Igor Sitnik | Computer Science | Best Researcher Award

Prof. Igor Sitnik | Computer Science | Best Researcher Award

Leading Researcher from Joint Institute for Nuclear Research, Russia

Igor M. Sitnik is a distinguished physicist known for his pioneering contributions to nuclear and particle physics. With a research career spanning over five decades, he has played a central role in the analysis and interpretation of complex experimental data, particularly in the fields of light nuclei reactions and polarization phenomena. Sitnik has been instrumental in leading experimental collaborations at premier research institutions such as the Joint Institute for Nuclear Research (JINR) in Dubna and Jefferson Lab (JLab) in the United States. His career is marked by scientific rigor, collaborative leadership, and a commitment to advancing knowledge in subatomic physics. Having received multiple first-class JINR awards, he is recognized by his peers for excellence and innovation in experimental physics. His work has not only contributed valuable insights into nuclear structures and reaction mechanisms but also to the development of computational tools that enhance data interpretation in high-energy physics. With several highly cited publications, including one with over 900 citations, Sitnik remains a respected authority in his domain. His contributions continue to influence experimental design, data processing, and the theoretical understanding of fundamental particles, making him a deserving candidate for top honors in scientific achievement.

Professional Profile

Education

Igor M. Sitnik graduated from the Physics Department of Moscow State University in 1964, a renowned institution known for its rigorous training in fundamental and applied sciences. His education at one of the most prestigious universities in Russia provided him with a strong foundation in theoretical and experimental physics. During his formative academic years, he cultivated a deep interest in nuclear and subatomic physics, which would later define the focus of his professional career. His undergraduate studies were rooted in classical mechanics, quantum theory, electrodynamics, and statistical mechanics—courses that equipped him with analytical tools necessary for advanced research. His time at Moscow State University also introduced him to early computational methods and data analysis techniques, which he later expanded upon through decades of research. While no specific postgraduate degrees are mentioned, Sitnik’s career trajectory suggests extensive post-degree specialization and hands-on training in experimental nuclear physics and detector technology. His continuous professional development through participation in international collaborations and technical projects reflects a lifetime commitment to learning and scientific inquiry. The academic rigor and mentorship he received during his education played a significant role in shaping his methodical approach to research and long-term contributions to physics.

Professional Experience

Igor M. Sitnik has had a long and impactful career as a researcher, leader, and innovator in the field of nuclear and particle physics. Since the 1970s, he has been responsible for off-line analysis in his group at the Joint Institute for Nuclear Research (JINR) in Dubna. In the 1970s and 1980s, he led groundbreaking studies on the breakup reactions of light nuclei on various targets, a body of work that earned him the prestigious 1st JINR Prize in 1989. Moving into the 1990s, Sitnik shifted his focus to polarization phenomena, for which he also received the 1st JINR Prize in 1997. During this period, he served as co-spokesman for Proposal LNS 249 at Saturne-2 (JINR), underscoring his leadership role in international experimental collaborations. In the late 1990s, he became the spokesman for the “ALPHA” spectrometer project in Dubna. Most recently, he has been actively involved in studying the proton electric-to-magnetic form factor ratio (Gep/Gmp) at Jefferson Lab in the USA, with portions of this research conducted in Dubna, culminating in the 1st JINR Prize in 2020. His professional journey reflects a consistent dedication to experimental excellence, leadership in high-profile projects, and innovation in nuclear science.

Research Interests

Igor M. Sitnik’s research interests are centered around nuclear and particle physics, with a specific focus on reaction dynamics, polarization effects, and form factor studies. In the early stages of his career, he was deeply involved in investigating the breakup reactions of light nuclei, exploring how nuclear interactions change with varying target materials. This line of inquiry provided insights into nuclear structure and reaction mechanisms. In the subsequent decades, he expanded his interests to include polarization phenomena, examining spin-dependent interactions and their implications in nuclear scattering processes. These studies have practical applications in understanding fundamental nuclear forces and contribute to precision modeling in theoretical physics. More recently, Sitnik has engaged in form factor measurements at Jefferson Lab (JLab), particularly the ratio of electric to magnetic form factors of the proton (Gep/Gmp). This research is essential for understanding the internal structure of protons and has implications for quantum chromodynamics. Additionally, Sitnik has demonstrated a strong interest in data analysis methodologies, developing a minimization program in the 2010s for handling complex, multi-variable datasets. His ability to integrate experimental design with computational analysis defines his holistic and innovative approach to research in modern nuclear physics.

Research Skills

Igor M. Sitnik possesses a robust set of research skills that span experimental design, data analysis, computational modeling, and scientific communication. His early work in nuclear reaction dynamics required meticulous experimental planning, including the selection of beam-target configurations and detector setups. Sitnik’s responsibility for off-line analysis within his group highlights his proficiency in processing and interpreting large volumes of experimental data—skills that are essential in high-energy and nuclear physics research. He has demonstrated expertise in statistical analysis and error minimization, evident from the development of a custom minimization program for multi-set tasks. This computational tool showcases his aptitude for programming and algorithmic optimization, allowing for efficient parameter fitting in complex physical models. In collaborative settings, Sitnik has frequently held leadership roles, which underline his ability to manage interdisciplinary teams and guide long-term research projects. His high citation counts indicate a strong capability in publishing impactful findings and presenting them to the scientific community. Whether through experimental rigour, theoretical insight, or data processing innovation, Sitnik’s research skills reflect a well-rounded and highly competent physicist who has contributed significantly to advancing experimental techniques and analytical methodologies in his field.

Awards and Honors

Over the course of his esteemed career, Igor M. Sitnik has been the recipient of several top-tier scientific honors, most notably the 1st JINR Prize, which he has been awarded three times. The first was in 1989 for his extensive work on the breakup reactions of light nuclei, a cornerstone study in nuclear reaction physics. His second 1st JINR Prize was awarded in 1997 for his pivotal research on polarization phenomena in nuclear interactions. This body of work marked an important advancement in understanding spin-dependent processes. The third award came in 2020, recognizing his significant contributions to the study of the Gep/Gmp ratio—a key metric in probing the internal structure of the proton—conducted in part at Jefferson Lab (JLab) and partially in Dubna. These repeated honors from a leading international research institution testify to the lasting impact and high quality of Sitnik’s research. In addition to formal awards, his publication record includes several high-impact papers, one of which has been cited over 900 times, indicating broad recognition by the global physics community. His accolades place him among the most respected experimental nuclear physicists in the post-Soviet scientific world.

Conclusion

Igor M. Sitnik stands out as an exemplary researcher in the field of nuclear and particle physics. His decades-long contributions span pioneering experimental work, leadership in major international collaborations, and the development of advanced data analysis tools. With a career marked by three prestigious 1st JINR Prizes, he has consistently demonstrated a high level of scientific excellence and innovation. His impactful research on nuclear reactions, polarization phenomena, and proton structure has significantly advanced our understanding of subatomic processes. Sitnik’s ability to bridge theoretical insight with practical implementation through software development for data analysis highlights his multidimensional expertise. His research has not only yielded highly cited publications but has also contributed to shaping experimental protocols and analytical methods in modern physics. Though there are opportunities for enhanced mentorship and broader dissemination of his recent work, Sitnik’s legacy is firmly established. He continues to be a vital figure in the scientific community, with a body of work that exemplifies dedication, intellectual rigor, and collaborative spirit. These achievements make him a worthy and compelling candidate for the Best Researcher Award and solidify his position as a leader in advancing the frontiers of nuclear science.

Publications Top Notes

1. The Final Version of the 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2024

2. Debugging the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, D.V. Nevsky

  • Journal: Computer Physics Communications

  • Year: 2024

  • Citations: 2

3. 5D Histogram Package NORA

  • Author: I.M. Sitnik

  • Journal: Computer Physics Communications

  • Year: 2023

4. Charge Exchange dp→(pp)n Reaction Study at 1.75 A GeV/c by the STRELA Spectrometer

  • Authors: S.N. Basilev, Y.P. Bushuev, S.A. Dolgiy, I.V. Slepnev, J. Urbán

  • Journal: European Physical Journal A

  • Year: 2021

  • Citations: 2

5. The Final Version of the FUMILIM Minimization Package

  • Authors: I.M. Sitnik, I.I. Alexeev, O.V. Selugin

  • Journal: Computer Physics Communications

  • Year: 2020

  • Citations: 9

6. Results of Measurements of the Analyzing Powers for Polarized Neutrons on C, CH₂ and Cu Targets for Momenta Between 3 and 4.2 GeV/c

  • Authors: I.M. Sitnik, S.N. Basilev, Y.P. Bushuev, J. Urbán, J. Mušinský

  • Type: Conference Paper

7. Measurement of Neutron and Proton Analyzing Powers on C, CH, CH₂ and Cu Targets in the Momentum Region 3–4.2 GeV/c

  • Authors: S.N. Basilev, Y.P. Bushuev, O.P. Gavrìshchuk, J. Urbán, J. Mušinský

  • Journal: European Physical Journal A

  • Year: 2020

  • Citations: 5

8. Technical Supplement to “Polarization Transfer Observables in Elastic Electron-Proton Scattering at Q² = 2.5, 5.2, 6.8 and 8.5 GeV²”

  • Authors: A.J.R. Puckett, E.J. Brash, M.K. Jones, B.B. Wojtsekhowski, S.A. Wood

  • Journal: Nuclear Instruments and Methods in Physics Research Section A

  • Year: 2018

 

 

Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Mrs. Prasanthi Vallurupalli | Computer Science | Best Innovator Award

Cybersecurity Software Engineer from J.B.Hunt Transport Inc, United States

Prasanthi Vallurupalli is a distinguished Cybersecurity Software Engineer with 11 years of experience in the IT industry. With a background as a Programmer Analyst and Software Developer, she has developed an extensive understanding of software development, security protocols, and emerging technologies. Throughout her career, Prasanthi has contributed significantly to the field of cybersecurity, AI, and machine learning (AI/ML) through research and practical applications. She is known for her expertise in cybersecurity and her ability to combine technical skills with a strategic vision for innovation. Her work in AI/ML and cybersecurity has been recognized in both industry and academia, making her a thought leader in the space. Her contributions extend beyond research, as she has published multiple papers and authored a nationally recognized book on cybersecurity, which demonstrates her leadership and commitment to advancing knowledge in the field. Recognized with numerous prestigious awards and editorial memberships, Prasanthi continues to drive industry transformation with a focus on innovation and technological advancements. Her deep expertise, combined with a passion for improving security technologies, positions her as a deserving candidate for recognition in the tech industry.

Professional Profile

Education

Prasanthi Vallurupalli holds a strong educational foundation in computer science and cybersecurity, which has been pivotal in her professional achievements. She earned a Bachelor’s degree in Computer Science, where she first developed a keen interest in software development and security technologies. Building upon this foundation, she pursued advanced studies in cybersecurity and AI/ML, further deepening her expertise. Throughout her academic journey, Prasanthi consistently excelled in both theoretical knowledge and practical applications, making her well-equipped to tackle the complexities of modern cybersecurity challenges. Her commitment to learning and growth has been a driving force in her career, allowing her to stay at the forefront of technological advancements. She has also participated in various professional development programs and workshops, which have kept her skills up to date with the latest trends in software security, machine learning, and AI. This ongoing pursuit of knowledge has not only enhanced her technical abilities but has also allowed her to contribute meaningfully to research in the field of cybersecurity. Prasanthi’s academic accomplishments have laid a solid foundation for her to thrive as a recognized expert in cybersecurity and AI/ML, shaping her career trajectory as a leading figure in the industry.

Professional Experience 

With 11 years of professional experience in the IT industry, Prasanthi Vallurupalli has held key roles as a Cybersecurity Software Engineer, Programmer Analyst, and Software Developer. In her career, she has successfully navigated a range of responsibilities, from coding and software design to ensuring the security and integrity of complex systems. Her expertise spans software development, cybersecurity practices, and the application of emerging technologies, particularly in AI/ML. Prasanthi’s work in developing secure software solutions and protecting against cybersecurity threats has made a substantial impact across industries. She has been involved in high-stakes projects where ensuring the confidentiality, integrity, and availability of data was paramount. Her leadership in driving security solutions has led to the implementation of innovative security protocols and AI-driven defense systems. Additionally, Prasanthi has actively collaborated with cross-functional teams, contributing to the development of robust solutions that integrate both technical and strategic elements. As a result of her consistent excellence and innovative approach, she has earned recognition from both her peers and industry leaders. Her professional journey reflects a blend of technical mastery, leadership, and a commitment to advancing the cybersecurity field, setting her apart as a leader in her domain.

Research Interests

Prasanthi Vallurupalli’s primary research interests lie at the intersection of cybersecurity and artificial intelligence/machine learning (AI/ML). She is particularly focused on developing advanced cybersecurity solutions using AI/ML techniques to protect against evolving cyber threats. Her work explores the use of AI in automating threat detection, identifying vulnerabilities, and building more secure systems. She is also interested in creating intelligent systems that can adapt to new types of attacks in real-time, improving the resilience of security systems. Another area of her research focuses on secure software development practices and the integration of AI-driven security mechanisms within software lifecycle management. Her interdisciplinary approach combines her expertise in cybersecurity with the potential of AI/ML to drive innovation and efficiency in the field. Additionally, Prasanthi is keen on studying how machine learning algorithms can predict and mitigate cybersecurity risks, including data breaches, malware attacks, and other vulnerabilities. She aims to contribute to developing more robust, adaptive, and scalable security systems that can stay ahead of cyber adversaries. As she continues to explore these research areas, Prasanthi’s work promises to make a significant impact in the way security systems are developed and deployed in an increasingly complex and dynamic digital landscape.

Research Skills 

Prasanthi Vallurupalli possesses a diverse and advanced set of research skills that are critical to her work in cybersecurity and artificial intelligence. Her proficiency in various programming languages, such as Python, C++, and Java, allows her to develop and implement security solutions using cutting-edge AI/ML algorithms. She is highly skilled in utilizing machine learning frameworks such as TensorFlow, Keras, and PyTorch, which she leverages to build and deploy AI-driven security models. Additionally, Prasanthi is adept at working with large datasets, performing data analysis, and utilizing statistical tools to derive meaningful insights related to cybersecurity threats and vulnerabilities. Her expertise in data mining and predictive modeling further enhances her ability to analyze complex patterns and anticipate potential risks. Prasanthi also excels in software development methodologies, ensuring that her research is not only technically sound but also practically applicable. Her research skills extend to system design, where she has contributed to the development of secure, scalable, and high-performance systems. Furthermore, Prasanthi is experienced in conducting literature reviews, drafting research papers, and presenting findings in academic and industry forums. Her ability to bridge theoretical knowledge with practical applications makes her research highly impactful in advancing the field of cybersecurity.

Awards and Honors

Prasanthi Vallurupalli’s work in cybersecurity and AI/ML has been widely recognized, earning her numerous prestigious awards and honors. She has received accolades for her research contributions, particularly in the areas of cybersecurity defense mechanisms and the integration of artificial intelligence in security systems. Among her significant achievements is her nationally recognized book on cybersecurity, which has garnered attention from both academic and industry circles. Additionally, Prasanthi has been awarded for her research papers, which have been published in respected journals within the cybersecurity and AI/ML domains. Her editorial memberships in prominent journals further underscore her credibility and standing as an expert in the field. Beyond her academic and professional recognitions, Prasanthi has been celebrated for her leadership in advancing the practice of cybersecurity through innovation and thought leadership. These awards and honors are a testament to her consistent excellence and dedication to improving the field of cybersecurity, and they serve as a reflection of the impact she has made on both her peers and the wider tech community. Prasanthi’s ability to inspire and lead in research has earned her a reputation as one of the leading figures in cybersecurity and AI/ML research.

Conclusion

Prasanthi Vallurupalli is an exemplary professional and researcher in the fields of cybersecurity and artificial intelligence. Her extensive experience, strong academic foundation, and groundbreaking research have positioned her as a leading figure in the tech industry. Through her numerous contributions, including publications, a nationally recognized book, and groundbreaking work in AI/ML-driven cybersecurity solutions, Prasanthi has demonstrated a deep commitment to advancing technology and tackling the most pressing challenges in cybersecurity. Her ability to seamlessly blend technical expertise with innovative thinking has allowed her to develop cutting-edge solutions to protect against evolving cyber threats. With over a decade of experience, she has continuously pushed the boundaries of cybersecurity, offering new approaches that improve both the security and functionality of systems. Prasanthi’s work has been acknowledged with prestigious awards and honors, reflecting the significant impact she has made in her field. As a thought leader, she not only contributes to the technical community but also drives industry-wide transformation through her research and leadership. Moving forward, Prasanthi is poised to continue her path of excellence, influencing the future of cybersecurity and AI/ML. Her ability to adapt and innovate ensures she remains a powerful force for positive change in the industry.

Publications Top Notes

  • Designing and Training of Lightweight Neural Networks on Edge Devices Using Early Halting in Knowledge Distillation

    • Authors: Rahul Mishra and Hari Prabhat Gupta

    • Year: 2022 ​

  • REAL-TIME CYBERSECURITY THREAT ASSESSMENT: DYNAMIC RISK SCORING WITH HYBRID DATA SCIENCE MODELS

    • Author: P. Vallurupalli

    • Year: 2022

Renato Souza | Computer Science | Best Researcher Award

Prof. Dr Renato Souza | Computer Science | Best Researcher Award

Teacher, INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ,  Brazil

Renato William Rodrigues de Souza is a distinguished candidate for the Research for Best Researcher Award, with a robust academic background and impressive professional experience. He earned his Doctorate in Applied Computer Science from the Universidade de Fortaleza in 2022 and a Master’s in Applied Computing from the Universidade Estadual do Ceará in 2015. As a professor and researcher at the Instituto Federal de Educação, Ciência e Tecnologia do Ceará, he leads the Laboratory of Innovation for the Development of the Semi-Arid Region (LISA). His research focuses on critical topics like Precision Agriculture and Wireless Sensor Networks, with notable contributions including his dissertation on “Fuzzy Optimum-Path Forest: A Novel Method for Supervised Classification.” Furthermore, Renato actively participates in various committees to enhance educational standards and addresses regional challenges through his work. His dedication to advancing knowledge and improving community welfare through technology makes him an exemplary candidate for this prestigious award.

Professional Profile

Education

Renato William Rodrigues de Souza boasts an extensive educational background that forms the foundation of his expertise in applied computer science. He earned his Doctorate in Applied Computer Science from the Universidade de Fortaleza in 2022, where his dissertation focused on innovative methods in supervised classification, particularly the “Fuzzy Optimum-Path Forest.” Prior to this, he completed his Master’s degree in Applied Computing at the Universidade Estadual do Ceará in 2015, with research emphasizing the simulation and analysis of wireless sensor networks applied to smart grids. Additionally, Renato holds multiple bachelor’s degrees, including Technology in Industrial Mechatronics and Information Systems, as well as degrees in Computer Networks. His commitment to continuous learning is further exemplified by numerous specializations in relevant fields, such as Systems Engineering and Computer Networks. This diverse educational portfolio not only showcases his dedication to advancing his knowledge but also equips him with the skills necessary to tackle complex challenges in his research and teaching endeavors.

Professional Experience

Renato William Rodrigues de Souza has a rich professional background, currently serving as a professor and researcher at the Instituto Federal de Educação, Ciência e Tecnologia do Ceará. His role encompasses teaching and guiding students in subjects such as Computer Networks and Distributed Systems. In addition to his teaching duties, he coordinates the Laboratory of Innovation for the Development of the Semi-Arid Region (LISA), where he leads research initiatives focused on Precision Agriculture and Wireless Sensor Networks. His expertise in applied computer science and machine learning enables him to contribute significantly to both academic and practical advancements in these fields. Furthermore, Renato has participated in various institutional committees, including the Academic Core and the Evaluation Commission, where he has worked to enhance educational standards and foster a collaborative academic environment. His commitment to education, research, and community development highlights his dedication to advancing knowledge and addressing real-world challenges.

Research Contributions

Renato Rodrigues has published impactful research on various advanced topics such as Optimum-Path Forest, fuzzy systems, and machine learning applications in smart grids. His doctoral dissertation on “Fuzzy Optimum-Path Forest: A Novel Method for Supervised Classification” showcases his innovative approach to supervised classification, emphasizing his research’s relevance and potential applications in real-world scenarios. His work aligns with current trends in artificial intelligence and data science, further solidifying his position as a leading researcher in his field.

Awards and Honors

Renato William Rodrigues de Souza has received numerous awards and honors throughout his academic and professional career, recognizing his significant contributions to the field of applied computer science. Notably, he was awarded the prestigious CAPES scholarship during his doctoral studies, which facilitated his research on innovative machine learning methodologies. His exceptional work on Fuzzy Optimum-Path Forest earned him recognition at various academic conferences, where he received accolades for his presentations on supervised classification techniques. Additionally, his commitment to education and community service has been acknowledged through various institutional awards at the Instituto Federal do Ceará, highlighting his impact as a professor and mentor. Renato’s research in Precision Agriculture and Wireless Sensor Networks has also garnered funding from regional development initiatives, further underscoring the societal relevance of his work. These awards and honors not only reflect his expertise but also his dedication to advancing knowledge and technology for the betterment of society.

Conclusion

In conclusion, Renato William Rodrigues de Souza exemplifies the qualities sought in a recipient of the Research for Best Researcher Award. His robust educational background, extensive professional experience, innovative research contributions, and leadership roles position him as a highly qualified candidate for this recognition. His work not only advances the field of computer science but also has significant implications for improving the lives of individuals in his community and beyond.

Publication Top Notes

  • Green AI in the finance industry: Exploring the impact of feature engineering on the accuracy and computational time of Machine Learning models
    • Authors: Marcos R. Machado; Amin Asadi; Renato William R. de Souza; Wallace C. Ugulino
    • Year: 2024
    • Citations: Not available yet (as the publication is set to be released in December 2024)
    • DOI: 10.1016/j.asoc.2024.112343
  • Computer-assisted Parkinson’s disease diagnosis using fuzzy optimum-path forest and Restricted Boltzmann Machines
    • Authors: Renato W.R. de Souza; Daniel S. Silva; Leandro A. Passos; Mateus Roder; Marcos C. Santana; Plácido R. Pinheiro; Victor Hugo C. de Albuquerque
    • Year: 2021
    • Citations: 46 (as of October 2024)
    • DOI: 10.1016/j.compbiomed.2021.104260
  • A Novel Approach for Optimum-Path Forest Classification Using Fuzzy Logic
    • Authors: Renato William R. de Souza
    • Year: 2020
    • Citations: 35 (as of October 2024)
  • Deploying wireless sensor networks–based smart grid for smart meters monitoring and control
    • Authors: Renato William R. de Souza
    • Year: 2018
    • Citations: 21 (as of October 2024)

 

Aniruddha Deka | Computer Science | Best Researcher Award

Dr. Aniruddha Deka | Computer Science | Best Researcher Award

Associate Professor at Assam down town University, India.

Dr. Aniruddha Deka is a respected figure in the academic and research community of Computer Science and Engineering, currently holding the position of Associate Dean (Academics) and Associate Professor at Assam down town University, Guwahati, Assam. With an impressive educational background that includes a Ph.D. in Speech Processing from Bodoland University, an M.Tech in IT from Gauhati University, and a B.E in CSE from North Eastern Hill University, Dr. Deka has built a career marked by significant achievements in teaching, research, and administration.

Professional Profiles:

Education:

Dr. Aniruddha Deka has pursued a comprehensive academic journey, culminating in significant achievements across various levels of higher education. His educational endeavors include a Ph.D. in Speech Processing from Bodoland University, earned in 2019, which underscores his specialized expertise in this domain. Prior to this, he obtained a Master’s degree in Information Technology (IT) from Gauhati University in 2012, and a Bachelor’s degree in Computer Science and Engineering (CSE) from North Eastern Hill University in 2006. Dr. Deka’s academic foundation was laid with his Higher Secondary (H.S.) education in Science from the Assam Higher Secondary Education Council in 2002, followed by his High School Leaving Certificate (H.S.L.C) from the Secondary Education Board of Assam (SEBA) in 1999. This rich educational background reflects his commitment to advancing knowledge and expertise in the field of Computer Science and Engineering.

Research Experience:

Dr. Aniruddha Deka has amassed a wealth of research experience across various domains within Computer Science and Engineering. His contributions encompass cutting-edge research in speech processing, where he has delved into innovative methods for analyzing and interpreting speech signals, thereby advancing the fields of speech recognition, synthesis, and understanding. Additionally, Dr. Deka has actively engaged in software development projects during his tenure as an Assistant Project Engineer at IIT Guwahati, demonstrating his ability to design and implement solutions to real-world problems. As an academic leader and Associate Dean (Academics), he has played a pivotal role in fostering a culture of research within his institution, providing mentorship to students and faculty members and promoting interdisciplinary collaborations. Furthermore, his industry experience as an Assistant System Engineer at TCS has equipped him with valuable insights into industry practices, facilitating collaboration between academia and industry. Dr. Deka’s diverse research portfolio underscores his dedication to advancing knowledge and driving innovation in Computer Science and Engineering.

Research Interest:

Dr. Aniruddha Deka’s research interests lie at the intersection of technology and its practical applications, particularly within the realm of Computer Science and Engineering. With a keen focus on speech processing, he seeks to unravel the complexities of analyzing and interpreting speech signals, aiming to enhance speech recognition, synthesis, and understanding technologies. Dr. Deka is also intrigued by the possibilities offered by software development, where he explores innovative solutions to real-world challenges, leveraging his expertise to create impactful tools and systems. Furthermore, as an academic leader, he is deeply committed to fostering a vibrant research culture within his institution, encouraging interdisciplinary collaborations and guiding aspiring researchers towards meaningful contributions in their respective fields. Dr. Deka’s research interests reflect his dedication to pushing the boundaries of knowledge and technology, with a vision to address pressing societal needs and drive positive change through innovative research endeavors.

Award and Honors:

Dr. Aniruddha Deka’s exceptional contributions to Computer Science and Engineering have garnered him recognition and honors throughout his career. His dedication to excellence in teaching, research, and academic leadership has been acknowledged through a variety of awards. These include the Outstanding Researcher Award, which celebrates his significant advancements in speech processing and software development, highlighting his impact on pushing the boundaries of knowledge in the field. Additionally, his role as Associate Dean (Academics) has been honored with the Excellence in Academic Leadership Award, recognizing his efforts in fostering a culture of research and academic excellence within his institution. Dr. Deka’s scholarly work has also been recognized with Best Paper Awards, underscoring the quality and significance of his research contributions. Furthermore, his industry experience and service on academic committees have earned him industry recognition and service awards, reflecting his multifaceted expertise and commitment to both academia and industry. These accolades serve as a testament to Dr. Deka’s outstanding achievements and leadership in Computer Science and Engineering, solidifying his reputation as a respected figure in the field.

Research Skills:

Dr. Aniruddha Deka possesses a diverse set of research skills honed through years of academic and professional experience in Computer Science and Engineering. With a solid foundation in research methodologies acquired during his doctoral and postgraduate studies, Dr. Deka demonstrates proficiency in experimental design, data collection, and statistical analysis. His expertise extends to conducting comprehensive literature reviews, critically evaluating existing research, and identifying gaps in knowledge to inform his own research endeavors. Dr. Deka’s strong analytical skills enable him to derive meaningful insights from complex datasets, contributing to advancements in speech processing and software development. Moreover, his collaborative approach and effective communication skills facilitate interdisciplinary collaborations, fostering innovative research projects that address real-world challenges. As an academic leader, Dr. Deka is committed to mentoring students and guiding them in developing their research skills, ensuring the next generation of researchers is equipped to make significant contributions to the field. Overall, Dr. Aniruddha Deka’s research skills, coupled with his dedication to excellence, position him as a valuable asset to the research community in Computer Science and Engineering.

Publications:

Early diagnosis of rice plant disease using machine learning techniques – M Sharma, CJ Kumar, A Deka, Archives of Phytopathology and Plant Protection, 55 (3), 259-283, 2022. Citations: 61

Assamese spoken query system to access the price of agricultural commodities – S Shahnawazuddin, D Thotappa, BD Sarma, A Deka, SRM Prasanna, et al., 2013 National Conference on Communications (NCC), 1-5, 2013. Citations: 29

Low complexity on-line adaptation techniques in context of Assamese spoken query system – S Shahnawazuddin, KT Deepak, BD Sarma, A Deka, SRM Prasanna, et al., Journal of Signal Processing Systems, 81, 83-97, 2015. Citations: 11

Land cover classification: a comparative analysis of clustering techniques using Sentinel-2 data – M Sharma, CJ Kumar, A Deka, International Journal of Sustainable Agricultural Management and Informatics, 2021. Citations: 8

A Comparative Analysis of Vegetation Radiometric Indices for Classification of Bambusa Tulda using Satellite Imagery – M Sharma, A Deka, International Journal of Computer Sciences and Engineering Open Access, 7 (1), 2019. Citations: 4

Spoken dialog system in Bodo language for agro services – A Deka, MK Deka, Advances in Electronics, Communication and Computing: ETAEERE-2016, 623-631, 2018. Citations: 4

Speaker independent speech based telephony service for agro service using asterisk and sphinx 3 – A Deka, MK Deka, Int. J. Comput. Sci. Eng. Open Access, 4, 47-52, 2016. Citations: 3

A review of physiological signal processing via Machine Learning (ML) for personal stress detection – M Lourens, SM Beram, BB Borah, AP Dube, A Deka, V Tripathi, 2022 2nd International Conference on Advance Computing and Innovative …, 2022. Citations: 2

A hybrid Grasshopper optimization algorithm for skin lesion segmentation and melanoma classification using deep learning – P Thapar, M Rakhra, M Alsaadi, A Quraishi, A Deka, JVN Ramesh, Healthcare Analytics, 100326, 2024. Citations:

HandloomGCN: Real-time handloom design generation using Generated Cellular Network – A Das, A Deka, International Journal of Computing and Digital Systems, 16 (1), 1-10, 2024.