Luciano Benedini | Biomaterials | Best Researcher Award

Dr. Luciano Benedini | Biomaterials | Best Researcher Award

Researcher/Professor from INQUISUR-CONICET/UNS, Argentina

Dr. Luciano Alejandro Benedini is an accomplished Argentine researcher specializing in pharmaceutical nanotechnology, biomaterials, and drug delivery systems. Serving as an Adjunct Researcher at INQUISUR-CONICET and Assistant Professor at the Universidad Nacional del Sur (UNS) since 2001, he has significantly contributed to the field of pharmaceutical sciences. Dr. Benedini’s work focuses on the development of nanostructured systems for drug delivery, bone tissue engineering, and the study of colloidal properties of pharmaceutical compounds. His extensive publication record includes over 20 peer-reviewed journal articles and multiple book chapters, reflecting his active engagement in cutting-edge research. Additionally, he has been recognized with several prestigious awards, such as the “INNOVAR 2023” distinction and the Aaron and Fanny Fidelef de Nijamkim’s Award for Best PhD in Chemistry. His dedication to research excellence and innovation makes him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Dr. Benedini’s academic journey began with a degree in Pharmacy from the Universidad Nacional del Sur (UNS), completed between 1997 and 2003. He further pursued his passion for research by obtaining a Ph.D. in Chemistry from the same institution, with his doctoral studies spanning from 2008 to 2012. His thesis, titled “Interaction between a biocompatible surfactant with pharmacological interest structures,” delved into the interactions of biocompatible surfactants with pharmacologically relevant structures, laying the groundwork for his future research endeavors in drug delivery systems and nanotechnology. This robust educational foundation has equipped him with the necessary skills and knowledge to excel in the interdisciplinary field of pharmaceutical sciences.

Professional Experience

Dr. Benedini has amassed over two decades of professional experience in both academic and research settings. Since 2001, he has served as an Assistant Professor in the Department of Biology, Biochemistry, and Pharmacy at UNS, where he has been instrumental in teaching and mentoring students. Concurrently, he holds the position of Adjunct Researcher at INQUISUR-CONICET, a role he has fulfilled since 2015. His professional journey also includes valuable international exposure through postdoctoral fellowships at the University of Santiago de Compostela in Spain and Bielefeld University in Germany. These experiences have enriched his research perspective and facilitated collaborations with leading scientists in his field. Additionally, Dr. Benedini has contributed to the public health sector by practicing as a pharmacist from 2003 to 2008, further demonstrating his commitment to applying scientific knowledge for societal benefit.

Research Interests

Dr. Benedini’s research interests are centered around the development of innovative drug delivery systems, with a particular focus on nanotechnology and biomaterials. He explores the design and characterization of nanostructured carriers, such as liposomes and hydroxyapatite-based composites, for targeted and controlled drug release. His work aims to enhance the efficacy and safety of therapeutic agents, especially in the context of bone tissue engineering and regenerative medicine. Additionally, he investigates the physicochemical properties of pharmaceutical compounds and their interactions with biological membranes, contributing to a deeper understanding of drug behavior at the molecular level. Dr. Benedini’s interdisciplinary approach bridges chemistry, biology, and materials science, positioning him at the forefront of pharmaceutical research.

Research Skills

Dr. Benedini possesses a comprehensive skill set that encompasses various aspects of pharmaceutical research. His expertise includes the synthesis and characterization of nanomaterials, formulation of drug delivery systems, and evaluation of their biological performance. He is proficient in techniques such as spectroscopy, electron microscopy, and rheological analysis, which are essential for assessing the structural and functional properties of biomaterials. Furthermore, his experience in conducting in vitro and in vivo studies enables him to translate laboratory findings into potential clinical applications. Dr. Benedini’s collaborative work with international research groups and his role as a reviewer for esteemed scientific journals underscore his analytical acumen and commitment to maintaining high research standards.

Awards and Honors

Dr. Benedini’s contributions to science have been recognized through numerous awards and honors. Notably, he received the “INNOVAR 2023” distinction from the Ministry of Science and Innovation in the Applied Research category for his project on NanoA. His doctoral research earned him the Aaron and Fanny Fidelef de Nijamkim’s Award for Best PhD in Chemistry in 2012. He has been granted several prestigious fellowships, including postdoctoral positions funded by Fundación Carolina and CONICET, facilitating his research endeavors in Spain and Germany. Additionally, his commitment to societal impact is evident from the First Prize awarded at the 2nd Ibero-American Virtual Congress on Environmental Health in 2024 for his work on raising awareness about drug pollution among school-aged children. These accolades reflect Dr. Benedini’s dedication to advancing scientific knowledge and addressing real-world challenges.

Conclusion

Dr. Luciano Benedini exemplifies the qualities of an outstanding researcher through his extensive academic background, innovative research contributions, and commitment to societal impact. His interdisciplinary approach, combining chemistry, biology, and materials science, has led to significant advancements in drug delivery systems and biomaterials. The recognition he has received from both national and international institutions attests to the relevance and quality of his work. Dr. Benedini’s dedication to mentoring, collaboration, and addressing pressing health issues positions him as a leading figure in pharmaceutical research. His achievements make him a deserving candidate for the Best Researcher Award, reflecting his unwavering commitment to scientific excellence and innovation.

Publications Top Notes

  1. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity
    L. Benedini, J. Laiuppa, G. Santillán, M. Baldini, P. Messina
    Materials Science and Engineering: C, 115, 111101 (2020) — 82 citations

  2. Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods
    L. Benedini, D. Placente, J. Ruso, P. Messina
    Materials Science and Engineering: C, 99, 180–190 (2019) — 56 citations

  3. The ascorbyl palmitate-water system: Phase diagram and state of water
    L. Benedini, E.P. Schulz, P.V. Messina, S.D. Palma, D.A. Allemandi, P.C. Schulz
    Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375 (1–3) (2011) — 50 citations

  4. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations
    D. Placente, L.A. Benedini, M. Baldini, J.A. Laiuppa, G.E. Santillán, …
    International Journal of Pharmaceutics, 548 (1), 559–570 (2018) — 42 citations

  5. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities
    J. Sartuqui, A.N. Gravina, R. Rial, L.A. Benedini, L.H. Yahia, J.M. Ruso, …
    Colloids and Surfaces B: Biointerfaces, 145, 382–391 (2016) — 39 citations

  6. Self-assembly of 33-mer gliadin peptide oligomers
    M.G. Herrera, L.A. Benedini, C. Lonez, P.L. Schilardi, T. Hellweg, …
    Soft Matter, 11 (44), 8648–8660 (2015) — 36 citations

  7. Colloidal properties of amiodarone in water at low concentration
    L. Benedini, P.V. Messina, R.H. Manzo, D.A. Allemandi, S.D. Palma, E.P. Schulz, …
    Journal of Colloid and Interface Science, 342 (2), 407–414 (2010) — 35 citations

  8. Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy
    M. Mottola, N. Wilke, L. Benedini, R.G. Oliveira, M.L. Fanani
    Biochimica et Biophysica Acta (BBA) – Biomembranes, 1828 (11), 2496–2505 (2013) — 33 citations

  9. Biopolymers for medical applications
    J.M. Ruso, P.V. Messina
    CRC Press (2017) — 31 citations

  10. Surface phase behavior and domain topography of ascorbyl palmitate monolayers
    L. Benedini, M.L. Fanani, B. Maggio, N. Wilke, P. Messina, S. Palma, P. Schulz
    Langmuir, 27 (17), 10914–10919 (2011) — 31 citations

  11. Assessment of synergistic interactions on self-assembled sodium alginate/nano-hydroxyapatite composites: to the conception of new bone tissue dressings
    L. Benedini, D. Placente, O. Pieroni, P. Messina
    Colloid and Polymer Science, 295, 2109–2121 (2017) — 19 citations

  12. Study of the influence of ascorbyl palmitate and amiodarone in the stability of unilamellar liposomes
    L. Benedini, S. Antollini, M.L. Fanani, S. Palma, P. Messina, P. Schulz
    Molecular Membrane Biology, 31 (2–3), 85–94 (2014) — 19 citations

  13. Development of a nonionic azobenzene amphiphile for remote photocontrol of a model biomembrane
    L.A. Benedini, M.A. Sequeira, M.L. Fanani, B. Maggio, V.I. Dodero
    The Journal of Physical Chemistry B, 120 (17), 4053–4063 (2016) — 14 citations

  14. Understanding Recognition and Self-assembly in Biology using the Chemist’s Toolbox. Insight into Medicinal Chemistry
    Z.B. Quirolo, L.A. Benedini, M.A. Sequeira, M.G. Herrera, T.V. Veuthey, …
    Current Topics in Medicinal Chemistry, 14 (6), 730–739 (2014) — 11 citations

  15. Phase behavior of ascorbyl palmitate coagels loaded with oligonucleotides as a new carrier for vaccine adjuvants
    G.V. Ullio Gamboa, L.A. Benedini, P.C. Schulz, D.A. Allemandi
    Journal of Surfactants and Detergents, 19, 747–757 (2016) — 10 citations

Hadi Hijazi | Materials Science | Best Researcher Award

Dr. Hadi Hijazi | Materials Science | Best Researcher Award

R&D engineer from CEA LETI, France

Dr. Hadi Hijazi is a postdoctoral researcher specializing in microelectronics and semiconductor nanostructures, with extensive experience in epitaxial growth and device fabrication. Based in Grenoble, France, he has developed a strong academic and research background through work at top-tier institutions such as CEA-LETI, CNRS/LTM, and Saint Petersburg State University. His research encompasses the design, modeling, and experimental development of III-V materials and nanostructures for high-performance optoelectronic devices, including visible and near-infrared LEDs. His doctoral studies focused on the epitaxial growth of GaAs nanowires via HVPE and the investigation of spin and charge transport. Dr. Hijazi possesses deep technical expertise in MOCVD, HVPE, and cleanroom operations, supported by his proficiency in a wide range of characterization tools such as XRD, SEM, AFM, PL, and Raman spectroscopy. In addition to his laboratory capabilities, he is skilled in modeling and simulation using tools like Matlab, Nextnano, and Mathematica. Multilingual and collaborative, Dr. Hijazi has a history of successful international projects, combining both theoretical insight and experimental innovation. His contributions to the field are reflected in quality publications in peer-reviewed journals, and he maintains active connections with research leaders and institutions in France and abroad. He is currently an R&D engineer at CEA LETI, contributing to hybrid bonding technologies.

Professional Profile

Education

Dr. Hadi Hijazi holds a Ph.D. in Physics of Materials from Institut Pascal at Université Clermont Auvergne, France, where he worked on the development of GaAs nanowires grown on Si substrates using hydride vapor phase epitaxy (HVPE). His research addressed charge and spin diffusion in nanowires, integrating fundamental physics with advanced material synthesis techniques. Prior to his doctoral studies, Dr. Hijazi completed a Master’s degree (M2) in Nanoelectronics and Nanotechnology from Université Grenoble Alpes, where he received training in nanoscale materials, semiconductor physics, and cleanroom-based device fabrication. He also holds a Master 1 in Fundamental Physics and Nanoscience from Université Joseph Fourier in Grenoble, which laid the foundation for his later specialization in materials and device engineering. His academic training has been interdisciplinary, with strong emphasis on physics, nanotechnology, materials science, and applied electronics. His formal education has equipped him with theoretical depth and practical skill sets, enabling his contributions to multidisciplinary research involving physical modeling, simulation, and experimental validation of micro- and nanoscale structures. These qualifications have prepared him well for complex problem-solving in research-intensive environments, particularly within the highly competitive field of semiconductor materials and microelectronics.

Professional Experience

Dr. Hadi Hijazi has accumulated a robust portfolio of research and development experience across premier academic and industrial research institutions. Since July 2023, he has been serving as an R&D Engineer at CEA LETI in Grenoble, where he works on hybrid bonding technologies, a critical area for 3D integration in microelectronics. From October 2021 to June 2023, he served as a postdoctoral researcher jointly at CEA-LETI and CNRS/LTM, contributing to the IRT Nanoelec project. During this tenure, he focused on the design and simulation of novel heterostructures using III-(As,P) materials for high-performance visible and NIR LEDs. His work included epitaxial process development (MOCVD) on 300 mm substrates and comprehensive characterization of material and device properties. Prior to this, he was a postdoctoral researcher at ITMO University and Saint Petersburg State University in Russia, focusing on growth modeling of III-V and IV-IV micro/nanostructures. Dr. Hijazi also undertook an industrial internship at CEA LETI in 2016, studying the bonding of refractory metal thin films for 3D technologies. Throughout his career, he has demonstrated the ability to integrate theory, simulation, and fabrication in practical research, aligning well with multidisciplinary goals in microelectronics and optoelectronics innovation.

Research Interests

Dr. Hadi Hijazi’s research interests center around advanced semiconductor materials and their integration into high-performance optoelectronic and microelectronic devices. He is particularly focused on the design, epitaxial growth, and characterization of III-V compound semiconductors on silicon substrates, with the goal of enabling new generations of energy-efficient light sources and integrated photonics. His doctoral work involved HVPE growth of GaAs nanowires on Si(111) substrates, aiming to understand charge and spin transport mechanisms at the nanoscale. His postdoctoral research extended to MOCVD-based fabrication of InGaAs and InP heterostructures for LED applications and included structural and electro-optical characterization. He is also interested in hybrid bonding technologies and 3D integration techniques critical to the future of chip stacking and packaging. Dr. Hijazi combines experimental efforts with simulation and modeling, employing tools like Matlab and Nextnano to optimize nanostructure design and predict growth behavior. He is deeply engaged in the physical understanding of epitaxy, surface/interface interactions, and defect formation. These interests place him at the intersection of materials physics, nanotechnology, and applied engineering, with relevance to optoelectronics, spintronics, and next-generation semiconductor device platforms.

Research Skills

Dr. Hadi Hijazi possesses a comprehensive set of research skills that span theoretical modeling, experimental techniques, and process development in nanotechnology and materials science. His expertise in vapor phase epitaxy, including both MOCVD and HVPE methods, allows him to develop high-quality III-V semiconductor nanostructures on various substrates. He has extensive cleanroom experience and is adept in device fabrication processes, material growth protocols, and post-growth characterization. He is proficient in a range of analytical tools such as XRD, AFM, SEM, Raman spectroscopy, photoluminescence (PL), and electrochemical and C-V measurements. Dr. Hijazi is also skilled in simulation and modeling, using software like Matlab, Mathematica, Nextnano, Python, and C++ to analyze material behaviors and guide experimental design. His strong command of semiconductor physics and nanostructure dynamics supports both fundamental research and practical application development. He is an effective communicator in French, English, and Arabic, and his collaborative approach to research is evident in his successful engagements with multidisciplinary teams across France and Russia. Additionally, his organizational and documentation skills are well-developed, contributing to his ability to manage complex research tasks and publish high-quality scientific articles.

Awards and Honors

While specific named awards are not listed in the available information, Dr. Hadi Hijazi’s inclusion in competitive research programs and positions at prestigious institutions such as CEA-LETI, CNRS, and ITMO University itself serves as recognition of his capabilities and achievements. His acceptance into highly selective doctoral and postdoctoral programs in France and Russia, coupled with his contributions to projects such as IRT Nanoelec, suggests a high degree of merit and recognition by the scientific community. His publications in internationally recognized journals such as Nanotechnology and Journal of Physical Chemistry C also indicate the quality and impact of his research. Furthermore, his involvement in international collaborations and multidisciplinary research teams demonstrates the professional trust placed in his expertise and reliability. His continuing employment at CEA LETI in a research and development role is itself a form of institutional endorsement, affirming his value in the innovation ecosystem of advanced microelectronics. With further dissemination of his work and engagement in academic presentations or grant-funded leadership, it is likely he will accrue formal honors and awards in the near future.

Conclusion

Dr. Hadi Hijazi is an accomplished early-career researcher with strong potential for further growth in the field of semiconductor nanotechnology and microelectronics. His academic training and international research experience have equipped him with both depth and versatility, enabling contributions to next-generation devices through innovations in epitaxial growth, material design, and device integration. His ability to bridge theoretical modeling with experimental realization is a key asset, particularly in collaborative research environments. While his current achievements position him as a valuable team member and emerging expert, more visible research leadership, independent project development, and broader dissemination of research outputs could further strengthen his candidacy for major research awards. At present, Dr. Hijazi would be an ideal candidate for recognitions aimed at emerging scientists or rising researchers, and with continued productivity and impact, he is well-poised to become a leading figure in semiconductor device research. His technical expertise, commitment to quality, and collaborative ethos make him a noteworthy contributor to academic and industrial R&D. As he continues his career at CEA LETI and beyond, further contributions in both applied technologies and fundamental science can be expected.

Publications Top Notes

  1. Fine Pitch Superconducting Interconnects Obtained with Nb–Nb Direct Bonding
  • Authors: Candice M. Thomas, Pablo Renaud, Meriem Guergour, Edouard Deschaseaux, Christophe Dubarry, Jennifer Guillaume, Elisa Vermande, Alain Campo, Frank Fournel, Hadi Hijazi, Anne-Marie Papon, Catherine Pellissier, Jean Charbonnier

  • Publication Year: 2025

2. Is NaOH Beneficial to Low Temperature Hybrid Bonding Integration?

  • Authors: Hadi Hijazi¹, Paul Noël¹, Samuel Tardif², Karine Abadie¹, Christophe Morales¹, Frank Fournel¹

  • Publication Date: October 30, 2024