
    DOI: 10.1002/CHEM.202403082
    Contributors: Maeda, Hiroaki; Phua, Eunice Jia Han; Sudo, Yuta; Nagashima, Sayoko; Chen, Wentai; Fujino, Mayumi; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; et al.

  • Coordination Nanosheets Stabilizing Efficient Tin-Based Perovskite Solar Cells
    ACS Applied Materials & Interfaces, 2025-05-07.
    DOI: 10.1021/acsami.5c05011
    Contributors: Khadka, Dhruba B.; Kuo, Yan-Chen; Li, Yi Zhen; Waqas, Muhammad; Xu, You-Jia; Yanagida, Masatoshi; Nishihara, Hiroshi; Tsukagoshi, Kazuhito; Chou, Mitch M. C.; Shirai, Yasuhiro; et al.

  • Rationally Engineered Heterometallic Metalladithiolene Coordination Nanosheets with Defined Atomic Arrangements
    Small, 2025-05-05.
    DOI: 10.1002/smll.202503227
    Contributors: Ito, Miyu; Fukui, Naoya; Takada, Kenji; Yu, Ziheng; Maeda, Hiroaki; Mizuno, Katsuya; Nishihara, Hiroshi.

  • Interfacial Synthesis of an Electro-Functional 2D Bis(terpyridine)copper(II) Polymer Nanosheet
    Molecules, 2025-05-04.
    DOI: 10.3390/molecules30092044
    Contributors: Takada, Kenji; Komeda, Joe; Maeda, Hiroaki; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Nishihara, Hiroshi.

  • Revealing the Charge Transport Physics in Metallic Coordination Nanosheets by Thermoelectric and Magnetotransport Measurements
    Science Advances, 2025-04-09.
    DOI: 10.1126/sciadv.adt9196
    Contributors: Fukui, Naoya; Nishihara, Hiroshi; Quarti, Claudio; Zhang, Lu; Ren, Xinglong; Beljonne, David; Jacobs, Ian; Sirringhaus, Henning; Wu, Tian; Cornil, David.

  • Discrete Coordination Nanochains Based on Photoluminescent Dyes Reveal Intrachain Exciton Migration Dynamics
    Nature Communications, 2025-02-04.
    DOI: 10.1038/s41467-025-56381-0
    Contributors: Toyoda, Ryojun; Fukui, Naoya; Taniguchi, Haru; Uratani, Hiroki; Komeda, Joe; Chiba, Yuta; Takaya, Hikaru; Nishihara, Hiroshi; Sakamoto, Ryota.

  • Bis(diimino)nickel Coordination Nanosheets Modified with Triptycene Moieties for Facile Exfoliation and Enhanced Hydrogen Evolution Catalytic Activity
    ACS Applied Nano Materials, 2024.
    DOI: 10.1021/acsanm.4c02625
    Contributors: Maeda, Hiroaki; Sudo, Yuta; Nagashima, Sayoko; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Nishihara, Hiroshi.

  • Face-on-Oriented Formation of Bis(diimino)metal Coordination Nanosheets on Gold Electrodes by Electrochemical Oxidation
    New Journal of Chemistry, 2024.
    DOI: 10.1039/d3nj05650c
    Contributors: Maeda, Hiroaki; Takada, Kenji; Fukui, Naoya; Masunaga, Hiroyasu; Sasaki, Sono; Tsukagoshi, Kazuhito; Nishihara, Hiroshi.

  • Lateral Heterometal Junction Rectifier Fabricated by Sequential Transmetallation of Coordination Nanosheet
    Angewandte Chemie International Edition, 2024.
    DOI: 10.1002/anie.202318181
    Contributors: Tan, C.M.; Fukui, Naoya; Takada, Kenji; Maeda, Hiroaki; Selezneva, Ekaterina; Bourgès, Camille; Masunaga, Hiroyasu; Sasaki, Sono; Tsukagoshi, Kazuhito; Mori, Takehiko; et al.

  • Manipulating the Morphology and Electronic State of a Two-Dimensional Coordination Polymer as a Hydrogen Evolution Cocatalyst Enhances Photocatalytic Overall Water Splitting
    ACS Catalysis, 2024.
    DOI: 10.1021/acscatal.3c04389
    Contributors: Guan, Jiahao; Koizumi, Keisuke; Fukui, Naoya; Suzuki, Hiroyuki; Murayama, Koji; Toyoda, Ryojun; Maeda, Hiroaki; Kamiya, Kenji; Ohashi, Koichi; Takaishi, Shigeru; et al.

Zhishuai Geng | Chemistry | Best Researcher Award

Prof. Zhishuai Geng | Chemistry | Best Researcher Award

Assistant Professor from Beijing Institute of Technology, China

Zhishuai Geng is a highly accomplished researcher and Assistant Professor at the School of Materials Science and Engineering, Beijing Institute of Technology. With a strong academic background and a distinguished postdoctoral tenure at the University of California, Santa Barbara, Dr. Geng has positioned himself at the forefront of polymer materials research. His work encompasses dynamic polymer networks, self-healing materials, recyclable polymers, and flame-retardant systems, all aimed at creating sustainable, multifunctional, and high-performance materials. He has authored and co-authored numerous publications in top-tier journals such as ACS Applied Materials & Interfaces, Macromolecules, Chemical Engineering Journal, and Journal of Polymer Science. In addition to his academic contributions, Dr. Geng is also an inventor with several patents in the areas of antibacterial polyurethanes and functional polymeric materials. His engagement with the scientific community is evident through his active peer-review duties for prominent journals and participation in major scientific conferences. Dr. Geng’s innovative work reflects a balance between fundamental chemistry and real-world applications, earning him recognition as an emerging leader in the field. His commitment to solving complex challenges in materials science through interdisciplinary strategies makes him an excellent candidate for prestigious research awards and future academic leadership roles.

Professional Profile

Education

Zhishuai Geng’s academic journey began with a Bachelor of Science in Materials Chemistry from Nankai University, China, completed in 2012. This foundational education grounded him in chemical principles essential for advanced materials research. He then pursued his Ph.D. at the Georgia Institute of Technology in the School of Chemistry and Biochemistry, where he conducted innovative research from 2012 to 2018. His doctoral work focused on polymer chemistry and functional macromolecular systems, laying the groundwork for his future scientific pursuits. Following this, Dr. Geng expanded his expertise internationally through a postdoctoral fellowship at the University of California, Santa Barbara, from 2018 to 2021. There, he worked in the Materials Research Laboratory, a globally recognized hub for cutting-edge research in polymer science and materials engineering. This postdoctoral experience significantly enriched his knowledge in covalent adaptable networks, click chemistry, and flame-retardant materials. In May 2021, he began his role as an Assistant Professor at the Beijing Institute of Technology, where he continues to push the boundaries of polymer innovation. His diverse educational background, spanning elite institutions in both China and the United States, equips him with a global perspective and the technical versatility necessary for leading impactful research in materials science.

Professional Experience

Zhishuai Geng’s professional experience reflects a dynamic and progressive trajectory in academia and research. His career began with an intensive postdoctoral research appointment at the University of California, Santa Barbara, between July 2018 and April 2021. There, he collaborated with leading materials scientists on high-impact research projects, gaining deep expertise in covalent adaptable networks, polymer synthesis, and functional material systems. This period also fostered his proficiency in publishing within high-ranking journals and filing patent applications. In May 2021, Dr. Geng transitioned into a faculty role as an Assistant Professor in the School of Materials Science and Engineering at Beijing Institute of Technology. In this position, he leads a research group focused on the design and development of advanced polymeric materials, addressing key challenges in recyclability, mechanical performance, and multifunctionality. In addition to research, he actively mentors students and contributes to academic service through reviewing scholarly articles and participating in academic societies. His professional affiliations include roles in the Georgia Tech Polymer Network and the Center for the Science and Technology of Advanced Materials and Interfaces. Through these diverse experiences, Dr. Geng has established himself as a capable leader and innovator in the field of materials science and engineering.

Research Interest

Dr. Zhishuai Geng’s research interests lie at the intersection of polymer chemistry, materials engineering, and sustainable design. His primary focus is on dynamic polymer networks and covalent adaptable networks, often known as vitrimers, which allow for reprocessing, self-healing, and enhanced material lifespans. He is particularly interested in developing self-healing polymers that combine structural performance with autonomous repair capabilities. Another major area of his work involves flame-retardant polymer materials, where he has contributed significantly to the design of macromolecular and reactive flame retardants, especially phosphorus-based systems. These materials aim to enhance fire safety in polymers without compromising mechanical properties. Dr. Geng is also engaged in creating antimicrobial materials for biomedical applications, an area that addresses critical needs in healthcare and public safety. Furthermore, he explores surface modification techniques using covalent bonding strategies to enhance compatibility and functionality in complex systems. His interdisciplinary interests integrate organic chemistry, polymer physics, and nanotechnology, enabling the design of advanced materials with multiple, often synergistic, functions. Dr. Geng’s work not only contributes to academic knowledge but also holds strong translational potential for applications in electronics, healthcare, and environmental sustainability.

Research Skills

Zhishuai Geng has cultivated a comprehensive skill set that spans the synthesis, characterization, and application of advanced polymeric materials. His expertise in dynamic polymer networks and covalent adaptable networks has enabled him to design materials with properties such as self-healing, recyclability, and thermal responsiveness. He is proficient in advanced polymer synthesis techniques, including click chemistry, post-polymerization modification, and coordination crosslinking. These methods are used to construct multifunctional systems with tailored mechanical and thermal properties. Dr. Geng is also skilled in developing flame-retardant materials through phosphorus-based and macromolecular strategies, demonstrating an ability to balance fire resistance with mechanical integrity. His work in antimicrobial polymer design reflects his capacity for integrating biofunctional components into synthetic frameworks. Technically, he is adept at using a wide range of analytical tools, including spectroscopy (FTIR, NMR), thermal analysis (TGA, DSC), and mechanical testing. His experience also extends to surface engineering, nanoporous structure fabrication, and dielectric property testing. Additionally, Dr. Geng’s role as an active peer reviewer for journals like Macromolecules, Chemical Engineering Journal, and Biomacromolecules demonstrates his analytical rigor and recognition in the field. These research skills collectively enable him to tackle complex scientific challenges and lead high-impact projects across academia and industry.

Awards and Honors

While specific awards are not explicitly listed, Zhishuai Geng’s achievements in research and innovation reflect significant professional recognition. His selection as a postdoctoral fellow at the prestigious University of California, Santa Barbara, highlights his early potential and research promise. Moreover, his current appointment as an Assistant Professor at Beijing Institute of Technology—a top-tier university in China—demonstrates institutional trust in his expertise and leadership. Dr. Geng has filed and received multiple patents, including a Chinese patent for antibacterial polyurethane (CN 116041660 A) and a U.S. patent for polycation synthesis (US 11,589,590 B2), underscoring the novelty and applicability of his research. He has published in leading journals across the fields of chemistry and materials science and has participated in international conferences, such as the American Chemical Society (ACS) National Meeting. Additionally, his role as a frequent peer reviewer for highly regarded journals is an implicit recognition of his scholarly authority. His involvement in scientific organizations like the Georgia Tech Polymer Network and the Center for Advanced Materials and Interfaces further affirms his standing in the research community. With continued excellence, formal awards and honors are likely to follow in his advancing academic career.

Conclusion

Zhishuai Geng exemplifies the qualities of a dedicated, innovative, and impactful researcher in the field of materials science and polymer chemistry. His work demonstrates a deep commitment to solving pressing global challenges through the development of recyclable, flame-retardant, self-healing, and antimicrobial polymer materials. With a solid academic background, including training at Georgia Institute of Technology and postdoctoral research at UC Santa Barbara, Dr. Geng brings a global perspective and technical sophistication to his role as Assistant Professor at Beijing Institute of Technology. His prolific publication record, collaborative patent activity, and active involvement in peer reviewing indicate both scientific credibility and community engagement. While his professional recognition could be further elevated through formal academic awards and expanded research leadership, his contributions already mark him as a rising leader in his domain. Dr. Geng’s ability to bridge fundamental research and real-world application positions him as a valuable asset to the academic and industrial research ecosystems. He is an ideal candidate for research honors such as the Best Researcher Award, and with continued achievements, he is poised to influence the future of sustainable and multifunctional material development on a global scale.

Publication Top Notes

1. Ultrarobust, Self-Healing Poly(urethane-urea) Elastomer with Superior Tensile Strength and Intrinsic Flame Retardancy Enabled by Coordination Cross-Linking
Authors: Yuxin Luo, Meiyan Tan, Jaeman Shin, Cheng Zhang, Shiyuan Yang, Ningning Song, Wenchao Zhang, Yunhong Jiao, Jixing Xie, Zhishuai Geng, et al.
Journal: ACS Applied Materials & Interfaces
Year: 2024
DOI: 10.1021/acsami.4c08185

2. Metformin-Mediated Fast Charge-Reversal Nanohybrid for Deep Penetration Piezocatalysis-Augmented Chemodynamic Immunotherapy of Cancer
Authors: Yuan Wang, Qingshuang Tang, Ruiqi Wu, Shiyuan Yang, Zhishuai Geng, Ping He, Xiaoda Li, Qingfeng Chen, Xiaolong Liang
Journal: ACS Nano
Year: 2024
DOI: 10.1021/acsnano.3c11174
Citations: 3

3. Dual Nucleation Sites Induced by ZIF-67 Towards Mismatch of Polyphosphazene Hollow Sub-Micron Polyhedrons and Nanospheres in Flame Retardant Epoxy Matrix
Authors: Xiaoning Song, Boyou Hou, Zhengde Han, Ye-Tang Pan, Zhishuai Geng, Laia Haurie Ibarra, Rongjie Yang
Journal: Chemical Engineering Journal
Year: 2023
DOI: 10.1016/j.cej.2023.144278

4. Neighboring Group Participation in Ionic Covalent Adaptable Networks
Authors: Lindsay L. Robinson, Eden S. Taddese, Jeffrey L. Self, Christopher M. Bates, Javier Read de Alaniz, Zhishuai Geng, Craig J. Hawker
Journal: Macromolecules
Year: 2022
DOI: 10.1021/acs.macromol.2c01618
Citations: 4

5. Gold(I)-Catalyzed Tandem Cyclization/Hydroarylation of o-Alkynylphenols with Haloalkynes
Authors: Jiawen Wu, Cunbo Wei, Fen Zhao, Wenqian Du, Zhishuai Geng, Zhonghua Xia
Journal: The Journal of Organic Chemistry
Year: 2022
DOI: 10.1021/acs.joc.2c01804
Citations: 5

6. Multielement Flame-Retardant System Constructed with Metal POSS–Organic Frameworks for Epoxy Resin
Authors: Boyou Hou, Wenyuan Zhang, Hongyu Lu, Kunpeng Song, Zhishuai Geng, Xinming Ye, Ye-Tang Pan, Wenchao Zhang, Rongjie Yang
Journal: ACS Applied Materials & Interfaces
Year: 2022
DOI: 10.1021/acsami.2c14740

7. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups
Authors: Pranav P. Kalelkar, Zhishuai Geng, M.G. Finn, David M. Collard
Journal: Biomacromolecules
Year: 2019
DOI: 10.1021/acs.biomac.9b00504
Citations: 19

8. Placing Functionality Where You Want: The Allure of Sequence Control
Authors: Zhishuai Geng, J. Lee, Craig J. Hawker
Journal: Chem
Year: 2019
DOI: 10.1016/j.chempr.2019.09.007

9. A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products
Authors: X. He, H. Zou, Z. Geng, X. Wang, W. Ding, F. Hu, Y. Zi, C. Xu, S.L. Zhang, H. Yu, et al.
Journal: Advanced Functional Materials
Year: 2018
DOI: 10.1002/adfm.201805540

Hyunseob Lim | Chemistry | Best Researcher Award

Prof. Hyunseob Lim | Chemistry | Best Researcher Award

Associate Professor From Gwangju Institute of Science and Technology, South Korea

Dr. Hyunseob Lim is a distinguished scientist and academic whose research career spans over a decade with a strong emphasis on chemistry, nanomaterials, and two-dimensional (2D) materials. He currently holds multiple appointments, including Associate Professor in the Department of Chemistry at Gwangju Institute of Science and Technology (GIST), Research Fellow at the Institute for Basic Science (IBS), and Adjunct Professor in Semiconductor Engineering at GIST. Dr. Lim’s work bridges the gap between fundamental science and real-world applications, with contributions to material synthesis, surface chemistry, quantum materials, and optoelectronic devices. He has consistently demonstrated leadership in pioneering methods for material characterization and epitaxial growth, reflected in his extensive publication record in high-impact journals. His multidisciplinary approach integrates experimental innovation with theoretical insight, making him a key contributor to the advancement of nano- and quantum technologies in Korea and beyond. Throughout his career, Dr. Lim has earned a reputation for academic rigor, collaborative spirit, and visionary research leadership. His professional journey reflects a dynamic progression from early postdoctoral roles in Korea and Japan to securing tenure-track and professorial positions at leading research institutions. Dr. Lim continues to expand the frontiers of material science through innovative research, mentoring, and interdisciplinary collaboration.

Professional Profile

 Education

Dr. Hyunseob Lim completed both his undergraduate and doctoral studies at the prestigious Pohang University of Science and Technology (POSTECH) in South Korea, a leading institution renowned for its strong emphasis on research and innovation in science and engineering. He earned his Bachelor of Science (B.S.) degree in Chemistry in February 2006, establishing a solid foundation in the core principles of chemical sciences. Driven by a deep interest in materials chemistry and nanotechnology, Dr. Lim continued his academic journey at POSTECH, where he pursued a Ph.D. in Chemistry under the guidance of Professor HeeCheul Choi. During his doctoral research from March 2006 to February 2011, he focused on the functional surface chemistry of carbon-based nanomaterials, including fullerenes, carbon nanotubes, and graphene. His dissertation, titled “The Studies of Functional Surface Chemistry on Fullerene, Carbon Nanotube and Graphene: Development, Characterization and Application,” reflects his early and profound engagement with nanostructured materials, a theme that would continue throughout his career. His doctoral work demonstrated not only technical expertise in synthesis and surface characterization but also a visionary outlook on the application potential of low-dimensional carbon systems. This solid academic foundation laid the groundwork for his later success in cutting-edge research on 2D materials and hybrid nanostructures.

Professional Experience

Dr. Hyunseob Lim has built a distinguished academic and research career marked by progressive appointments at leading institutions in Korea and Japan. Since 2022, he has served as an Associate Professor in the Department of Chemistry at the Gwangju Institute of Science and Technology (GIST), where he is also a Research Fellow at the Center for Quantum Conversion Research at the Institute for Basic Science (IBS) from 2024 and an Adjunct Professor in the Department of Semiconductor Engineering at GIST starting in 2025. Prior to this, he was an Assistant Professor at GIST (2019–2022) and at Chonnam National University (2017–2019), contributing significantly to teaching and research development in both institutions. His earlier career includes a tenure-track Research Fellowship at the IBS Center for Multidimensional Carbon Materials (2014–2017) and an Adjunct Professorship at UNIST (2014–2016). Dr. Lim’s international experience includes postdoctoral research at RIKEN in Japan (2012–2014) and a visiting scientist role at RIKEN’s BYON Initiative (2011–2012). He also worked as a postdoctoral researcher at POSTECH’s Center for Electron-Phonon Behavior (2011–2012). This diverse trajectory has allowed Dr. Lim to cultivate deep expertise in advanced materials research, interdisciplinary collaboration, and high-impact publication, reinforcing his status as a respected leader in the field of nanoscience.

Research Interest

Dr. Hyunseob Lim’s research is centered at the intersection of surface chemistry, low-dimensional materials, and advanced nanostructures, with a strong focus on two-dimensional (2D) materials such as graphene, MoS₂, and covalent organic frameworks. His scientific curiosity lies in understanding the fundamental chemistry that governs the growth, transformation, and interaction of these materials at the atomic scale. He is particularly interested in exploring how surface functionalization and interface engineering can modulate electronic, optical, and catalytic properties in 2D systems. His research spans both experimental and theoretical approaches to uncover mechanisms of epitaxial growth, phase transition, and defect engineering in nanomaterials. Dr. Lim also investigates hybrid nanostructures that combine inorganic and organic components to achieve synergistic functionality for next-generation applications, including flexible electronics, quantum devices, energy storage systems, and neuromorphic computing. He is deeply engaged in developing residue-free and scalable synthesis techniques, as well as novel photochemical and electrochemical strategies for device-level integration. Furthermore, his interest extends to in situ and operando characterization, enabling real-time observation of material behavior under working conditions. Through these multidisciplinary endeavors, Dr. Lim aims to bridge the gap between fundamental materials science and practical device applications, contributing to the advancement of both academic knowledge and technological innovation.

Research Skills

Dr. Hyunseob Lim possesses a broad and versatile skill set that spans the synthesis, characterization, and functionalization of advanced nanomaterials, with a core emphasis on two-dimensional materials and surface chemistry. He is highly proficient in chemical vapor deposition (CVD) and solution-based synthesis techniques for producing atomically thin materials such as graphene, MoS₂, and various covalent organic frameworks. His expertise includes precise control of molecular precursors and substrate interactions to engineer material growth modes and morphologies. Dr. Lim is adept in in situ and ex situ characterization methods, including Raman spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), allowing detailed surface and interface analysis at the nanoscale. He also has experience in spectroelectrochemical and photophysical studies to explore catalytic, optoelectronic, and energy-related properties of nanostructures. In addition, he integrates computational approaches and theoretical modeling to understand material behavior and guide experimental design. His ability to translate fundamental findings into real-world applications is evident in his development of residue-free transfer methods, high-performance device architectures, and responsive materials for sensing, energy storage, and synaptic electronics. These interdisciplinary capabilities have positioned Dr. Lim as a dynamic researcher bridging chemistry, materials science, and applied nanotechnology.

Awards and Honors

Throughout his career, Dr. Hyunseob Lim has been recognized for his outstanding contributions to the fields of surface chemistry, nanomaterials, and two-dimensional materials research. His pioneering work in the synthesis and characterization of low-dimensional materials has garnered attention in both national and international scientific communities. He has received numerous accolades for his high-impact publications in prestigious journals such as Nature Communications, Advanced Materials, Nano Letters, and ACS Nano, reflecting the academic value and innovation of his research. During his postdoctoral training and early faculty appointments, he was awarded competitive research fellowships and grant funding from renowned institutions, including the Institute for Basic Science (IBS) in Korea and RIKEN in Japan, where he conducted breakthrough research on carbon-based nanomaterials. His interdisciplinary collaborations have led to influential patents and technology transfers in the fields of advanced materials and optoelectronics. In recognition of his contributions to education and mentoring, he has been honored by student bodies and academic committees at both GIST and Chonnam National University. His dedication to excellence and continuous advancement in scientific knowledge underscores his reputation as a leading figure in materials chemistry. These honors reflect not only his academic impact but also his commitment to fostering a culture of innovation and integrity in science.

Conclusion

Dr. Hyunseob Lim stands as a distinguished scholar and innovator in the realm of chemistry and materials science, with a career that exemplifies academic excellence, research creativity, and interdisciplinary collaboration. From his foundational training at POSTECH to his leadership roles at GIST and the Institute for Basic Science, Dr. Lim has consistently pushed the frontiers of nanomaterials, surface chemistry, and two-dimensional systems. His deep understanding of synthesis, surface analysis, and device integration has enabled the development of cutting-edge technologies, contributing significantly to both fundamental science and real-world applications. Through an impressive body of scholarly work, Dr. Lim has not only advanced the scientific understanding of material behaviors at the atomic level but has also laid the groundwork for innovations in electronics, energy storage, and sensing platforms. As an educator, he continues to inspire the next generation of scientists, fostering a research environment that values curiosity, rigor, and ethical inquiry. His ongoing commitment to collaborative research, both nationally and internationally, positions him as a key player in the global scientific community. Looking forward, Dr. Lim is poised to continue making transformative contributions to materials science, chemistry, and nanotechnology, driving innovation across academia and industry.

Publications Top Notes

  1. Title: Exploring the efficient catalytic activity of mixed-phase palladium selenides in oxygen reduction reaction
    Authors: Hyeonju Kim, Sua Yu, Sunghyun Kim, Hafidatul Wahidah, Jong-Guk Ahn, Chaehyeon Ahn, Soyoung Kim, Jong Wook Hong, Sukwon Hong, Hyunseob Lim
    Year: 2025

  2. Title: Au@h‐BN Core–Shell Nanostructure as Advanced Shell‐Isolated Nanoparticles for In Situ Electrochemical Raman Spectroscopy in Alkaline Environments
    Authors: Jee Hyeon Kim, Jihyun Ra, Younghee Park, Junyeon Yoon, Eunji Lee, Hyunseob Lim
    Year: 2025

  3. Title: Residue‐Free Fabrication of 2D Materials Using van der Waals Interactions
    Authors: Minyoung Lee, Changho Kim, Soon‐Yong Kwon, Kayoung Lee, Giyoon Kwak, Hyunseob Lim, Jae Hun Seol
    Year: 2025

  4. Title: Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer
    Authors: Minju Park, Huiyeong Ju, Joohee Oh, Kwangmin Park, Hyunseob Lim, Seok Min Yoon, Intek Song
    Year: 2025

  5. Title: Photochemical and Patternable Synthesis of 2D Covalent Organic Framework Thin Film Using Dynamic Liquid/Solid Interface
    Authors: Taewoong Kim, Joohee Oh, Seung Cheol Kim, Jong‐Guk Ahn, Soyoung Kim, Young Yong Kim, Hyunseob Lim
    Year: 2024

  6. Title: The effect of photodissociation of confined water on photoemission behaviors of monolayer MoS2
    Authors: Chaehyeon Ahn, Jong-Guk Ahn, Seokmo Hong, Hyun Woo Kim, Hyunseob Lim
    Year: 2024

  7. Title: Anomalous one-dimensional quantum confinement effect in graphene nanowrinkle
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2023

  8. Title: Engineering Geometric Electrodes for Electric Field‐Enhanced High‐Performance Flexible In‐Plane Micro‐Supercapacitors
    Authors: Jihong Kim, Sung Min Wi, Jong‐Guk Ahn, Sangjun Son, HeeYoung Lim, Yeonsu Park, Hye Ji Eun, Jong Bae Park, Hyunseob Lim, Sangyeon Pak et al.
    Year: 2023

  9. Title: Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS₂ Using Inorganic Molecular Precursors
    Authors: Younghee Park, Chaehyeon Ahn, Jong-Guk Ahn, Jee Hyeon Kim, Jaehoon Jung, Juseung Oh, Sunmin Ryu, Soyoung Kim, Seung Cheol Kim, Taewoong Kim et al.
    Year: 2023

  10. Title: Synthesis of monolayer 2D MoS₂ quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control
    Authors: Chaehyeon Ahn, Hyunseob Lim
    Year: 2022

  11. Title: Van Hove Singularity in Graphene Nanowrinkle Grown on Ni(111) Generated by Pseudo One-Dimensional Electron Confinement
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  12. Title: Vapor pressure-controllable molecular inorganic precursors for growth of monolayer WS₂: Influence of precursor-substrate interaction on growth thermodynamics
    Authors: Jee Hyeon Kim, Chaehyeon Ahn, Jong-Guk Ahn, Younghee Park, Soyoung Kim, Daehyun Kim, Jaeyoon Baik, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  13. Title: Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au–Au Nanogap
    Authors: Jong-Guk Ahn, Gyeonghun Yeo, Yeji Han, Younghee Park, Jong Wook Hong, Hyunseob Lim
    Year: 2021

  14. Title: Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction
    Authors: Jiwon Bang, Sankar Das, Eun-Jin Yu, Kangwook Kim, Hyunseob Lim, Sungjee Kim, Jong Wook Hong
    Year: 2020

  15. Title: Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C₆OH)
    Authors: Hyunseob Lim, Younghee Park, Minhui Lee, Jong-Guk Ahn, Bao Wen Li, Da Luo, Jaehoon Jung, Rodney S. Ruoff, Yousoo Kim
    Year: 2020

  16. Title: Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil
    Authors: Huang, M., Biswal, M., Park, H.J., Jin, S., Qu, D., Hong, S., Zhu, Z., Qiu, L., Luo, D., Liu, X., et al.
    Year: 2018

  17. Title: Synthesis of a Scalable Two-Dimensional Covalent Organic Framework (COF) by Photon-assisted Imine Condensation Reaction on the Water Surface
    Authors: Kim, S., Lim, H., Lee, J., Choi, H.C.
    Year: 2018

  18. Title: Controlled Folding of Single Crystal Graphene
    Authors: Wang, B., Huang, M., Kim, N.Y., Cunning, B.V., Huang, Y., Qu, D., Chen, X., Jin, S., Biswal, M., Zhang, X., et al.
    Year: 2017

  19. Title: Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene
    Authors: Jo, H.J., Lyu, J.H., Ruoff, R.S., Lim, H., Yoon, S.I., Jeong, H.Y., Shin, T.J., Bielawski, C.W., Shin, H.S.
    Year: 2017

  20. Title: Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe₂/WSe₂ van der Waals Heterostructures
    Authors: Nayak, P.K., Horbatenko, Y., Ahn, S., Kim, G., Lee, J.-U., Ma, K.Y., Jang, A.-R., Lim, H., Kim, D., Ryu, S., et al.
    Year: 2017

  21. Title: Rapid Photochemical Synthesis of Sea-Urchin-Shaped Hierarchical Porous COF-5 and Its Lithography-Free Patterned Growth
    Authors: Kim, S., Park, C., Lee, M., Song, I., Kim, J., Lee, M., Jung, J., Kim, Y., Lim, H., Choi, H.C.
    Year: 2017

Cong Lin | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Cong Lin | Chemistry | Best Researcher Award

Professor from Jiangxi Science & Technology Normal University, China

Cong Lin is an Associate Professor at the College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University. With a strong background in organic chemistry, Lin has made significant contributions to the field through extensive research in transition metal-catalyzed reactions and selective functionalization of organic molecules. Lin has published numerous articles in high-impact journals such as Organic Letters, Advanced Synthesis & Catalysis, and ACS Applied Polymer Materials. His research is widely recognized for its innovation and practical applications in synthetic chemistry and material science. Over the years, Lin has collaborated with multiple researchers, demonstrating strong teamwork and interdisciplinary research skills. His rapid academic progression from lecturer to associate professor reflects his commitment to academic excellence and research leadership.

Professional Profile

Education

Cong Lin completed his Bachelor of Science in Chemistry from Jiangxi Normal University in 2013. He then pursued a Ph.D. in Organic Chemistry at Zhejiang University, one of China’s leading institutions, and graduated in June 2018. His doctoral research focused on transition metal-catalyzed organic synthesis, particularly in selective bond activation and functionalization strategies. His educational background has provided him with a strong foundation in synthetic methodologies, catalysis, and reaction mechanisms, shaping his research direction and contributions to the field.

Professional Experience

After earning his Ph.D., Cong Lin began his academic career as a Lecturer at Jiangxi Science & Technology Normal University in July 2018. Within two years, he was promoted to Associate Professor in June 2020 due to his outstanding research contributions and teaching performance. As an Associate Professor, Lin has been involved in mentoring students, supervising research projects, and conducting innovative studies in organic chemistry. His academic career demonstrates a steady progression, reflecting his dedication to advancing scientific knowledge.

Research Interest

Cong Lin’s research interests lie in transition metal-catalyzed reactions, organic synthesis, and polymer chemistry. His work primarily focuses on the selective functionalization of alkenes and aromatic compounds using metal catalysts such as nickel, palladium, and cobalt. He is particularly interested in developing new methodologies for carbon-carbon and carbon-heteroatom bond formation. His research also explores post-polymerization modifications and sustainable catalytic processes, contributing to advancements in both synthetic chemistry and materials science.

Research Skills

Cong Lin possesses expertise in organic synthesis, transition metal catalysis, and reaction mechanism analysis. He is skilled in designing and optimizing catalytic reactions for efficient bond formation. His research involves advanced spectroscopic and chromatographic techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, and gas chromatography. Lin is also proficient in computational chemistry for reaction pathway predictions and mechanistic studies. His ability to integrate experimental and theoretical approaches enhances the impact of his research.

Awards and Honors

Cong Lin has received recognition for his contributions to organic chemistry through various awards and honors. His research articles have been featured as cover stories in high-impact journals, and some of his works have been listed as highly cited papers. He has been invited to present his findings at academic conferences and has collaborated on prestigious projects. His rapid career advancement to Associate Professor further highlights the recognition of his scientific contributions within the academic community.

Conclusion

Cong Lin is a distinguished researcher with a strong academic background, impressive publication record, and expertise in transition metal-catalyzed synthesis. His research has significantly contributed to the field of organic chemistry, particularly in selective bond functionalization and catalysis. While his work is widely recognized, expanding international collaborations, securing more research funding, and increasing involvement in mentorship and patenting would further enhance his impact. Overall, Lin’s dedication to research and academic excellence makes him a strong candidate for prestigious research awards.

Publications Top Notes

  1. Title: Post-Polymerization Modification of Polystyrene through Mn-Catalyzed Phosphorylation of Aromatic C(sp²)-H Bonds
    Authors: R. Liu, Ruixing; C. Lin, Cong; Y. Zou, Yubai; J. Zhong, Jiang; L. Shen, Liang
    Year: 2024
    Citations: 1

  2. Title: Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air
    Authors: Y. Wang, Yihua; C. Lin, Cong; Z. Zhang, Zongxu; L. Shen, Liang; B. Zou, Boya
    Year: 2023
    Citations: 2

  3. Title: Room temperature-curable, easily degradable, and highly malleable and recyclable vanillin-based vitrimers with catalyst-free bond exchange
    Authors: M. Liu, Min; F. Gao, Fei; X. Guo, Xinru; F. Lin, Faman; L. Shen, Liang
    Year: 2022
    Citations: 11

Bushra Bashir | Chemistry | Best Researcher Award

Ms. Bushra Bashir l Chemistry l Best Researcher Award

Research scholar at Islamia University of Bahawalpur, Pakistan

Dr. Bushra Bashir is a distinguished researcher with a Ph.D. in Organic Chemistry from the University of Copenhagen and an M.Phil. from The Islamia University of Bahawalpur. Her extensive publication record includes high-impact journals like Bioorganic Chemistry and Journal of Molecular Structure, showcasing her expertise in organic synthesis and biological evaluations. With experience as a Research Fellow and Visiting Lecturer, she has demonstrated exceptional research and teaching skills. Recognized with awards such as the international research fellowship and pedagogical training, Dr. Bashir’s contributions and skills position her as a leading candidate for the Research for Best Researcher Award.

Profile:

Education

Dr. Bushra Bashir holds a Ph.D. in Organic Chemistry from the University of Copenhagen, Denmark, where her research focused on the synthesis, characterization, and biological evaluations of 2,5-Disubstituted-1,3,4-Oxadiazoles. She also earned an M.Phil in Organic Chemistry from The Islamia University of Bahawalpur, Pakistan, with a thesis on the spectroscopic characterization of secondary metabolites. Her educational background is complemented by various teaching roles at institutions in Pakistan, including The Islamia University of Bahawalpur and Allama Iqbal Group of Colleges.

Professional Experience

Dr. Bushra Bashir has extensive professional experience in academia and research. She served as a Research Fellow at the University of Copenhagen, Denmark, where she gained significant international exposure and advanced research skills. Her teaching roles as a Visiting Lecturer at The Islamia University of Bahawalpur, Allama Iqbal Group of Colleges, Reads College, and Scholars Education System provided her with a robust pedagogical background and enhanced her communication and instructional abilities. This diverse experience in both research and teaching underscores her expertise and versatility in the field of organic chemistry.

Research Interest

Dr. Bushra Bashir’s research interests are primarily focused on organic chemistry, particularly the synthesis, characterization, and biological evaluation of novel organic compounds. Her work involves developing and assessing new molecules, such as 1,3,4-oxadiazoles and 1,2,4-triazoles, as potential inhibitors of lipoxygenase, an enzyme involved in inflammatory processes. She employs a combination of in vitro assays, computational studies, and spectroscopic techniques to explore the efficacy and mechanisms of these compounds, aiming to contribute to drug discovery and development.

Research Skills

Dr. Bushra Bashir’s research skills encompass a broad range of techniques essential for advanced organic chemistry. She is proficient in synthesis, chromatography, recrystallization, and extraction, which are crucial for developing and purifying chemical compounds. Her expertise extends to spectroscopic characterization and crystallography, providing detailed analysis of molecular structures. Additionally, Dr. Bashir is skilled in using research software such as Chemdraw, Mestrenova, IBM SPSS, Origin, and Endnote, which support data analysis and research documentation.

Award and Recognition

Dr. Bushra Bashir has garnered significant recognition in her field through a series of prestigious awards and accomplishments. She received a fully funded research fellowship from the Higher Education Commission of Pakistan and the University of Copenhagen, Denmark, highlighting her exceptional research capabilities. Her pedagogical training certification from The Islamia University of Bahawalpur further underscores her commitment to education. Additionally, Dr. Bashir’s notable achievement as a laptop winner in the Prime Minister of Pakistan’s most talented student program showcases her academic excellence. These accolades collectively reflect her outstanding contributions and potential as a leading researcher in organic chemistry.

Conclusion

Dr. Bushra Bashir is a strong candidate for the Research for Best Researcher Award. The combination of a solid educational background, impressive publication record, significant research experience, and notable awards underscores her suitability for the award. Addressing areas for improvement, such as increasing the publication impact and expanding research contributions, could further enhance her profile. Overall, Dr. Bashir’s achievements and skills make her a commendable candidate for the award.

Publication Top Notes

  • Probing N-substituted 4-(5-mercapto-4-ethyl-4H-1,2,4-triazol-3-yl)-N-phenylpiperdine-1-carboxamides as potent 15-LOX inhibitors supported with ADME, DFT calculations and molecular docking studies
    • Authors: Nawaz, Z., Riaz, N., Saleem, M., Prabhala, B.K., Sajid, S.
    • Year: 2024
    • Citations: 0
  • Molecular hybrids of substituted phenylcarbamoylpiperidine and 1,2,4-triazole methylacetamide as potent 15-LOX inhibitors: Design, synthesis, DFT calculations and molecular docking studies
    • Authors: Nawaz, Z., Riaz, N., Saleem, M., Krishna Prabhala, B., Sajid, S.
    • Year: 2024
    • Citations: 2
  • Vetting of new N-furfurylated p-chlorophenyl-1,2,4-triazole acetamides as lipoxygenase inhibitors assisted with in vitro and in silico studies
    • Authors: Riaz, N., Yasin, M., Ashraf, M., Mahmood, H.M.K., Bhattarai, K.
    • Year: 2023
    • Citations: 2
  • Parsing p-tolyloxy-1,3,4-oxadiazolepropanamides as 15-lipoxygenase inhibitors prop up by in vitro and in silico profiling including structure determination
    • Authors: Bashir, B., Riaz, N., Ejaz, S.A., Aziz-ur-Rehman, Bhattarai, K.
    • Year: 2023
    • Citations: 4
  • Investigations of p-tolyloxy-1,3,4-oxadiazole propionamides as soybean 15-lipoxygenase inhibitors in comforting with in vitro and in silico studies
    • Authors: Bashir, B., Riaz, N., Ejaz, S.A., Aziz, M., Bhattarai, K.
    • Year: 2023
    • Citations: 2

 

LAKHDARI WASSIMA | Chemistry | Best Researcher Award

Prof. LAKHDARI WASSIMA | Chemistry | Best Researcher Award

RESPONSABLE LABO at INRAA, Algeria.

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher at the National Institute of Agronomic Research of Algeria (INRAA) in Touggourt, Ouargla. She earned her doctorate in Sciences from the University of Ouargla in 2015 and has been leading research projects in agronomy, particularly focusing on biological control and integrated pest management of strategic crops. Dr. Dehliz-Lakhdari has made significant contributions to the study of plant protection, with a strong emphasis on sustainable agriculture in arid regions. Her work includes numerous national conference presentations and workshops on topics such as the bio-insecticidal properties of Saharan plants and the development of biocontrol methods against phytopathogens. As a Master of Research “A,” she has played a pivotal role in advancing agricultural practices in Algeria’s Saharan regions, making her a key figure in the field of agricultural sustainability and pest management.

Profile

Education

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher with a solid educational background in agronomy and plant protection. She began her academic journey by earning her Bachelor’s degree in Natural Sciences in 1992 from Lycée Emir Abdelkader, Touggourt. Pursuing her passion for agriculture, she obtained an engineering degree in Agronomy with a specialization in Plant Protection from INFSA de Mostaganem in 1997. Driven by a deep interest in biological control and integrated pest management, she completed her Magister degree in 2010 at the University of Mostaganem, focusing on biological and integrated control against crop bio-aggressors. Further advancing her expertise, Dr. Dehliz-Lakhdari earned her Doctorate in Sciences from the University of Ouargla in 2015. Her academic credentials were solidified when she attained the Habilitation to Direct Research from the same university in 2017, reflecting her significant contributions to agronomic research and education.

Professional Experience

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher and academic with a rich background in agronomy, specializing in biological and integrated pest control. Her professional journey began as a mathematics and French teacher in Touggourt, Algeria, where she honed her skills in education before transitioning into the agronomy field. She served as a laboratory engineer in the milling industry, where she managed physico-chemical and microbiological analyses. Since 2011, Dr. Dehliz-Lakhdari has been a dedicated researcher at the National Institute of Agronomic Research of Algeria (INRAA), focusing on plant protection in arid regions. Currently, she holds the position of Maître de Recherche “A” at INRAA in Touggourt, where she continues to lead significant research initiatives. Her work is pivotal in developing sustainable agricultural practices in Algeria, particularly in combating plant pathogens and pests through biological control methods. Dr. Dehliz-Lakhdari’s contributions are widely recognized in national and international scientific communities.

Research Interest

Dr. Wassima Dehliz-Lakhdari’s research is primarily focused on the integrated biological control of crop pests and diseases, particularly within arid and semi-arid regions. Her work explores the use of natural and environmentally sustainable methods to manage agricultural challenges, with a special emphasis on the application of biopesticides and antagonistic fungi such as Trichoderma harzianum. Dr. Dehliz-Lakhdari investigates the efficacy of various plant extracts and indigenous biological agents in combating phytopathogenic fungi and insect pests that threaten crops like tomatoes and melons. Her research contributes to the development of sustainable agricultural practices, promoting biodiversity and reducing reliance on chemical pesticides. Through her work, she aims to enhance crop resilience and productivity in harsh environmental conditions, thereby supporting sustainable agriculture and food security in vulnerable regions.

Research Skills

Dr. Dehliz-Lakhdari Wassima possesses a robust set of research skills honed through years of academic and professional experience in agronomy, particularly in plant protection. Her expertise in biological and integrated pest management, as evidenced by her magister and doctoral research, highlights her proficiency in developing sustainable agricultural practices. Dr. Dehliz-Lakhdari’s work at the National Institute of Agronomic Research of Algeria (INRAA) underscores her ability to conduct meticulous laboratory analyses, including physico-chemical and microbiological assessments. She is well-versed in identifying and combating plant pathogens and pests, demonstrated through her numerous national communications and publications. Her experience in leading research projects, coupled with her ability to apply innovative biocontrol methods, positions her as a capable researcher who can address complex agricultural challenges. Additionally, her collaborative efforts in workshops and seminars reflect her commitment to advancing agronomic research and contributing to the scientific community.

Award and Recognition

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher and academic whose contributions to agricultural science have garnered widespread recognition. With a Ph.D. in Sciences and an Habilitation to Direct Research from the University of Ouargla, Dr. Dehliz-Lakhdari has made significant strides in the field of plant protection, particularly in the biological and integrated control of crop bio-aggressors. Her extensive research, primarily focused on sustainable agriculture in arid and semi-arid regions, has led to numerous publications and national presentations. As a Senior Researcher at the National Institute of Agronomic Research of Algeria (INRAA), she has been instrumental in advancing knowledge on phytopathogenic fungi and bio-insecticides. Her work is highly regarded, reflecting her dedication to addressing critical challenges in agriculture. Dr. Dehliz-Lakhdari’s achievements have established her as a leading expert, earning her recognition and respect within the scientific community.

Conclusion

Dr. Wassima Dehliz-Lakhdari is a strong candidate for the Best Researcher Award, with her extensive experience, academic achievements, and impactful research in sustainable agriculture. Her contributions to biological pest control and her active role in the Algerian scientific community highlight her as a leader in her field. However, to strengthen her candidacy, she might focus on increasing her

Publication Top Notes

  1. Chemical composition and insecticidal activity of Artemisia absinthium L. essential oil against adults of Tenebrio molitor L.
    • Authors: W. Lakhdari, M. Mounir Bouhenna, N. Salah Neghmouche, H. Bendif, S. Garzoli
    • Year: 2024
    • Journal: Biochemical Systematics and Ecology
  2. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment
    • Authors: W. Lakhdari, I. Benyahia, M.M. Bouhenna, F. Boufahja, A. Dehliz
    • Year: 2023
    • Journal: Molecules
    • Citations: 8
  3. Insecticidal activity and physiopathological effects of Cotula cinerea crude extract against Culex pipiens
    • Authors: L. Demouche, F. Acheuk, K. Mokrane, C. Bensouici, A. Dehliz
    • Year: 2023
    • Journal: Tropical Biomedicine
    • Citations: 1
  4. Chemical composition and biological properties of Cotula cinerea essential oil from Sahara of Algeria
    • Authors: N.E. Mekhadmi, R. Mlik, M. Ramdani, P. Chalard, G. Figueredo
    • Year: 2023
    • Journal: Biocatalysis and Agricultural Biotechnology
    • Citations: 3
  5. Chemical composition and bioactivity of essential oil against the green peach aphid (Myzus persicae)
    • Authors: A. Dehliz, W. Lakhdari, R. Mlik, B. Mohammed, Z. Badjadi
    • Year: 2022
    • Journal: Organic Agriculture
    • Citations: 4
  6. Fungal conservation in Arab countries
    • Authors: T.A. Mohamed, R.M. Abed, M.A. Mezher, S.Y. Abdul-Hadi, A.M. Abdel-Azeem
    • Year: 2021
    • Journal: Microbial Biosystems
  7. Bio-stimulant, what is its promoting effect on the cultivation of safflower (Carthamus tinctorius L.)?
    • Authors: W. Lakhdari, A. Dehliz, R. Mlik, H. Hammi, D. Guasmi
    • Year: 2020
    • Journal: Organic Agriculture
  8. Potential of Zygophyllum album L. to control Tuta absoluta in Southeastern Algeria
    • Authors: D. Abderrahmene, L. Wassima, M. Randa, B. Mohammed, G. Sofiane
    • Year: 2020
    • Journal: Organic Agriculture
    • Citations: 2
  9. Checklist of Algerian fungi – Part 5: Dothideomycetes (Ascomycota)
    • Authors: S. Amrani, S. Djouadi, A. Bouherama, P. Kirk, A.M. Abdel-Azeem
    • Year: 2020
    • Journal: Microbial Biosystems
  10. Euphorbia guyoniana aqueous extract efficiency against tomato leaf miner in southern East Algeria
    • Authors: A. Dehliz, W. Lakhdari, F. Acheuk, K. Guermit, S. Matallah
    • Year: 2018
    • Journal: Organic Agriculture
    • Citations: 4

 

 

Kamal Kishore | Chemistry | Academic Research Impact Award

Assoc Prof Dr. Kamal Kishore | Chemistry | Academic Research Impact Award

Associate Professor of Eternal University, India.

Dr. Kamal Kishore holds a Ph.D. in Chemistry from B.U. Bhopal, India, and has over fourteen years of teaching experience, coupled with one year in the pharmaceutical industry. His research primarily focuses on the physicochemical and thermodynamic behavior of rare earth soaps and surfactants. Currently, he is an Associate Professor at Eternal University, Himachal Pradesh, India, and has previously served at Career Point University and Sri Sai University. Dr. Kishore’s research has been published in numerous international and national journals, including Journal of Molecular Liquids and Scopus-indexed journals. He has also contributed to textbooks and edited volumes on chemistry and nanotechnology. Dr. Kishore is an active member of several editorial boards and has supervised numerous M.Sc. and Ph.D. students. His work is recognized for its contribution to understanding surfactant behavior and material properties, with a strong track record of conference presentations and publications.

Profile
Education

Kamal Kishore earned his Doctor of Philosophy (Ph.D.) in Chemistry from Bhopal University (B.U.) in 2010, where his thesis focused on the “Physico-chemical, thermal, and acoustical behavior of terbium soaps,” supervised by Prof. S.K. Upadhyaya. He completed his Master of Science (M.Sc.) in Chemistry at Bhopal University in 2004 and his Bachelor of Science (B.Sc.) in Non-Medical from Himachal Pradesh University (H.P.U.), Shimla, in 2001. Additionally, he holds a Bachelor of Education (B.Ed.) in Science from Jammu University, awarded in 2002. Kishore’s educational qualifications are complemented by his Teachers Eligibility Test (HPTET) certification, affirming his competence in teaching. His diverse academic background has equipped him with a solid foundation in chemistry and education, contributing significantly to his professional and research endeavors.

Professional Experience

Dr. Kamal Kishore has a robust academic and industrial background spanning over fourteen years. He is currently an Associate Professor in the Department of Chemistry & Biochemistry at Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh, India, a position he has held since January 2021. Before this, he served as an Assistant Professor at Eternal University and Career Point University, where he contributed significantly to the field of Chemistry. His career began with a role as a Lecturer at MIT College of Engineering & Management and includes experience as an IPQA Chemist at Alkem Laboratories LTD. His diverse roles underscore his commitment to both teaching and practical applications of chemistry, demonstrating a strong blend of academic rigor and industrial insight. His career trajectory highlights a continuous dedication to education and research in the field of chemistry.

Research Interest

Dr. Kamal Kishore’s research interests primarily focus on the physicochemical properties of surfactants and their applications in various fields. His work includes the detailed study of acoustic, thermal, and conductometric behaviors of different metal soaps, particularly terbium-based compounds. Dr. Kishore’s research extends to the synthesis and characterization of surfactants, including imidazolium and other gemini surfactants, exploring their surface-active properties, micellization behavior, and thermal stability. He is also interested in the application of nanotechnology in environmental engineering, examining the fundamental principles of nanomaterials for environmental sustainability and remediation. His contributions to the field are reflected in his numerous publications in reputed journals and his involvement in editing significant textbooks. Dr. Kishore’s interdisciplinary approach combines fundamental research with practical applications, aiming to advance the understanding of surfactant chemistry and its potential uses in industrial and environmental contexts.

Research Skills

Kamal Kishore’s research skills are extensive and well-honed, encompassing a broad range of techniques and methodologies in the field of chemistry. His expertise includes physico-chemical and acoustic analyses, demonstrated by his work on the behavior of terbium soaps and other compounds in various solvents. He excels in conducting detailed studies using methods such as spectroscopy, conductometry, and ultrasonic velocity measurements, which are critical for understanding molecular interactions and material properties. Kishore’s proficiency in thermal stability and structural analysis, along with his experience in synthesizing and characterizing surfactants, further highlights his versatility. His role as an editorial board member and reviewer for several reputed journals underscores his critical evaluation skills and commitment to advancing scientific knowledge. Additionally, his experience supervising both M.Sc. and Ph.D. students reflects his capability to mentor and guide emerging researchers in the field.

Awards and Recognition

Kamal Kishore has received several awards and recognitions throughout his academic and professional career. He was honored with a merit certificate for achieving a rank in state-level matriculation by the HP Board of School Education in 1996 and a recognition for disciplined service at Career Point University, Hamirpur. Kishore’s excellence as an educator was acknowledged with the “Best Teacher” award for the academic session 2012-13 at Career Point University. In addition, he received the “Award of Honor” for the 41st Junior Girls (U-20) National Handball Championship in 2019 and an “Award of Appreciation” for organizing the 4th Kishan Mela at Eternal University, Baru Sahib. He was also certified as a Publons Academy Mentor in 2020, highlighting his contribution to scholarly mentorship and peer review. These accolades underscore his commitment to education, research, and community involvement.

Conclusion

The individual is a strong candidate for the Research for Best Researcher Award based on their extensive experience, significant research contributions, and active role in academia. To enhance their candidacy, focusing on increasing the impact of their publications, diversifying their research areas, and showcasing collaborative projects and grant funding would be beneficial. Their proven track record in teaching, research, and professional service aligns well with the criteria for a prestigious research award.

Publications Top Notes

  • State-of-Art Review on Smart Perovskites Materials: Properties and Applications
    • Authors: Thakur, P., Sharma, N., Pathak, D., Dhar, S., Lal, M.
    • Year: 2024
    • Citations: 3
  • Removal of Heavy Metals from Waste Water Using Different Biosensors
    • Authors: Kishore, K., Walia, Y.K.
    • Year: 2024
  • Progress in the Development of Smart and High-Performing Analytical Tools to Detect Infectious Diseases Using Nanomaterial-Based Sensors: Sensitivity, Rapidity of Reaction, Selectivity, and Robustness
    • Authors: Chintapalli, I., Kishore, K., Singh, M., Usha, R., Ankireddy, S.R.
    • Year: 2024
  • Synthesis, Self-Assembly and Surface-Active Properties of Alkyl Halide Mediated Imidazolium Monomeric Surfactants
    • Authors: Kaur, J., Farzeen, R., Kumar, A., Upadhyaya, S.K., Kishore, K.
    • Year: 2024
  • Electrochemical Behavior, Antimicrobial Activities, and Effect of Temperature on Micellization of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Getahun, T., Singh, M., Thakur, N., Kishore, K.
    • Year: 2023
    • Citations: 1
  • Structural, Morphological, and Magnetic Properties of CoFe2O4 Nano-Ferrites Synthesized via Co-Precipitation Route
    • Authors: Thakur, P., Thakur, P., Kishore, K., Sharma, P., Lal, M.
    • Year: 2023
    • Citations: 13
  • Investigation on Conductance, Acoustical and Refractive Index Behavior of Stearalkonium Chloride in Methanol at 301 K
    • Authors: Singh, C., Negi, S., Singh, M., Kishore, K.
    • Year: 2022
  • Multiferroic Properties of Mn-Substituted BiFeO3
    • Authors: Singh, M., Kumari, P., Kishore, K., Verma, K.C.
    • Year: 2021
    • Citations: 4
  • Recent Developments in the Diagnosis of COVID-19 with Micro- and Nanosystems
    • Authors: Singh, M., Kishore, K., Ankireddy, S.R.
    • Year: 2021
  • Synthesis, Thermal Stability and Surface Activity of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Bhatia, C., Singh, M., Upadhyaya, S.K., Kishore, K.
    • Year: 2020
    • Citations: 17