Kiran Batool | Materials Science | Best Researcher Award

Dr. Kiran Batool | Materials Science | Best Researcher Award

Researcher from Physics Department, Pakistan

Dr. Kiran Batool is a dedicated researcher and academic specializing in nanomaterials, electrochemical energy storage, and environmental applications. With a robust research portfolio featuring 37 publications in high-impact journals, she has made significant contributions to material synthesis and characterization techniques. Her expertise extends to developing advanced materials for supercapacitors, batteries, and catalysts. Dr. Batool possesses strong teaching and mentorship experience, having instructed both undergraduate and graduate students in various physics courses. She has also served as a research associate, contributing to multiple interdisciplinary projects. Her commitment to innovation and sustainability drives her research in energy-efficient and environmentally friendly material applications. With a deep understanding of analytical and experimental techniques, she remains at the forefront of cutting-edge scientific advancements in her field.

Professional Profile

Education

Dr. Kiran Batool has pursued an extensive academic journey, equipping her with a strong foundation in physics and materials science. She completed her Ph.D. in Physics with a specialization in nanomaterials and energy storage applications. Prior to that, she earned an M.Phil. in Physics, focusing on advanced material characterization techniques. Her bachelor’s degree laid the groundwork for her expertise in fundamental physics and material properties. Throughout her academic career, she has remained engaged in research-intensive programs, allowing her to develop a deep understanding of electrochemical energy storage systems, catalysis, and sustainable materials. Her education has provided her with the theoretical knowledge and practical skills necessary to excel in both research and academia. Dr. Batool’s continuous pursuit of knowledge and innovation has made her a respected figure in the scientific community.

Professional Experience

Dr. Kiran Batool has accumulated extensive professional experience in both research and teaching roles. As a research associate, she contributed to various interdisciplinary projects focused on nanomaterial synthesis and energy storage applications. Her role involved conducting experimental research, analyzing data, and collaborating with fellow researchers to advance scientific knowledge. Additionally, Dr. Batool has served as a visiting lecturer, teaching undergraduate and graduate students in physics-related courses. She has supervised student research projects and provided mentorship to aspiring scientists. Her experience extends to laboratory management, experimental design, and technical troubleshooting. Dr. Batool’s dedication to education and research has enabled her to bridge the gap between theoretical knowledge and practical applications. Her contributions to academia and research institutions highlight her ability to work in dynamic environments while fostering scientific innovation.

Research Interests

Dr. Kiran Batool’s research interests lie in the development and characterization of advanced nanomaterials for energy and environmental applications. She is particularly focused on electrochemical energy storage systems, including supercapacitors and batteries, where she explores novel material compositions for enhanced performance. Her work also extends to catalysis, investigating sustainable materials for environmental remediation. Dr. Batool is deeply involved in the synthesis of nanostructured materials using techniques such as hydrothermal, sol-gel, and solvothermal methods. She is keen on integrating experimental and computational approaches to optimize material properties. Her research aims to contribute to the advancement of green energy solutions and environmentally friendly materials. By exploring innovative synthesis techniques and material functionalities, she seeks to develop next-generation energy storage devices that are both efficient and sustainable.

Research Skills

Dr. Kiran Batool possesses a diverse range of research skills that contribute to her excellence in material science and energy research. Her expertise includes nanomaterial synthesis through hydrothermal, sol-gel, and solvothermal techniques. She is proficient in material characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Dr. Batool is also skilled in electrochemical analysis, including cyclic voltammetry and electrochemical impedance spectroscopy. Her ability to integrate various experimental techniques allows her to conduct in-depth analyses of material properties. Additionally, she has experience in data analysis, statistical modeling, and research project management. Her technical proficiency, combined with her strong analytical skills, enables her to conduct high-impact research that contributes to scientific advancements in energy storage and catalysis.

Awards and Honors

Dr. Kiran Batool has received multiple recognitions for her contributions to scientific research and academia. She has been acknowledged for her high-impact publications and significant advancements in nanomaterial synthesis and characterization. Her research on electrochemical energy storage has been cited extensively, highlighting its relevance in the field. Dr. Batool has also been honored for her teaching excellence, receiving commendations from academic institutions for her dedication to student mentorship and education. Additionally, she has participated in several international conferences and research symposiums, where her work has been recognized by peers and experts in the field. Her commitment to advancing scientific knowledge and her contributions to sustainable energy solutions continue to earn her accolades in the academic and research communities.

Conclusion

Dr. Kiran Batool stands out as a distinguished researcher and academic with a strong background in nanomaterials, energy storage, and material characterization. Her extensive research output, combined with her technical proficiency and teaching experience, makes her a valuable asset to the scientific community. She continues to push the boundaries of innovation, focusing on sustainable and efficient energy solutions. With expertise spanning experimental research, data analysis, and mentorship, she exemplifies excellence in academia and applied sciences. Dr. Batool’s dedication to research and education ensures that her contributions will have a lasting impact on the fields of material science and renewable energy. Her growing recognition and commitment to scientific progress make her a strong candidate for prestigious research awards and honors.

Publications Top Notes

  1. Sustainable Synthesis and Electrochemical Characterization of Ti₃C₂/Fe₁₋ₓBaₓCr₂O₄ Nanocomposite for Enhanced Supercapacitor Electrode Performance

    • Authors: Kiran Batool, Adel A. El-Marghany, Muhammad Usman Saeed
    • Year: 2025
  2. Bandgap Nature Transition and the Optical Properties of ABX₃ (A = K, Rb; B = Sr, Ba, Ca; X = Cl, Br, I) Perovskites Under Pressure

    • Authors: Mohib Ullah, Naqeeb Ullah, Ammar M. Tighezza, Kiran Batool, Ghulam M. Murtaza
    • Year: 2025
    • Citations: 2
  3. Electrifying Energy Storage by Investigating the Electrochemical Behavior of CoCr₂O₄/Graphene-Oxide Nanocomposite as Supercapacitor High-Performance Electrode Material

    • Authors: Rubia Shafique, Malika M. Rani, Naveed Kasuar Janjua, Mariam Akram, Akram A. Ibrahim
    • Year: 2024

 

 

Kui Chen | Biomaterials | Best Researcher Award

Assoc. Prof. Dr. Kui Chen | Biomaterials | Best Researcher Award

Associate researcher, Institute of High Energy Physics Chinese Academy of Sciences, China.

Publication profile

Scopus Profile

Education and Experience

Kui Chen completed his doctoral studies in bioinorganic chemistry at the Institute of High Energy Physics (IHEP), Chinese Academy of Sciences. His research was guided by Prof. Gengmei Xing and Academician Zhao Yuliang, both of whom are leaders in the field of nanotechnology and material science. During his PhD, Chen focused on applying bioinorganic principles to design and develop innovative drug delivery systems. His academic training provided a strong foundation in both materials science and chemistry, which he integrated into his research on controlled-release nanosystems. This interdisciplinary approach to education has played a significant role in shaping Chen’s scientific career. His education has been further strengthened by collaborative projects and cross-team initiatives, such as the Beijing Nova Program, which have expanded his expertise and allowed him to contribute to cutting-edge advancements in cancer therapy.

Work Experience 

Kui Chen has been actively involved in research and academia since completing his PhD. After joining the Institute of High Energy Physics (IHEP) as a researcher, he quickly gained recognition for his contributions, leading to his promotion to Associate Professor in 2022. Chen has experience leading projects focused on developing novel nanosystems for medical applications, particularly in the treatment of cancer. His role as a corresponding and first author on 20 SCI papers demonstrates his leadership in scientific publications. In addition, Chen has filed over 20 patents, with 7 already granted, showcasing his ability to translate research into innovative, patentable technologies. His experience also includes collaboration with interdisciplinary teams, particularly through the Beijing Nova Program, where he plays a key role in cross-team projects aimed at advancing nanomedicine and drug delivery.

Awards and Honors 

Kui Chen has been recognized for his groundbreaking research with numerous honors and awards. Among his most notable achievements is his selection for the prestigious Beijing Nova Program, an initiative that supports young scientists who demonstrate exceptional promise in their fields. In addition, Chen has been selected for the Cross-Team within the Beijing Nova Program, further highlighting his collaborative abilities and leadership in scientific research. His innovation and contributions to nanomedicine and drug delivery have earned him recognition in both national and international scientific communities. Chen’s work, which bridges bioinorganic chemistry and materials science, has also led to the granting of 7 patents, reflecting his commitment to translating research into practical solutions. These accomplishments underscore his growing influence in the field of medical nanotechnology and highlight his potential as a future leader in scientific research.

Conclusion

Kui Chen is a highly suitable candidate for the Best Researcher Award. His outstanding research contributions, strong publication record, innovative patents, and selection for competitive programs demonstrate his potential and impact in his field. Although his focus is specialized, expanding his interdisciplinary work and mentorship roles can further solidify his standing as a leader in both the scientific and academic communities. His dedication to pushing the frontiers of nanotechnology in medical treatments positions him as a future leader in materials science research.

Publications

Enhanced osteogenic differentiation for osteoporosis treatment through controlled icariin release in the bone cavity via extracorporeal shock wave
Authors: Li, H., Hu, F., Liu, Q., Xing, G., Chen, K.
Year: 2024
Citations: 0

Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy
Authors: Lv, L., Zhang, J., Wang, Y., Xing, G., Chen, K.
Year: 2024
Citations: 0

Boron-Containing MOF Nanoparticles with Stable Metabolism in U87-MG Cells Combining Microdosimetry To Evaluate Relative Biological Effectiveness of Boron Neutron Capture Therapy
Authors: Wang, Z., Lei, R., Zhang, Z., Li, J., Xing, G.
Year: 2024
Citations: 3

Boron-Containing Mesoporous Silica Nanoparticles with Effective Delivery and Targeting of Liver Cancer Cells for Boron Neutron Capture Therapy
Authors: Tang, H., Wang, Z., Hao, H., Li, J., Xing, G.
Year: 2024
Citations: 0

Application and Development of Tumor-Targeting Boron Carriers in Boron Neutron Capture Therapy
Authors: Chen, K., Lyu, L.-W., Xing, G.-M.
Year: 2023
Citations: 0

Well-established immunotherapy with R837-loaded boron neutron capture-shocked tumor cells
Authors: Chen, K., Liu, S., Lv, L., Liang, T., Xing, G.
Year: 2023
Citations: 7

A Bone-Penetrating Precise Controllable Drug Release System Enables Localized Treatment of Osteoporotic Fracture Prevention via Modulating Osteoblast-Osteoclast Communication
Authors: Liang, H., Chen, K., Xie, J., Xing, G.
Year: 2023
Citations: 7

Corrigendum to: “Reversing the pathological microenvironment by radiocatalytic sensitizer for local orthotopic osteosarcoma radiotherapy enhancement”
Authors: Chen, K., Zhou, R., Liang, H., Xing, G., Gu, Z.
Year: 2023
Citations: 0

3D culture boosting fullerenol nanoparticles to induce calreticulin exposure on MCF-7 cells for enhanced macrophage-mediated cell removal
Authors: Liu, S., Liang, H., Lv, L., Chen, K., Xing, G.
Year: 2023
Citations: 2

High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System
Authors: Li, X., Ma, Y., Xue, Y., Han, X., Wang, J.
Year: 2023
Citations: 10

 

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.