Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Bo Yuan | Biomaterials | Best Researcher Award

Prof. Bo Yuan | Biomaterials | Best Researcher Award

Associate Professor from Sichuan University, China

Dr. Bo Yuan is an accomplished associate professor at Sichuan University, specializing in biomaterials, regenerative medicine, and orthopedic implants. With a robust academic foundation in biomedical engineering and materials science, Dr. Yuan has developed a distinguished research portfolio that bridges basic science with clinical application. His contributions to the development of bone-inducing polyaryletherketone materials and surface nanomodification techniques for degradable metals are pioneering in their impact. He has published over 15 high-impact scientific papers in leading journals such as Science Advances, ACS Nano, and Angewandte Chemie, with an average impact factor exceeding 12 and total citations exceeding 900. Dr. Yuan has successfully led 12 major national and provincial research projects and is a recognized innovator with over 10 patents and contributions to national standards. His leadership extends beyond research through roles as an editor and peer reviewer for several influential journals and his membership in national academic committees. With an H-index of 22 and growing influence, Dr. Yuan demonstrates exceptional promise and impact in both scientific advancement and translational biomedical research. His work positions him as a leading figure in shaping the future of regenerative medicine and high-performance implantable materials.

Professional Profile

Education

Dr. Bo Yuan’s academic journey reflects a deep and continuous engagement with material science and biomedical engineering. He began his higher education at Sichuan University in 2007, where he earned his Bachelor’s degree in Polymer Material Processing Engineering in 2011. Driven by a strong interest in interdisciplinary biomedical applications, he pursued his Master’s degree in Material Science at the same institution from 2013 to 2016. His academic path culminated in a Doctoral degree in Biomedical Engineering, also from Sichuan University, which he completed in 2019. Throughout his studies, Dr. Yuan consistently focused on the interface between materials and biological systems, laying the groundwork for his future innovations in biomaterials. His comprehensive academic training in polymers, material science, and biomedical engineering has given him the tools to understand, design, and implement cutting-edge materials for clinical applications. The progression of his education illustrates a strong commitment to academic excellence and specialization in biomedical technologies. His doctoral work, in particular, set the foundation for his later contributions to orthopedic implants and regenerative medicine. Dr. Yuan’s academic record reflects a seamless integration of theoretical depth and practical relevance in the rapidly evolving field of biomedical materials science.

Professional Experience

Dr. Bo Yuan has built a strong professional trajectory marked by academic excellence and industry-relevant expertise. His early professional experience began in 2011 at Shanghai Pegatron Technology Co., LTD, where he worked as a Quality Control Engineer, gaining valuable exposure to industrial standards and practices. In 2019, after completing his Ph.D., he joined the National Engineering Research Center for Biomaterials at Sichuan University as an Assistant Professor. This position allowed him to apply his scientific training to pioneering work in regenerative medicine and biomedical devices. In 2021, he was promoted to Associate Professor, a role in which he continues to lead impactful research on bone-inducing biomaterials and orthopedic implant technologies. Dr. Yuan also holds significant national academic responsibilities, serving as an external expert for the Medical Device Technical Evaluation Center and a committee member for additive manufacturing medical devices. Furthermore, he serves on the editorial boards of journals such as Biomaterials Translational and Med-X, and reviews for high-impact publications like Science Advances and Biomaterials. His combination of research leadership, project management, and academic service places him at the forefront of innovation in biomedical engineering. Dr. Yuan’s professional experience underscores his dedication to scientific advancement and translational success.

Research Interests

Dr. Bo Yuan’s research interests lie at the intersection of biomaterials science, regenerative medicine, and biomedical engineering, with a focus on developing next-generation orthopedic implants. His work addresses fundamental challenges in bone regeneration and the integration of synthetic materials with biological systems. A central theme of his research is the development of functional materials that mimic natural bone structure and stimulate cellular responses, such as bone-inducing polyetherketoneketone (PEKK) scaffolds that activate the cAMP/PKA signaling pathway. He is also deeply engaged in the study of pathological bone tissue and the development of multi-scale biomimetic materials that enhance clinical bone repair. Dr. Yuan explores degradable metal implants and surface nanomodification techniques that not only support tissue growth but also prevent infection and promote vascularization. His research bridges the gap between basic material science and real-world biomedical applications, with the aim of translating laboratory findings into clinical solutions. By combining principles from polymer science, bioengineering, and regenerative medicine, Dr. Yuan contributes innovative approaches to address complex medical challenges. His vision is to create smart, responsive materials that significantly improve outcomes in orthopedic surgery and tissue engineering. These interests reflect both a depth of knowledge and a forward-thinking approach to healthcare innovation.

Research Skills

Dr. Bo Yuan possesses a comprehensive skill set in materials development, biomedical engineering, and translational research. His expertise includes the synthesis and characterization of high-performance biomaterials such as polyetherketoneketone (PEKK) and bioactive composites. He has advanced capabilities in surface modification techniques, particularly nanostructuring degradable metals to improve bioactivity, antibacterial properties, and osteoinductivity. His skills also encompass biomimetic scaffold design, 3D printing of orthopedic devices, and evaluation of cell-material interactions using in vitro and in vivo models. Dr. Yuan is adept in biological signal pathway analysis, applying molecular biology tools to investigate how materials interact with and influence cell behavior. His laboratory leadership includes managing interdisciplinary teams, guiding postdoctoral and graduate researchers, and coordinating collaborative projects across departments and institutions. In addition to hands-on technical competencies, he demonstrates strong grant writing, scientific communication, and project management skills, successfully securing major national and provincial funding. His work extends to regulatory compliance and technical standardization, ensuring clinical readiness of his materials. Furthermore, Dr. Yuan has a keen understanding of intellectual property strategy, with over 10 patents filed. His integrated skillset makes him highly effective in taking scientific ideas from concept through experimentation to real-world application in regenerative medicine.

Awards and Honors

Dr. Bo Yuan has received significant recognition for his innovative contributions to biomedical engineering and materials science. Among his most prestigious honors is his inclusion in the “Ten Major Breakthroughs in Basic Research” at Sichuan University in 2021, highlighting the groundbreaking nature of his work in biomimetic materials for bone regeneration. In 2023, he was awarded the Third Prize in the Sichuan Provincial Innovation Design Competition in Biomedical Engineering, further validating the societal relevance and ingenuity of his research. His influence extends beyond academia through his involvement as a youth editor for prominent journals and as an external expert for the National Medical Products Administration, where he contributes to the regulatory evaluation of medical devices. Dr. Yuan is also a committee member for additive manufacturing medical devices, reflecting his leadership in cutting-edge biomedical applications. His achievements include successfully securing national grants from major institutions such as the National Natural Science Foundation of China and the National Key R&D Program, underscoring his capacity to lead and deliver high-impact research. These honors, along with over 900 citations of his work and an H-index of 22, position Dr. Yuan as a rising star in the field of regenerative biomaterials.

Conclusion

In conclusion, Dr. Bo Yuan exemplifies the qualities of an outstanding researcher in biomedical engineering. His innovative work on bone-regenerative materials and orthopedic implants is both scientifically rigorous and highly translational. From academic achievements to leadership in national projects and regulatory roles, he displays a rare combination of creativity, productivity, and societal relevance. His track record—15 high-impact papers, 12 funded projects, 10 patents, and 5 standards—demonstrates sustained research excellence and broad recognition. Furthermore, his contributions extend beyond publications to include tangible applications in healthcare, especially in regenerative medicine. Dr. Yuan’s influence is steadily growing through his roles as a peer reviewer, editor, and committee member, shaping the direction of medical materials research both in China and internationally. While he has already made significant strides, his career trajectory suggests even greater impact in the coming years, particularly if he continues to expand his international collaborations and clinical translation efforts. Given his achievements, leadership, and vision, Dr. Yuan is highly deserving of the Best Researcher Award. He not only meets the criteria for the award but sets a high standard for innovation, relevance, and academic contribution in the evolving landscape of biomedical research.

Publications Top Notes

  • Title: Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg-Ca-Zn-Ag alloy to inhibit bacterial infection and promote bone regeneration
    Authors: Yuan, Bo; Chen, Hewei; Zhao, Rui; Deng, Xuangeng; Chen, Guo; Yang, Xiao; Xiao, Zhanwen; Aurora, Antoniac; Iulia, Bita Ana; Zhang, Kai et al.
    Year: 2024

  • Title: Functionalized 3D-printed porous titanium scaffold induces in situ vascularized bone regeneration by orchestrating bone microenvironment
    Authors: Yuan, Bo; Liu, Pin; Zhao, Rui; Yang, Xiao; Xiao, Zhanwen; Zhang, Kai; Zhu, Xiangdong; Zhang, Xingdong
    Year: 2023

  • Title: Ability of a novel biomimetic titanium alloy cage in avoiding subsidence and promoting fusion: a goat spine model study
    Authors: Wang, Lin-nan; Yuan, Bo; Chen, Feng; Hu, Bo-wen; Song, Yue-ming; Li, Xiang-feng; Zhou, Quan; Yang, Xiao; Zhu, Xiang-dong; Yang, Hui-liang et al.
    Year: 2022

  • Title: Animal Models of Rotator Cuff Injury and Repair: A Systematic Review
    Authors: Zhao, Wanlu; Yang, Jinwei; Kang, Yuhao; Hu, Kaiyan; Jiao, Mingyue; Zhao, Bing; Jiang, Yanbiao; Liu, Chen; Ding, Fengxing; Yuan, Bo et al.
    Year: 2022

  • Title: Biomaterials and regulatory science
    Authors: Song, Xu; Tang, Zhonglan; Liu, Wenbo; Chen, Kuan; Liang, Jie; Yuan, Bo; Lin, Hai; Zhu, Xiangdong; Fan, Yujiang; Shi, Xinli et al.
    Year: 2022

  • Title: Construction and Biological Evaluation of Bioactive HA Coating on Porous Tantalum Scaffolds
    Authors: Liu, Pin; Yuan, Bo; Xiao, Zhanwen; Xie, Hui; Zhu, Xiangdong; Zhang, Xingdong
    Year: 2022

  • Title: Effect of grain size on the mechanical properties of Fe-30Mn-6Si biodegradable alloy
    Authors: Zuo, Yang; Sun, Lixin; Yong, Liqiu; Peng, Huabei; Yuan, Bo; Nie, Yong; Wen, Yuhua
    Year: 2022

  • Title: Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg-Ca and Mg-Ca-Zn-Ag alloys
    Authors: Chen, Hewei; Yuan, Bo; Zhao, Rui; Yang, Xiao; Xiao, Zhanwen; Aurora, Antoniac; Iulia, Bita Ana; Zhu, Xiangdong; Iulian, Antoniac Vasile; Zhang, Xingdong
    Year: 2022

  • Title: Evidence-based biomaterials research
    Authors: Zhang, Kai; Ma, Bin; Hu, Kaiyan; Yuan, Bo; Sun, Xin; Song, Xu; Tang, Zhonglan; Lin, Hai; Zhu, Xiangdong; Zheng, Yufeng et al.
    Year: 2022

  • Title: Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology
    Authors: Wang, Jing; Tang, Yitao; Cao, Quanle; Wu, Yonghao; Wang, Yitian; Yuan, Bo; Li, Xiangfeng; Zhou, Yong; Chen, Xuening; Zhu, Xiangdong et al.
    Year: 2022

 

Kiran Batool | Materials Science | Best Researcher Award

Dr. Kiran Batool | Materials Science | Best Researcher Award

Researcher from Physics Department, Pakistan

Dr. Kiran Batool is a dedicated researcher and academic specializing in nanomaterials, electrochemical energy storage, and environmental applications. With a robust research portfolio featuring 37 publications in high-impact journals, she has made significant contributions to material synthesis and characterization techniques. Her expertise extends to developing advanced materials for supercapacitors, batteries, and catalysts. Dr. Batool possesses strong teaching and mentorship experience, having instructed both undergraduate and graduate students in various physics courses. She has also served as a research associate, contributing to multiple interdisciplinary projects. Her commitment to innovation and sustainability drives her research in energy-efficient and environmentally friendly material applications. With a deep understanding of analytical and experimental techniques, she remains at the forefront of cutting-edge scientific advancements in her field.

Professional Profile

Education

Dr. Kiran Batool has pursued an extensive academic journey, equipping her with a strong foundation in physics and materials science. She completed her Ph.D. in Physics with a specialization in nanomaterials and energy storage applications. Prior to that, she earned an M.Phil. in Physics, focusing on advanced material characterization techniques. Her bachelor’s degree laid the groundwork for her expertise in fundamental physics and material properties. Throughout her academic career, she has remained engaged in research-intensive programs, allowing her to develop a deep understanding of electrochemical energy storage systems, catalysis, and sustainable materials. Her education has provided her with the theoretical knowledge and practical skills necessary to excel in both research and academia. Dr. Batool’s continuous pursuit of knowledge and innovation has made her a respected figure in the scientific community.

Professional Experience

Dr. Kiran Batool has accumulated extensive professional experience in both research and teaching roles. As a research associate, she contributed to various interdisciplinary projects focused on nanomaterial synthesis and energy storage applications. Her role involved conducting experimental research, analyzing data, and collaborating with fellow researchers to advance scientific knowledge. Additionally, Dr. Batool has served as a visiting lecturer, teaching undergraduate and graduate students in physics-related courses. She has supervised student research projects and provided mentorship to aspiring scientists. Her experience extends to laboratory management, experimental design, and technical troubleshooting. Dr. Batool’s dedication to education and research has enabled her to bridge the gap between theoretical knowledge and practical applications. Her contributions to academia and research institutions highlight her ability to work in dynamic environments while fostering scientific innovation.

Research Interests

Dr. Kiran Batool’s research interests lie in the development and characterization of advanced nanomaterials for energy and environmental applications. She is particularly focused on electrochemical energy storage systems, including supercapacitors and batteries, where she explores novel material compositions for enhanced performance. Her work also extends to catalysis, investigating sustainable materials for environmental remediation. Dr. Batool is deeply involved in the synthesis of nanostructured materials using techniques such as hydrothermal, sol-gel, and solvothermal methods. She is keen on integrating experimental and computational approaches to optimize material properties. Her research aims to contribute to the advancement of green energy solutions and environmentally friendly materials. By exploring innovative synthesis techniques and material functionalities, she seeks to develop next-generation energy storage devices that are both efficient and sustainable.

Research Skills

Dr. Kiran Batool possesses a diverse range of research skills that contribute to her excellence in material science and energy research. Her expertise includes nanomaterial synthesis through hydrothermal, sol-gel, and solvothermal techniques. She is proficient in material characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Dr. Batool is also skilled in electrochemical analysis, including cyclic voltammetry and electrochemical impedance spectroscopy. Her ability to integrate various experimental techniques allows her to conduct in-depth analyses of material properties. Additionally, she has experience in data analysis, statistical modeling, and research project management. Her technical proficiency, combined with her strong analytical skills, enables her to conduct high-impact research that contributes to scientific advancements in energy storage and catalysis.

Awards and Honors

Dr. Kiran Batool has received multiple recognitions for her contributions to scientific research and academia. She has been acknowledged for her high-impact publications and significant advancements in nanomaterial synthesis and characterization. Her research on electrochemical energy storage has been cited extensively, highlighting its relevance in the field. Dr. Batool has also been honored for her teaching excellence, receiving commendations from academic institutions for her dedication to student mentorship and education. Additionally, she has participated in several international conferences and research symposiums, where her work has been recognized by peers and experts in the field. Her commitment to advancing scientific knowledge and her contributions to sustainable energy solutions continue to earn her accolades in the academic and research communities.

Conclusion

Dr. Kiran Batool stands out as a distinguished researcher and academic with a strong background in nanomaterials, energy storage, and material characterization. Her extensive research output, combined with her technical proficiency and teaching experience, makes her a valuable asset to the scientific community. She continues to push the boundaries of innovation, focusing on sustainable and efficient energy solutions. With expertise spanning experimental research, data analysis, and mentorship, she exemplifies excellence in academia and applied sciences. Dr. Batool’s dedication to research and education ensures that her contributions will have a lasting impact on the fields of material science and renewable energy. Her growing recognition and commitment to scientific progress make her a strong candidate for prestigious research awards and honors.

Publications Top Notes

  1. Sustainable Synthesis and Electrochemical Characterization of Ti₃C₂/Fe₁₋ₓBaₓCr₂O₄ Nanocomposite for Enhanced Supercapacitor Electrode Performance

    • Authors: Kiran Batool, Adel A. El-Marghany, Muhammad Usman Saeed
    • Year: 2025
  2. Bandgap Nature Transition and the Optical Properties of ABX₃ (A = K, Rb; B = Sr, Ba, Ca; X = Cl, Br, I) Perovskites Under Pressure

    • Authors: Mohib Ullah, Naqeeb Ullah, Ammar M. Tighezza, Kiran Batool, Ghulam M. Murtaza
    • Year: 2025
    • Citations: 2
  3. Electrifying Energy Storage by Investigating the Electrochemical Behavior of CoCr₂O₄/Graphene-Oxide Nanocomposite as Supercapacitor High-Performance Electrode Material

    • Authors: Rubia Shafique, Malika M. Rani, Naveed Kasuar Janjua, Mariam Akram, Akram A. Ibrahim
    • Year: 2024

 

 

Kui Chen | Biomaterials | Best Researcher Award

Assoc. Prof. Dr. Kui Chen | Biomaterials | Best Researcher Award

Associate researcher, Institute of High Energy Physics Chinese Academy of Sciences, China.

Publication profile

Scopus Profile

Education and Experience

Kui Chen completed his doctoral studies in bioinorganic chemistry at the Institute of High Energy Physics (IHEP), Chinese Academy of Sciences. His research was guided by Prof. Gengmei Xing and Academician Zhao Yuliang, both of whom are leaders in the field of nanotechnology and material science. During his PhD, Chen focused on applying bioinorganic principles to design and develop innovative drug delivery systems. His academic training provided a strong foundation in both materials science and chemistry, which he integrated into his research on controlled-release nanosystems. This interdisciplinary approach to education has played a significant role in shaping Chen’s scientific career. His education has been further strengthened by collaborative projects and cross-team initiatives, such as the Beijing Nova Program, which have expanded his expertise and allowed him to contribute to cutting-edge advancements in cancer therapy.

Work Experience 

Kui Chen has been actively involved in research and academia since completing his PhD. After joining the Institute of High Energy Physics (IHEP) as a researcher, he quickly gained recognition for his contributions, leading to his promotion to Associate Professor in 2022. Chen has experience leading projects focused on developing novel nanosystems for medical applications, particularly in the treatment of cancer. His role as a corresponding and first author on 20 SCI papers demonstrates his leadership in scientific publications. In addition, Chen has filed over 20 patents, with 7 already granted, showcasing his ability to translate research into innovative, patentable technologies. His experience also includes collaboration with interdisciplinary teams, particularly through the Beijing Nova Program, where he plays a key role in cross-team projects aimed at advancing nanomedicine and drug delivery.

Awards and Honors 

Kui Chen has been recognized for his groundbreaking research with numerous honors and awards. Among his most notable achievements is his selection for the prestigious Beijing Nova Program, an initiative that supports young scientists who demonstrate exceptional promise in their fields. In addition, Chen has been selected for the Cross-Team within the Beijing Nova Program, further highlighting his collaborative abilities and leadership in scientific research. His innovation and contributions to nanomedicine and drug delivery have earned him recognition in both national and international scientific communities. Chen’s work, which bridges bioinorganic chemistry and materials science, has also led to the granting of 7 patents, reflecting his commitment to translating research into practical solutions. These accomplishments underscore his growing influence in the field of medical nanotechnology and highlight his potential as a future leader in scientific research.

Conclusion

Kui Chen is a highly suitable candidate for the Best Researcher Award. His outstanding research contributions, strong publication record, innovative patents, and selection for competitive programs demonstrate his potential and impact in his field. Although his focus is specialized, expanding his interdisciplinary work and mentorship roles can further solidify his standing as a leader in both the scientific and academic communities. His dedication to pushing the frontiers of nanotechnology in medical treatments positions him as a future leader in materials science research.

Publications

Enhanced osteogenic differentiation for osteoporosis treatment through controlled icariin release in the bone cavity via extracorporeal shock wave
Authors: Li, H., Hu, F., Liu, Q., Xing, G., Chen, K.
Year: 2024
Citations: 0

Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy
Authors: Lv, L., Zhang, J., Wang, Y., Xing, G., Chen, K.
Year: 2024
Citations: 0

Boron-Containing MOF Nanoparticles with Stable Metabolism in U87-MG Cells Combining Microdosimetry To Evaluate Relative Biological Effectiveness of Boron Neutron Capture Therapy
Authors: Wang, Z., Lei, R., Zhang, Z., Li, J., Xing, G.
Year: 2024
Citations: 3

Boron-Containing Mesoporous Silica Nanoparticles with Effective Delivery and Targeting of Liver Cancer Cells for Boron Neutron Capture Therapy
Authors: Tang, H., Wang, Z., Hao, H., Li, J., Xing, G.
Year: 2024
Citations: 0

Application and Development of Tumor-Targeting Boron Carriers in Boron Neutron Capture Therapy
Authors: Chen, K., Lyu, L.-W., Xing, G.-M.
Year: 2023
Citations: 0

Well-established immunotherapy with R837-loaded boron neutron capture-shocked tumor cells
Authors: Chen, K., Liu, S., Lv, L., Liang, T., Xing, G.
Year: 2023
Citations: 7

A Bone-Penetrating Precise Controllable Drug Release System Enables Localized Treatment of Osteoporotic Fracture Prevention via Modulating Osteoblast-Osteoclast Communication
Authors: Liang, H., Chen, K., Xie, J., Xing, G.
Year: 2023
Citations: 7

Corrigendum to: “Reversing the pathological microenvironment by radiocatalytic sensitizer for local orthotopic osteosarcoma radiotherapy enhancement”
Authors: Chen, K., Zhou, R., Liang, H., Xing, G., Gu, Z.
Year: 2023
Citations: 0

3D culture boosting fullerenol nanoparticles to induce calreticulin exposure on MCF-7 cells for enhanced macrophage-mediated cell removal
Authors: Liu, S., Liang, H., Lv, L., Chen, K., Xing, G.
Year: 2023
Citations: 2

High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System
Authors: Li, X., Ma, Y., Xue, Y., Han, X., Wang, J.
Year: 2023
Citations: 10

 

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.