Chandan Kumar Sah | Computer Science | Best Researcher Award

Mr. Chandan Kumar Sah | Computer Science | Best Researcher Award

Postgraduate Research Student at Beihang University, China.

Chandan Kumar Sah, also known as Rocky, is a driven software engineer and AI entrepreneur with a profound interest in artificial intelligence and software development. He aims to leverage his expertise to tackle global challenges through innovative technological solutions. His academic journey, combined with hands-on experience in various software development projects, positions him as a promising figure in the fields of software engineering and AI. With a strong entrepreneurial mindset, Chandan seeks opportunities that allow him to lead impactful projects, contributing to advancements in technology. He is proficient in multiple programming languages and has developed skills in machine learning, deep learning, and AI policy. His passion for research and collaboration is evident in his active participation in academic initiatives and organizations. Chandan is not only dedicated to his professional growth but also committed to fostering innovation in his community, making him a well-rounded candidate for awards and recognition in his field.

Professional Profile

Education

Chandan Kumar Sah is currently pursuing a postgraduate degree in Software Engineering at Beihang University, Beijing, China, having enrolled in September 2022. Prior to this, he completed his Bachelor’s degree in Software Engineering at Sichuan University, Chengdu, China, graduating in December 2021. Throughout his educational journey, Chandan has excelled academically, demonstrating a solid understanding of core software engineering principles and practices. He has also sought to expand his knowledge through various certifications, including the CS50: Introduction to Computer Science from Harvard University in 2020 and a specialization in Artificial Intelligence Foundations from Imperial College London in 2024. Additionally, he participated in an Innovation & Entrepreneurship program at Tsinghua University, further enhancing his entrepreneurial skill set. Chandan’s diverse educational background reflects his commitment to lifelong learning and his pursuit of excellence in the rapidly evolving field of technology.

Professional Experience

Chandan Kumar Sah has gained valuable professional experience through various internships and positions in the software engineering and AI sectors. He started as a Software Engineer Intern at Chengdu SunCaper Data Co., Ltd., where he honed his skills in developing software programs and applications from January to July 2021. Following this, he worked part-time at Tilicho Online Shopping in Kathmandu, Nepal, from November 2021 to October 2022, where he applied his software development knowledge in an e-commerce setting. Chandan also completed a virtual internship with Linklaters as a part of the AI Policy Research Group from June to October 2021, contributing to the exploration of AI policy frameworks. Currently, he serves as an AI Policy Research Group Member at the Center for AI and Digital Policy in Washington, DC, from December 2023 to April 2024. This diverse experience showcases his adaptability and eagerness to engage with cutting-edge projects and policies, positioning him well for future leadership roles in the industry.

Research Interests

Chandan Kumar Sah has a strong focus on the integration of artificial intelligence within software engineering, particularly in the realms of fairness evaluations, classification algorithms, and the development of interactive software applications. His research interests encompass critical evaluations of large language models, specifically in recommendation systems for music and movies. He seeks to address biases within these systems through rigorous analysis and innovative frameworks. Chandan is also keenly interested in the educational implications of AI, exploring how these technologies can be integrated into software engineering curricula to enhance learning outcomes. Furthermore, his research extends to the development of voice and vision-enabled AI agents for real-time applications in software engineering. Through his work, he aims to contribute to a deeper understanding of AI’s impact on society and improve the ethical considerations surrounding its deployment in various applications. Chandan’s multidisciplinary approach underscores his commitment to advancing knowledge in both AI and software engineering.

Research Skills

Chandan Kumar Sah possesses a robust set of research skills that underpin his work in software engineering and artificial intelligence. His proficiency in multiple programming languages, coupled with expertise in artificial intelligence, machine learning, and deep learning, enables him to design and implement effective research methodologies. Chandan is adept in project management, allowing him to oversee research projects from inception to completion while ensuring alignment with overarching goals. He demonstrates strong analytical abilities, enabling him to critically assess existing literature and evaluate data effectively. His skills in prompt engineering further enhance his capacity to develop AI-driven solutions tailored to specific research inquiries. Additionally, Chandan’s experience in collaborative research environments equips him with excellent communication and teamwork skills, fostering productive interactions with fellow researchers and stakeholders. His commitment to continuous learning is evident in his pursuit of advanced courses and certifications, ensuring that he remains at the forefront of technological advancements in his field.

Awards and Honors

Chandan Kumar Sah has received numerous awards and honors that reflect his outstanding achievements and contributions to the fields of software engineering and artificial intelligence. He was recognized as a Leader of Tomorrow at the prestigious St. Gallen Symposium in 2024, a testament to his leadership potential. Additionally, he won the St. Gallen Symposium Global Essay Competition in the same year, showcasing his ability to articulate innovative ideas effectively. Chandan has also been awarded the Innovative Development Award by Tsinghua University in 2024, further highlighting his commitment to innovation. His academic excellence has been recognized through the Distinguished Foreign Student Scholarship at Beihang University and the China Government Scholarship, which facilitated his studies in China. Other notable recognitions include the Best Oral Presentation Award at the 1st International Terahertz Summer School and several scholarships related to machine learning and data science. These accolades underscore Chandan’s dedication to his field and his potential as a leader in technology and research.

Conclusion:

Chandan Kumar Sah is a commendable candidate for the Best Researcher Award, characterized by his impressive educational background, diverse research experience, notable publications, and leadership roles. His strengths position him well for continued contributions to the fields of software engineering and artificial intelligence. By addressing the suggested areas for improvement, he could further amplify the impact of his research and solidify his status as a leading researcher. His ambition and commitment to innovation align well with the values of the award, making him a suitable recipient.

 

Publications Top Notes

  1. Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours
    • Authors: Liu, J., Zhao, H., Gao, T., Zhang, N., Liu, Y.
    • Year: 2024
  2. Self-delivery photothermal-boosted-nanobike multi-overcoming immune escape by photothermal/chemical/immune synergistic therapy against HCC
    • Authors: Yang, H., Mu, W., Yuan, S., Liu, Y., Zhang, N.
    • Year: 2024
  3. Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems
    • Authors: Liu, J., Liu, J., Mu, W., Liu, Y., Zhang, N.
    • Year: 2024
    • Citations: 1
  4. In Situ Hydrogel Modulates cDC1-Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency
    • Authors: Gao, T., Yuan, S., Liang, S., Zhang, N., Liu, Y.
    • Year: 2024
  5. Nano-Regulator Inhibits Tumor Immune Escape via the “Two-Way Regulation” Epigenetic Therapy Strategy
    • Authors: Liang, S., Liu, M., Mu, W., Jiang, D., Zhang, N.
    • Year: 2024
    • Citations: 3
  6. Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy
    • Authors: Xia, Z., Mu, W., Yuan, S., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 2
  7. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy
    • Authors: Xia, Y., Fu, S., Ma, Q., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 30
  8. Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling
    • Authors: Fu, S., Chang, L., Liu, S., Liu, Y., Zhang, N.
    • Year: 2023
    • Citations: 32
  9. Corrigendum to “In-situ self-assembled vaccine constructed with dual switchable nanotransformer for tumor immunotherapy”
    • Authors: Zhang, Z., Liang, S., Fu, S., Liu, Y., Zhang, N.
    • Year: 2023
  10. Macrophage-camouflaged epigenetic nanoinducers enhance chemoimmunotherapy in triple negative breast cancer
  • Authors: Gao, T., Sang, X., Huang, X., Liu, Y., Zhang, N.
  • Year: 2023
  • Citations: 3

 

 

 

Dr. Cong Guo | Computer Science | Best Researcher Award

Dr. Cong Guo | Computer Science | Best Researcher Award

Nurse Practitioner at UNC Blue Ridge, United States.

Cong Guo, who earned his master’s degree in 2024 from the School of Computer and Information Engineering at Henan University, is currently pursuing a PhD in Computer Science and Technology at Zhejiang Normal University. His research specializes in machine learning and pattern recognition, fields that are increasingly relevant in today’s data-driven landscape. Guo has made significant contributions to the field, as evidenced by his publications, including a novel feature selection framework for incomplete data and a method for iterative missing value imputation based on feature importance. These works demonstrate his innovative approach to addressing common challenges in data science. While his academic background and publication record are impressive, expanding his publication scope and enhancing networking opportunities could further elevate his research impact. With his solid foundation and commitment to advancing knowledge in machine learning, Cong Guo is a promising candidate for recognition as a leading researcher.

Profile:

Education

Cong Guo received his master’s degree in 2024 from the School of Computer and Information Engineering at Henan University, where he laid a strong foundation in computer science principles and research methodologies. His academic journey has been characterized by a focus on machine learning and pattern recognition, reflecting his passion for harnessing data to solve complex problems. Currently, Cong is pursuing his Ph.D. at the School of Computer Science and Technology at Zhejiang Normal University, further enhancing his expertise in these cutting-edge fields. His educational experiences have equipped him with essential skills in data analysis, algorithm development, and statistical modeling, which are critical for his research. Throughout his studies, Cong has demonstrated a commitment to academic excellence and innovation, making significant strides in understanding and improving feature selection and data imputation techniques. His educational background positions him as a promising researcher in the rapidly evolving landscape of computer science.

Professional Experiences 

Cong Guo has demonstrated significant commitment to his academic and professional development in the field of computer science. He obtained his master’s degree from the School of Computer and Information Engineering at Henan University in 2024, where he developed a solid foundation in computer science principles and applications. Currently, he is pursuing his PhD at the School of Computer Science and Technology at Zhejiang Normal University, focusing on machine learning and pattern recognition. During his studies, Guo has engaged in research projects that involve innovative approaches to data analysis, particularly in handling incomplete datasets and missing value imputation. His publications in reputable journals reflect his dedication to advancing knowledge in his field. Additionally, his collaborative work with fellow researchers highlights his ability to contribute effectively to team-oriented projects, enhancing his experience and understanding of complex computational problems. This combination of academic rigor and research experience positions Guo as a promising researcher in computer science.

Research Interests

Cong Guo’s research interests lie primarily in the fields of machine learning and pattern recognition, where he aims to develop innovative algorithms and frameworks to address real-world challenges in data analysis. His work focuses on enhancing feature selection and imputation techniques, particularly in the context of incomplete datasets, which are common in many applications. By investigating novel approaches to handle missing data, Cong seeks to improve the accuracy and efficiency of machine learning models. Additionally, he is interested in exploring the broader implications of machine learning across various domains, such as healthcare, finance, and environmental science. Cong’s passion for advancing knowledge in these areas drives his commitment to research that not only contributes to theoretical advancements but also has practical applications that can benefit society. Through his ongoing doctoral studies and collaborative projects, he aims to further explore the intersections of machine learning and real-world problem-solving.

Research Skills 

Cong Guo possesses a robust set of research skills that enhance his capabilities in machine learning and pattern recognition. His proficiency in feature selection and data imputation techniques demonstrates a strong analytical mindset, enabling him to address complex challenges in handling incomplete datasets effectively. Guo is adept at employing various machine learning algorithms and tools, which allows him to develop innovative frameworks that optimize data analysis processes. His experience in collaborative research, evidenced by his co-authored publications, showcases his ability to work effectively in teams, share ideas, and contribute to collective goals. Additionally, Guo’s familiarity with statistical methods and computational techniques underpins his research, ensuring that his findings are both rigorous and applicable. His commitment to continuous learning and adaptation to emerging trends in technology further solidifies his expertise, making him a valuable asset in advancing the field of computer science and information engineering.

Award and Recognition 

Cong Guo has distinguished himself in the field of machine learning and pattern recognition, earning recognition for his innovative research contributions. He completed his master’s degree in 2024 at the School of Computer and Information Engineering, Henan University, where he developed a strong foundation in computational methodologies. Currently pursuing his PhD at Zhejiang Normal University, Cong has co-authored impactful publications, including “A novel feature selection framework for incomplete data” and “Iterative missing value imputation based on feature importance,” which have been well-received in reputable journals. His research not only addresses critical challenges in data science but also demonstrates his potential to influence future advancements in the field. Cong’s commitment to academic excellence and his collaborative spirit have garnered him respect among peers and mentors alike, positioning him as a promising candidate for the Best Researcher Award. His ongoing efforts are indicative of a bright future in research and innovation.

Conclusion

Cong Guo exhibits a promising trajectory in research, with a strong academic foundation and relevant publications in machine learning and pattern recognition. His commitment to advancing the field is evident in his current work. By broadening his publication efforts and enhancing his professional network, he can significantly improve his contributions to research. Given his strengths and potential for growth, Cong Guo is a suitable candidate for the Best Researcher Award.

Publication Top Notes
  1. A novel feature selection framework for incomplete data
  2. Iterative missing value imputation based on feature importance
  3. KNCFS: Feature selection for high-dimensional datasets based on improved random multi-subspace learning

 

 

SAI KRISHNA MANOHAR CHEEMAKURTHI | Computer Science | Best Researcher Award

Mr. Sai Krishna Manohar Cheemakurthi | Computer Science | Best Researcher Award

Sai Krishna Manohar Cheemakurthi, U.S. BANK, United States.

Sai Krishna Manohar Cheemakurthi is a seasoned IT professional with over 8 years of experience specializing in Big Data Analytics, Splunk architecture, and cloud-based solutions. He holds numerous certifications, including Splunk Core Certified Consultant and AWS Solutions Architect. Sai Krishna has expertise in designing and implementing Splunk infrastructure for both on-premises and cloud environments, particularly on AWS and Azure. His strong technical background includes scripting in Python, Shell, and Perl, and experience with Hadoop, RDBMS, and various data warehousing tools. Sai Krishna has led teams in migrating vast amounts of data, optimizing infrastructure costs, and enhancing performance through DevOps practices. His research work has been published in reputed journals, covering topics like data science analytics and secure cloud storage. His leadership roles at major financial institutions demonstrate his ability to drive technical innovation and efficiency in complex, large-scale environments.

Profile:

Education

Sai Krishna Manohar Cheemakurthi has a strong educational background that forms the foundation of his expertise in Information Technology and Big Data Analytics. He holds a Bachelor’s degree in Electronics and Communication Engineering, which equipped him with the fundamental skills in computer systems, software engineering, and electronics. His academic training in engineering has allowed him to develop a solid technical understanding of various programming languages, including Python, C++, and Java. Complementing his formal education, Sai Krishna has pursued multiple industry-recognized certifications such as AWS Certified Solutions Architect, Splunk Core Certified Consultant, and Proofpoint Certified Insider Threat Specialist. These certifications demonstrate his commitment to staying at the forefront of technology trends and expanding his knowledge in cloud computing, cybersecurity, and big data platforms. His blend of formal education and specialized certifications enables him to effectively architect and implement advanced IT solutions for a range of business challenges.

Professional Experiences 

Sai Krishna Manohar Cheemakurthi is an accomplished IT professional with over 8 years of experience in Big Data Analytics, Splunk architecture, and cloud solutions. Currently serving as Vice President – Lead Infrastructure Engineer at U.S. Bank, he leads a team in designing and implementing scalable Splunk infrastructures across global regions, optimizing costs, and automating processes. Previously, he was Vice President – Global Splunk Architect at Brown Brothers Harriman & Co., where he managed a global team and drove automation and cloud security solutions. As a Senior Splunk Architect at First Republic Bank, Sai Krishna successfully migrated large-scale Splunk infrastructures from on-premise to cloud platforms, improving disaster recovery and performance. His extensive experience includes leveraging AWS, Azure, Ansible, and Terraform to streamline operations, implementing DevOps methodologies, and delivering robust business intelligence solutions. Throughout his career, Sai Krishna has demonstrated strong leadership, technical expertise, and a commitment to innovation and optimization.

Awards and Honors

Sai Krishna Manohar Cheemakurthi has been recognized for his outstanding contributions in the field of Information Technology, particularly in Big Data Analytics and Splunk Architecture. His technical expertise and leadership have earned him numerous certifications, including Splunk Core Certified Consultant, Splunk Enterprise Certified Architect, and AWS Certified Solutions Architect, showcasing his proficiency in cloud and data platforms. He holds certifications in Sumo Logic, Proofpoint, and IBM’s Big Data Fundamentals, further enhancing his capabilities in cybersecurity and data analysis. His achievements extend to academia, where he has authored multiple research papers published in prestigious journals such as IOSR Journals and Elixir International Journal. These papers focus on cloud computing, wireless sensor networks, and quantum key distribution, demonstrating his innovative approach to solving complex challenges in IT. Sai Krishna’s ability to seamlessly integrate technical expertise with research and practical application has solidified his reputation as a leader in his domain.

Research Interest

Sai Krishna Manohar Cheemakurthi’s research interests focus on leveraging cutting-edge technologies in big data analytics, cloud computing, and cybersecurity to optimize IT infrastructure and improve data-driven decision-making. With a strong foundation in Splunk architecture, he explores advanced methods for data ingestion, transformation, and analysis, aiming to enhance the performance and security of enterprise systems. His work spans cloud migration strategies, particularly from on-premise to cloud environments like AWS, and includes innovative solutions such as quantum key distribution and secure data storage in cloud computing. Sai Krishna is also interested in the development of scalable solutions for monitoring and responding to security incidents in real-time using SIEM technologies. His research extends to cost optimization strategies, automation, and the integration of machine learning in data analytics, reflecting a forward-thinking approach to emerging trends in IT infrastructure and cybersecurity.

Research Skills

Sai Krishna Manohar Cheemakurthi possesses exceptional research skills honed over 8+ years in Information Technology, specializing in Big Data Analytics and Splunk Architecture. He is adept at designing, implementing, and optimizing complex infrastructures, focusing on Splunk and cloud technologies like AWS and Azure. His research interests include secure data management, cloud migration, and cost optimization, reflected in his publications on data analytics, cloud computing, and wireless sensor networks. Sai has a proven ability to conduct deep analysis of vast datasets, using tools like Splunk, Hadoop, and various BI platforms to generate actionable insights. He has demonstrated proficiency in developing proof-of-concept solutions for enhanced infrastructure health and performance. His expertise in scripting languages (Python, Shell, Perl) enables automation and innovative approaches in data ingestion, security monitoring, and system upgrades. Sai’s strong technical acumen, combined with a focus on optimizing IT processes, underscores his impactful contributions to the field.

Publication Top Notes
  • Cloud Observability In Finance: Monitoring Strategies For Enhanced Security
    • Authors: NB Kilaru, SKM Cheemakurthi
    • Year: 2023
    • Journal: NVEO-Natural Volatiles & Essential Oils
    • Volume/Issue/Page: 10(1), 220-226
  • Mitigating Threats in Modern Banking: Threat Modeling and Attack Prevention with AI and Machine Learning
    • Authors: SK Manohar, V Gunnam, NB Kilaru
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
  • Next-gen AI and Deep Learning for Proactive Observability and Incident Management
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1550-1564
  • Scaling DevOps with Infrastructure as Code in Multi-Cloud Environments
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2022
    • Journal: Turkish Journal of Computer and Mathematics Education
    • Volume/Issue/Page: 13(3), 1189-1200
  • Advanced Anomaly Detection In Banking: Detecting Emerging Threats Using SIEM
    • Authors: NBK Sai Krishna Manohar Cheemakurthi, Vinodh Gunnam
    • Year: 2021
    • Journal: International Journal of Computer Science and Mechatronics (IJCSM)
    • Volume/Issue/Page: 7(04), 28-33
  • Analytics of Data Science using Big Data
    • Authors: CSK Manohar
    • Year: 2013
    • Journal: IOSR Journal of Computer Engineering
    • Volume/Issue/Page: 10(2), 19-21
  • AI-Powered Fraud Detection: Harnessing Advanced Machine Learning Algorithms for Robust Financial Security
    • Authors: SKM Cheemakurthi, NB Kilaru, V Gunnam
    • Year: (Not provided)
  • Deep Learning Models For Fraud Detection In Modernized Banking Systems: Cloud Computing Paradigm
    • Authors: Y Vasa, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)
  • SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security
    • Authors: NB Kilaru, SKM Cheemakurthi, V Gunnam
    • Year: (Not provided)
  • AI-Driven SOAR in Finance: Revolutionizing Incident Response and PCI Data Security with Cloud Innovations
    • Authors: V Gunnam, SKM Cheemakurthi, NB Kilaru
    • Year: (Not provided)

 

 

Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh | Engineering | Best Researcher Award

Assoc Prof Dr. Navid Ghaffarzadeh, Imam Khomeini International University, Iran

Assoc Prof Dr. Navid Ghaffarzadeh is an accomplished engineer recognized for his innovative contributions to the field of engineering. With a focus on [specific area of expertise], he has been instrumental in advancing research and development initiatives. His dedication and impactful work earned him the prestigious Best Researcher Award, highlighting his commitment to excellence and collaboration. Navid continues to inspire through his research, aiming to drive advancements that benefit both industry and society.

 

Profile:

Education

Navid Ghaffarzadeh earned his PhD in Electrical Engineering from Iran University of Science and Technology in Tehran, completing his studies from September 2007 to April 2011. Prior to that, he obtained his Master of Science in Electrical Engineering from Amirkabir University of Technology (Tehran Polytechnic) between September 2005 and August 2007. He also holds a Bachelor of Science in Electrical Engineering from Zanjan University, where he studied from September 2001 to June 2005.

Professional Activities

Navid Ghaffarzadeh is actively engaged in the academic community as a reviewer for numerous prestigious journals in the field of electrical engineering. His reviewing contributions span a wide array of publications, including Renewable and Sustainable Energy Reviews, Applied Energy, Journal of Energy Storage, and IEEE Transactions on Power Systems, among others, with impact factors ranging from 1.276 to 16.799. With over 100 reviewed journal papers, Navid plays a vital role in advancing research quality and integrity in the field. His extensive experience demonstrates his commitment to fostering innovation and excellence in engineering research.

Research Interests

Navid Ghaffarzadeh’s research interests encompass a wide range of cutting-edge topics in electrical engineering. He focuses on renewable energy, exploring innovative solutions in battery energy storage systems and electric vehicles. His work in microgrid and smart grid design aims to enhance the efficiency and reliability of power systems. Navid is particularly interested in the application of artificial intelligence in renewable energy systems, as well as power systems protection and transients. Additionally, he investigates intelligent systems and optimization techniques to improve power systems, with a strong emphasis on ensuring power quality.

Honors and Awards: ‌

Navid Ghaffarzadeh has received numerous honors and awards throughout his academic and professional career. In 2012, he was honored with the IET Science, Measurement and Technology Premium Award for his outstanding paper on power quality disturbances, recognized as one of the best published in the journal. He has been named Outstanding Researcher at I.K International University multiple times, in 2013, 2014, 2016, and 2020, and has also received the Outstanding Professor award in 2017, 2019, 2020, 2021, and 2023. Additionally, he was awarded the Best Iranian PhD Dissertation in power system protection, highlighting his significant contributions to the field. Navid achieved top rankings in his studies, finishing first among PhD electrical power engineering students at Iran University of Science and Technology with a GPA of 18.72 out of 20, first among M.Sc. students at Amirkabir University of Technology with a GPA of 19.18 out of 20, and first among B.Sc. students at Zanjan University with a GPA of 18.36 out of 20.

 

Publication Top Note

A. Bamshad, N. Ghaffarzadeh, “A novel smart overcurrent protection scheme for renewables-dominated distribution feeders based on quadratic-level multi-agent system (Q-MAS),” Electrical Engineering, vol. 105, pp. 1497–1539, February 2023.

S. Ansari, N. Ghaffarzadeh, “A Novel Superimposed Component-Based Protection Method for Multi Terminal Transmission Lines Using Phaselet Transform,” IET Generation, Transmission & Distribution, vol. 17, no. 1, pp. 469–485, January 2023.

A. HN. Tajani, A. Bamshad, N. Ghaffarzadeh, “A novel differential protection scheme for AC microgrids based on discrete wavelet transform,” Electric Power Systems Research, vol. 220, pp. 1-12, July 2023.

A. Zarei, N. Ghaffarzadeh, “Optimal Demand Response-based AC OPF Over Smart Grid Platform Considering Solar and Wind Power Plants and ESSs with Short-term Load Forecasts using LSTM,” Journal of Solar Energy Research, vol. 8, no. 2, pp. 1367-1379, April 2023.

M. Dodangeh, N. Ghaffarzadeh, “A New Protection Method for MTDC Solar Microgrids using on-line Phaselet, Mathematical Morphology, and Signal Energy Analysis,” Energy Engineering & Management, vol. 13, no. 1, pp. 40-53, March 2023 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “An Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems,” Energy Engineering & Management, vol. 12, no. 2, pp. 12-25, August 2022 (in Persian).

M. Dodangeh, N. Ghaffarzadeh, “Optimal Location of HTS-FCLs Considering Security, Stability, and Coordination of Overcurrent Relays and Intelligent Selection of Overcurrent Relay Characteristics in DFIG Connected Networks Using Differential Evolution Algorithm,” Energy Engineering & Management, vol. 10, no. 2, pp. 14-25, May 2020 (in Persian).

A. Inanloo Salehi, N. Ghaffarzadeh, “Fault detection and classification of VSC-HVDC transmission lines using a deep intelligent algorithm,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 2, pp. 161-170, September 2022.

N. Ghaffarzadeh, H. Faramarzi, “Optimal Solar plant placement using holomorphic embedded power flow considering the clustering technique in uncertainty analysis,” Journal of Solar Energy Research, vol. 7, no. 1, pp. 997-1007, Winter 2022.

N. Ghaffarzadeh, A. Bamshad, “A new approach to AC microgrids protection using a bi-level multi-agent system,” International Journal of Research and Technology in Electricity Industry, vol. 1, no. 1, pp. 66-74, March 2022.

Amel SAHLI | Computer Science | Best Researcher Award

MS. Amel SAHLI | Computer Science | Best Researcher Award

École Nationale des Sciences de l’Informatique , Tunisia

Amel Sahli is a dedicated researcher pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique in Tunisia, focusing on optimizing e-learning processes through AI and key performance indicators. She holds a Master’s degree in information systems and has published significant work on performance measurement in education. Sahli’s diverse professional background includes roles as a contract lecturer and various internships, providing her with practical insights and teaching experience. Her technical skills in programming and web development, coupled with her proficiency in Arabic, French, and English, enhance her ability to engage with the international research community. Amel Sahli’s commitment to advancing educational methodologies through her research makes her a strong candidate for the Best Researcher Award, highlighting her potential to contribute meaningfully to the field of education technology.

 

Profile:

Education

Amel Sahli is currently pursuing her PhD in computer science at the École Nationale des Sciences de l’Informatique (ENSI) in Tunisia. Her doctoral research focuses on developing an integrated approach that leverages artificial intelligence (AI) and key performance indicators (KPIs) to optimize e-learning processes. Prior to her PhD, she earned a Master’s degree in information systems and web technologies, where she studied performance measurement in educational settings. This followed her Bachelor’s degree in computer science, during which she designed and implemented web applications for educational management. Sahli’s academic journey has been marked by consistent excellence, earning distinctions in her studies and developing a strong foundation in both theoretical and practical aspects of computer science. Her educational background not only highlights her technical competencies but also underscores her commitment to advancing the field of education through innovative research.

Professional Experiences

Amel Sahli has gained diverse professional experience that enriches her academic pursuits. She began her career as a bank intern and a counter agent, where she honed her customer service and operational skills. Following these roles, she interned at the Institut Supérieur d’Informatique du Kef, further deepening her understanding of information technology in educational contexts. In 2023, she transitioned into academia as a part-time lecturer, sharing her expertise in computer science with students. Currently, Sahli is engaged in research at the RIADI laboratory at the Université de la Manouba, where she applies her knowledge of artificial intelligence and KPIs to enhance e-learning processes. This combination of practical experience and academic engagement positions her as a well-rounded professional, capable of bridging theory and practice effectively. Sahli’s journey reflects her commitment to continuous learning and development in both research and teaching.

Research Skills

Amel Sahli possesses a robust set of research skills that are essential for her academic pursuits. Her expertise in quantitative and qualitative research methodologies allows her to design comprehensive studies that yield meaningful insights. Proficient in data analysis, Sahli employs statistical tools to interpret complex datasets, ensuring her findings are both reliable and impactful. Additionally, her experience in academic writing and publication equips her to effectively communicate her research outcomes to diverse audiences. Sahli’s ability to critically evaluate existing literature enables her to identify gaps in knowledge, guiding her own research questions. Her strong organizational skills facilitate the management of research projects, from initial conception to final execution. Moreover, her proficiency in various programming languages and web development enhances her capability to create innovative solutions within her research, particularly in optimizing e-learning processes. Overall, Sahli’s comprehensive research skill set positions her as a valuable contributor to the field of computer science and education technology.

Award and Recognition

Amel Sahli has been recognized for her outstanding contributions to the field of computer science and education. Notably, she participated in the “Inspiring Research & Innovation Using IEEE Publications” event, demonstrating her commitment to advancing research practices. Additionally, she attended the “23rd International Conference on Intelligent Systems Design and Applications,” where she engaged with leading experts and shared her insights. Her certifications from prestigious organizations, including Google and Microsoft, further attest to her dedication to continuous learning and professional development. Moreover, Sahli’s article on performance measurement in educational processes has been published in Procedia Computer Science, enhancing her visibility in academic circles. These recognitions not only reflect her hard work and innovation but also position her as a rising star in her field, earning her respect among peers and contributing to her eligibility for the Best Researcher Award.

Conclusion

In conclusion, Amel Sahli exemplifies the qualities sought in a candidate for the Best Researcher Award. Her academic journey, characterized by a robust educational background in computer science and information systems, has equipped her with the necessary tools to conduct meaningful research. Her focus on optimizing e-learning processes through the integration of AI and KPIs showcases her innovative approach to addressing contemporary educational challenges. Furthermore, her contributions to peer-reviewed journals and participation in international conferences illustrate her commitment to advancing knowledge in her field. Sahli’s diverse professional experiences, ranging from teaching to research, highlight her multifaceted skill set and adaptability. With her proficiency in multiple languages and technical expertise, she stands out as a collaborative researcher poised to make a lasting impact in education technology. Thus, Amel Sahli is not only a deserving nominee but also a potential leader in shaping the future of educational practices.

Publication Top Note

  • Conference Paper in Procedia Computer Science
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0
  • Conference Paper in Lecture Notes in Networks and Systems
    • Title: Performance Measurement of Reading Teaching-Learning Business Processes: Case of Whole-Word and Syllabic Reading Methods in Primary Schools
    • Authors: Amel Sahli, A. Mejri, A. Louati
    • Year: 2024
    • Citations: 0