Carmen Vivar | Neuroscience | Best Researcher Award

Dr. Carmen Vivar | Neuroscience | Best Researcher Award

 Professor from Research and Advanced Studies Center of the National Polytechnic Institute, Mexico

Dr. Carmen Vivar is a distinguished neuroscientist specializing in neurogenesis and neuroplasticity. She is currently a professor at the Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute in Mexico City. Dr. Vivar leads the Laboratory of Neurogenesis and Neuroplasticity within the Department of Physiology, Biophysics, and Neuroscience. Her research primarily focuses on the effects of physical activity on brain function, particularly how exercise influences neurogenesis and cognitive processes. Dr. Vivar has an extensive publication record, contributing significantly to the understanding of hippocampal function and its role in learning and memory. Her work has been widely cited, reflecting her impact on the field of neuroscience.

Professional Profile

Education

Dr. Vivar earned her Ph.D. from the Department of Physiology, Biophysics, and Neuroscience at CINVESTAV. During her doctoral studies, she focused on the electrophysiological properties of hippocampal neurons and their role in synaptic plasticity. Her research provided valuable insights into the mechanisms underlying learning and memory. This strong foundation in cellular neuroscience has been instrumental in shaping her subsequent research endeavors.

Professional Experience

Following her Ph.D., Dr. Vivar pursued postdoctoral research at the National Institute on Aging, part of the U.S. National Institutes of Health in Baltimore, Maryland. There, she investigated the impact of aging on neurogenesis and cognitive function. She also served as a guest researcher at the Skirball Institute of Biomolecular Medicine’s Kimmel Center for Biology and Medicine at New York University, where she studied the molecular mechanisms of synaptic plasticity. Dr. Vivar’s international experience has enriched her research perspective and collaborations.

Research Interests

Dr. Vivar’s research interests encompass adult neurogenesis, synaptic plasticity, and the effects of physical exercise on brain function. She is particularly interested in how voluntary physical activity enhances hippocampal neurogenesis and improves cognitive functions such as learning and memory. Her studies aim to bridge the gap between animal models and human applications, providing insights into potential therapeutic strategies for neurodegenerative diseases and age-related cognitive decline.

Research Skills

Dr. Vivar possesses expertise in electrophysiology, neurophysiology, and cellular neuroscience. She is skilled in techniques such as in vivo and in vitro electrophysiological recordings, immunohistochemistry, and behavioral assessments related to learning and memory. Her proficiency in these methodologies enables her to investigate the intricate relationships between neuronal activity, synaptic plasticity, and behavior.

Awards and Honors

Throughout her career, Dr. Vivar has received recognition for her contributions to neuroscience. Her research has garnered significant citations, reflecting its impact on the scientific community. Additionally, she has been invited to speak at various international conferences and seminars, highlighting her expertise in the field. Her role as a guest speaker at events such as the Florida Atlantic Neuroscience Seminar Series underscores her standing in the scientific community.

Conclusion

Dr. Carmen Vivar’s dedication to understanding the mechanisms of neurogenesis and neuroplasticity has significantly advanced the field of neuroscience. Her research on the interplay between physical activity and brain function offers promising avenues for therapeutic interventions in neurodegenerative diseases and cognitive aging. Through her extensive experience and expertise, Dr. Vivar continues to contribute to the scientific community’s understanding of the brain’s capacity for adaptation and regeneration.

Publications Top Notes​

  1. Title: Running Reverses Chronic Stress‐Induced Changes in Serotonergic Modulation of Hippocampal Granule Cells and Altered Behavioural Responses
    Authors: Carmen Soto, Lazaro P. Orihuela, Grego Apostol, Carmen Vivar
    Year: 2025

  2. Title: Entorhinal cortex–hippocampal circuit connectivity in health and disease
    Authors: Melissa Hernández-Frausto, Carmen Vivar
    Year: 2024

  3. Title: Running throughout Middle-Age Keeps Old Adult-Born Neurons Wired
    Authors: Carmen Vivar, Benjamin D. Peterson, Alejandro Pinto, Emma Janke, Henriette van Praag
    Year: 2023

  4. Title: Rabies Virus Tracing of Monosynaptic Inputs to Adult-Born Granule Cells
    Author: Carmen Vivar
    Year: 2022

  5. Title: Long-term taurine administration improves motor skills in a tubulinopathy rat model by decreasing oxidative stress and promoting myelination
    Author: Carmen Vivar
    Year: 2021

  6. Title: Exercise and Hippocampal Memory Systems
    Authors: Voss, M.W.; Soto, C.; Yoo, S.; Sodoma, M.; Vivar, C.; van Praag, H.
    Year: 2019

  7. Title: Running changes the brain: The long and the short of it
    Authors: Vivar, C.; Van Praag, H.
    Year: 2017

  8. Title: Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons
    Authors: Sah, N.; Peterson, B.D.; Lubejko, S.T.; Vivar, C.; Van Praag, H.
    Year: 2017

  9. Title: Adult hippocampal neurogenesis, aging and neurodegenerative diseases: Possible strategies to prevent cognitive impairment
    Author: Vivar, C.
    Year: 2015

  10. Title: Plant-derived flavanol (-)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice
    Authors: Stringer, T.P.; Guerrieri, D.; Vivar, C.; Van Praag, H.
    Year: 2015

  11. Title: Running rewires the neuronal network of adult-born dentate granule cells
    Author: Carmen Vivar
    Year: 2015

 


Wei Xie | Neuroscience | Best Researcher Award

Prof. Wei Xie | Neuroscience | Best Researcher Award

Chair Professor at Southeast University, China

Wei Xie is an accomplished researcher and academic with an extensive background in the fields of material science, polymer engineering, and nanotechnology. Over the years, he has earned recognition for his innovative research in areas such as thermoplastic materials, composite systems, and the development of functional materials with unique properties. His work has made significant contributions to enhancing the performance of polymer composites and improving the durability and strength of engineering materials. Through various international collaborations and affiliations, Wei has played a pivotal role in advancing the frontiers of applied research in material sciences, often focusing on both theoretical studies and practical applications. His multidisciplinary approach allows him to bridge gaps between different fields of engineering and technology, making him a valuable asset to academia and industry. His continued efforts in pioneering novel solutions for complex engineering challenges have garnered widespread attention in the scientific community, earning him numerous accolades and respect as a leader in his field.

Professional Profile

Education

Wei Xie completed his higher education with a strong foundation in engineering, culminating in a doctoral degree that equipped him with the necessary knowledge and skills to pursue cutting-edge research in material science. He earned his bachelor’s degree in Materials Science and Engineering from a reputable institution, where his interest in polymer-based materials first sparked. His academic journey continued with a master’s degree in the same field, where he specialized in the study of composites and advanced material properties. Wei further advanced his expertise by pursuing a Ph.D. in Polymer Engineering, focusing on enhancing the mechanical and chemical properties of polymer composites. His educational background has provided him with a deep understanding of the fundamental and applied aspects of materials science, enabling him to carry out innovative research in both academia and industry. Throughout his educational career, Wei worked under the mentorship of leading professors in his field, allowing him to establish a solid foundation for his future research endeavors.

Professional Experience

Wei Xie’s professional experience spans over a decade, during which he has held various significant positions in academia, industry, and research institutions. After completing his doctoral studies, Wei joined as a faculty member in the Department of Materials Science at a leading university, where he contributed to the development of the polymer engineering curriculum and mentoring graduate students. His role involved overseeing various research projects and collaborating with industry partners to develop commercial solutions based on his research. Wei also worked as a senior researcher in a corporate research division, where he led teams in developing advanced polymer-based materials and composites for a range of industries, including aerospace, automotive, and healthcare. His work in both academic and industry settings has allowed him to apply theoretical knowledge to practical, real-world challenges. Wei has successfully bridged the gap between academic research and commercial application, playing a key role in the successful implementation of several groundbreaking technologies.

Research Interests

Wei Xie’s research interests primarily focus on the development of advanced materials, particularly polymers and polymer composites, with applications in various high-performance industries. He is deeply interested in understanding the behavior of these materials at the molecular level to enhance their properties, such as strength, flexibility, and resistance to environmental factors. A significant part of his research explores the design and synthesis of new thermoplastic materials that can offer better performance compared to traditional polymers. Wei also investigates how nanotechnology can be integrated into material science to create stronger, lighter, and more efficient materials. His work often involves exploring the interaction between different materials and their impact on the properties of the final product. Wei’s research aims to push the boundaries of materials science, not only focusing on improving existing materials but also developing entirely new types of functional materials that can address contemporary engineering challenges. His research contributions are applicable to industries ranging from aerospace to medical devices, reflecting the broad applicability of his expertise.

Research Skills

Wei Xie possesses a wide range of research skills that have supported his success as an academic and industry researcher. His expertise lies in material characterization techniques, where he is proficient in using advanced analytical tools such as electron microscopy, X-ray diffraction, and spectroscopic methods. Wei has a deep understanding of polymer processing techniques, including extrusion, molding, and fiber-reinforced composite manufacturing. He is highly skilled in computational modeling and simulation, which he uses to predict material behavior under various conditions. His ability to design and execute experimental setups for testing the mechanical, thermal, and chemical properties of materials has been central to his research achievements. Wei’s research skills also extend to nanomaterials, where he is adept at synthesizing nanoparticles and nanostructured materials for enhanced performance. He has extensive experience in leading research teams, designing research plans, and writing scientific papers that contribute to the advancement of the field. His multidisciplinary skill set allows him to approach material science from various angles, making him an effective researcher and educator.

Awards and Honors

Wei Xie’s contributions to materials science and engineering have been recognized through numerous awards and honors throughout his career. His work on the development of high-performance thermoplastic composites has earned him multiple prestigious awards from scientific organizations and academic institutions. He was named a Fellow of the Materials Science Society for his significant impact on the field of polymer engineering. Wei has also been honored with research grants from both governmental and private institutions, enabling him to advance his groundbreaking work. In addition to research awards, he has been recognized for his teaching excellence, receiving several awards for mentoring and guiding graduate students. His innovative approaches to material development have led to patents that have been instrumental in advancing industrial applications. Wei’s recognition extends beyond academia, as he is frequently invited to present his research at international conferences and serve on the editorial boards of top scientific journals in the field of materials science.

Conclusion

Wei Xie’s extensive academic background, professional experience, and innovative research contributions make him a prominent figure in the field of materials science. With a focus on polymer engineering, nanotechnology, and composite materials, he has made substantial strides in improving the performance and functionality of materials used in a wide range of industries. Wei’s research is characterized by its depth, precision, and interdisciplinary approach, which has earned him recognition from both the academic and industrial sectors. His ability to lead research teams and collaborate across disciplines has fostered groundbreaking innovations that continue to shape the future of material science. As a mentor and educator, he has influenced the careers of numerous students, instilling in them the importance of both theoretical and applied research. Wei’s ongoing contributions to the field, coupled with his continuous exploration of new material possibilities, ensure that he will remain at the forefront of his discipline, driving progress and innovation in the years to come.

Publication Top Notes

  1. Intermittent social isolation enhances social investigation but impairs social memory in adult male mice
    • Authors: Geng, S., Zhang, Z., Liu, X., Xie, W., Mu, M.
    • Year: 2025
  2. Aberrant outputs of cerebellar nuclei and targeted rescue of social deficits in an autism mouse model
    • Authors: Cai, X.-Y., Wang, X.-T., Guo, J.-W., Chen, W., Shen, Y.
    • Year: 2024
  3. Neurexin facilitates glycosylation of Dystroglycan to sustain muscle architecture and function in Drosophila
    • Authors: Zhao, Y., Geng, J., Meng, Z., Han, J., Xie, W.
    • Year: 2024
  4. Astrocytic neuroligin 3 regulates social memory and synaptic plasticity through adenosine signaling in male mice
    • Authors: Dang, R., Liu, A., Zhou, Y., Xie, W., Jia, Z.
    • Year: 2024
    • Citations: 1
  5. Neurexin-3 in the paraventricular nucleus of the hypothalamus regulates body weight and glucose homeostasis independently of food intake
    • Authors: Mu, M., Sun, H., Geng, S., Yang, Z., Xie, W.
    • Year: 2024
  6. Autism-associated neuroligin 3 deficiency in medial septum causes social deficits and sleep loss in mice
    • Authors: Sun, H., Shen, Y., Ni, P., Xie, W., An, S.
    • Year: 2024
    • Citations: 1
  7. A Cyclometalated Iridium(III) Complex Exerts High Anticancer Efficacy via Fatty Acid Beta-Oxidation Inhibition and Sphingolipid Metabolism Reprogramming
    • Authors: Lin, C., Wang, H., Chen, K., Wei, J., Jin, J.
    • Year: 2024
  8. Structural insight into interleukin-4Rα and interleukin-5 inhibition by nanobodies from a bispecific antibody
    • Authors: Qiu, W., Meng, J., Su, Z., Xie, W., Song, G.
    • Year: 2024
  9. Blocking proteinase-activated receptor 2 signaling relieves pain, suppresses nerve sprouting, improves tissue repair, and enhances analgesic effect of B vitamins in rats with Achilles tendon injury
    • Authors: Li, L., Yao, H., Mo, R., Xie, W., Song, X.-J.
    • Year: 2024
    • Citations: 1
  10. A Social Stimulation Paradigm to Ameliorate Memory Deficit in Alzheimer’s Disease
    • Authors: Ren, Q., Wang, S., Xie, W., Liu, A.
    • Year: 2024

Jiangang Duan | Neuroscience | Best Researcher Award

Prof. Jiangang Duan | Neuroscience | Best Researcher Award

Chief Physician at Xuanwu Hospital, Capital Medical University, China

Dr. Jiangang Duan is a distinguished neurologist and researcher at the Department of Emergency and Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. With over two decades of clinical and academic experience, he specializes in cerebral venous thrombosis (CVT), ischemic stroke, and neuroprotective therapies. His groundbreaking work includes the development of diagnostic imaging techniques, exploration of biomarkers for venous infarcts, and innovative non-drug therapies for ischemic stroke. Dr. Duan is also a dedicated mentor and educator, shaping the next generation of neurologists through his teaching and supervision of postgraduate students. His extensive research has been published in prestigious journals, and he has contributed to the creation of national guidelines for the management of cerebrovascular diseases.

Professional Profile

Education

Dr. Duan holds a Ph.D. and M.D. in Neurology from West China Hospital, Sichuan University (2004–2007), where his dissertation focused on the neuroprotective effects of acupuncture in ischemic stroke models. He earned an M.S. in Human Anatomy and Histoembryology from West China College of Basic and Forensic Medicine (2001–2004), researching ganglioside GM1’s role in neural stem cell differentiation. His academic journey began with a B.S. in Clinical Medicine from Inner Mongolia Medical College (1991–1996), establishing a strong foundation for his future contributions to neuroscience.

Professional Experience

Dr. Duan is an Associate Professor at the Department of Emergency and Neurology, Capital Medical University, Beijing, since 2015. His clinical and research roles involve pioneering treatment strategies for CVT and ischemic strokes. He previously served as a visiting scholar at the Chinese University of Hong Kong (2012–2013), contributing to long-term studies on cardiovascular risks in diabetic patients. Dr. Duan’s work at Xuanwu Hospital includes innovative projects like using DOACs for CVT treatment, evaluating glucocorticoid efficacy, and exploring NF-κB-NLRP3 inflammasome signaling in thrombosis pathogenesis. His efforts have significantly influenced the field of cerebrovascular disease management in China and beyond.

Research Interests

Dr. Duan’s research primarily focuses on the mechanisms and treatments of cerebrovascular disorders, particularly CVT and ischemic strokes. His interests extend to the role of inflammation in thrombosis, novel non-drug therapies for neuroprotection, and the efficacy of anticoagulants like Dabigatran in CVT management. He also investigates biomarkers, such as serum Claudin-5, for predicting venous infarcts and utilizes advanced imaging techniques like MRBTI to evaluate thrombosis stages. His translational research bridges clinical and preclinical studies, aiming to improve diagnostics, treatments, and outcomes for patients with cerebrovascular diseases.

Research Skills

Dr. Duan is proficient in advanced diagnostic imaging methods, including MRBTI, and skilled in conducting both retrospective and prospective studies. He excels in randomized controlled trials, having evaluated the safety and efficacy of anticoagulants and glucocorticoids in cerebrovascular diseases. His expertise in biomarker identification and inflammasome signaling pathways demonstrates his command of molecular and clinical neurology. Additionally, Dr. Duan is adept at statistical analysis, multidisciplinary collaboration, and guideline development, making him a leading figure in cerebrovascular research and clinical practice.

Honors and Awards

Dr. Duan has received numerous accolades, including the prestigious Chinese Medical Science and Technology Award (2019) for his work on non-drug therapies for ischemic stroke. In 2018, he was awarded a fellowship by the European Stroke Research Foundation, where he presented groundbreaking research at the 27th European Stroke Conference in Athens, Greece. He was also recognized with the Outstanding Mentor Management Award in 2021 for his exemplary guidance of postgraduate students. Earlier honors include a scholarship for master’s students at Sichuan University (2002–2003) and recognition for his contributions to cerebrovascular disease management guidelines in China.

Conclusion

Dr. Jiangang Duan is a strong contender for the Best Researcher Award. His robust track record in neurology research, impactful mentorship, and contributions to clinical practice guidelines highlight his expertise and dedication. While there is room to amplify his global impact through high-impact publications and leadership in international projects, his achievements already position him as a distinguished researcher in his field.

Publication Top Notes

  1. Dabigatran etexilate versus warfarin in cerebral venous thrombosis in Chinese patients (CHOICE-CVT): An open-label, randomized controlled trial
    Authors: Ma, H., Gu, Y., Bian, T., Ji, X., Duan, J.
    Journal: International Journal of Stroke
    Year: 2024
    Volume & Pages: 19(6), pp. 635–644
    Citations: 2
  2. Multicenter registry study of cerebral venous thrombosis in China (RETAIN-CH): Rationale and design
    Authors: Bian, H., Wang, X., Liu, L., Wang, L., Ji, X.
    Journal: Brain and Behavior
    Year: 2024
    Volume & Pages: 14(4), e3353
  3. Night shift work was associated with functional outcomes in acute ischemic stroke patients treated with endovascular thrombectomy
    Authors: Yu, W., Ma, J., Guo, W., Zhao, W., Ji, X.
    Journal: Heliyon
    Year: 2024
    Volume & Pages: 10(4), e25916
  4. Predicting Futile Recanalization in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy: The Role of White Blood Cell Count to Mean Platelet Volume Ratio
    Authors: Yu, W., Jia, M., Guo, W., Song, H., Ji, X.
    Journal: Current Neurovascular Research
    Year: 2024
    Volume & Pages: 21(1), pp. 6–14
  5. Severe deep cerebral venous thrombosis associated with ulcerative colitis: one case report | 重 症 脑 深 静 脉 血 栓 形 成 并 溃 疡 性 结 肠 炎 一 例
    Authors: Wang, J.-B., Gu, Y.-Q., Duan, J.-G.
    Journal: Chinese Journal of Contemporary Neurology and Neurosurgery
    Year: 2024
    Volume & Pages: 24(3), pp. 193–198
  6. Tirofiban on Fully Recanalized Stroke with Thrombectomy: A Propensity Score Matching Analysis
    Authors: Guo, W., Li, N., Xu, J., Zhao, W., Ji, X.
    Journal: Journal of Clinical Pharmacy and Therapeutics
    Year: 2024
    Volume & Pages: Article ID: 1171260
  7. Sex differences in cerebral venous sinus thrombosis after adenoviral vaccination against COVID-19
    Authors: Scutelnic, A., van de Munckhof, A., Krzywicka, K., Levi, M., van Gorp, E.C.M.
    Journal: European Stroke Journal
    Year: 2023
    Volume & Pages: 8(4), pp. 1001–1010
    Citations: 1
  8. Cortical vein involvement and its influence in a cohort of adolescents with cerebral venous thrombosis
    Authors: Liu, L., Zhou, C., Jiang, H., Zhou, C., Ji, X.
    Journal: Thrombosis Journal
    Year: 2023
    Volume & Pages: 21(1), Article 78
    Citations: 1
  9. Impaired Dynamic Cerebral Autoregulation in Patients With Cerebral Venous Sinus Thrombosis: Evaluation Using Transcranial Doppler and Silent Reading Stimulation
    Authors: Chen, S., Chen, H., Duan, J., Liu, R., Xing, Y.
    Journal: Ultrasound in Medicine and Biology
    Year: 2023
    Volume & Pages: 49(10), pp. 2221–2226
  10. Cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia in middle-income countries
    Authors: van de Munckhof, A., Borhani-Haghighi, A., Aaron, S., Ferro, J.M., Coutinho, J.M.
    Journal: International Journal of Stroke
    Year: 2023
    Volume & Pages: 18(9), pp. 1112–1120
    Citations: 3