Qijing Wang | Materials Science | Best Researcher Award

Assist. Prof. Dr. Qijing Wang | Materials Science | Best Researcher Award

Assistant Professor from Nanjing University, China

Dr. Qijing Wang is a dedicated and rapidly emerging scholar in the field of organic electronics. Currently serving as an Assistant Professor at the School of Integrated Circuits, Nanjing University, he has quickly built a reputation for impactful research in charge transport and device physics, particularly in organic field-effect transistors (OFETs). His academic journey has been marked by continuous excellence, with all degrees obtained from the prestigious Nanjing University. Dr. Wang’s scholarly work reflects a deep understanding of electronic science and its applications in advanced materials and device engineering. He has authored several high-impact publications in internationally recognized journals such as Advanced Functional Materials, Small Methods, and ACS Applied Materials & Interfaces. Additionally, his commitment to international collaboration was evident through his postdoctoral research at the University of Cambridge, where he worked under Prof. Henning Sirringhaus. Dr. Wang’s achievements have been recognized through competitive fellowships and national awards, making him a strong candidate for research excellence honors. His career reflects a balanced blend of theoretical knowledge, experimental proficiency, and innovation. As a young academic, Dr. Wang exemplifies the qualities of a future leader in his field, contributing meaningfully to both the academic community and technological advancement in integrated circuits.

Professional Profile

Education

Dr. Qijing Wang received his formal education entirely at Nanjing University, one of China’s premier institutions for science and engineering. He earned his Bachelor of Science degree in Physics in 2012, laying a robust foundational understanding of physical principles that later supported his advanced research in electronics. Building upon his undergraduate education, he pursued a doctoral degree in Electronic Science and Technology at the same university, completing his Ph.D. in 2018. His doctoral studies focused on charge transport mechanisms and the performance enhancement of organic field-effect transistors (OFETs), a research area that positioned him to contribute to cutting-edge developments in organic electronics. Throughout his education, Dr. Wang demonstrated not only academic excellence but also an ability to integrate theoretical physics with practical device engineering. His time as a student at Nanjing University allowed him access to state-of-the-art laboratories, advanced instrumentation, and renowned faculty mentors. These resources equipped him with the skills necessary for conducting high-quality research and developing independent scientific thought. His educational background provides a strong interdisciplinary framework, combining elements of physics, materials science, and electronics, which continues to underpin his professional and academic accomplishments today.

Professional Experience

Dr. Qijing Wang currently serves as an Assistant Professor at the School of Integrated Circuits, Nanjing University. His academic appointment follows a successful tenure as a postdoctoral researcher, during which he significantly contributed to projects on the charge transport and structural optimization of organic semiconductors. As a postdoctoral fellow at Nanjing University, he was selected for the Postdoctoral Innovative Talent Support Program Grant—a highly competitive national program recognizing early-career researchers with exceptional promise. This achievement underscores his ability to undertake independent, innovative research in electronic materials. Further expanding his academic horizon, Dr. Wang spent a period as a visiting postdoctoral researcher at the University of Cambridge, collaborating with Prof. Henning Sirringhaus, a global authority in organic electronics. This international experience enhanced his expertise and enabled cross-border academic engagement. In his current role, Dr. Wang is involved in both teaching and research, mentoring undergraduate and graduate students while leading projects that address challenges in next-generation transistor design. His professional experience reflects a clear progression from student to postdoctoral scholar to independent academic, marked by increasing responsibility, international collaboration, and recognized contributions to the scientific community.

Research Interests

Dr. Qijing Wang’s research interests lie primarily in the field of organic electronics, with a specific focus on charge transport and device physics in organic field-effect transistors (OFETs). He is deeply engaged in exploring the fundamental physical mechanisms that govern the performance of organic semiconductors, aiming to enhance their electronic properties for real-world applications. His work bridges the gap between materials science and circuit-level engineering, addressing both theoretical and experimental challenges. Dr. Wang is particularly interested in the molecular engineering of organic materials to improve charge mobility, stability, and environmental compatibility of OFETs. Additionally, his research encompasses the interface physics between organic materials and metal contacts, dielectric engineering, and nanoscale fabrication techniques. With a growing interest in flexible and wearable electronics, Dr. Wang’s work is increasingly interdisciplinary, contributing to the development of next-generation electronics with applications in healthcare, consumer electronics, and energy devices. His research trajectory demonstrates a commitment to pushing the boundaries of what is possible in organic semiconductors, offering valuable insights into material-device correlations and design strategies. This integrated approach has enabled him to publish in top-tier journals and positions him as a key contributor to the evolution of high-performance, low-cost electronic devices.

Research Skills

Dr. Qijing Wang possesses a comprehensive set of research skills that enable him to excel in the field of organic electronics. His expertise spans both experimental and theoretical domains, particularly in charge transport phenomena, thin-film transistor fabrication, and organic material characterization. He is skilled in using advanced characterization techniques such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to analyze material morphology and structure. In terms of electrical performance, he is proficient in using probe stations and semiconductor parameter analyzers for the precise evaluation of transistor characteristics. Dr. Wang also demonstrates strong competencies in molecular design and solution processing techniques, including spin-coating and inkjet printing, which are essential for developing high-performance OFETs. During his postdoctoral research, he honed his ability to conduct independent experiments, manage collaborative projects, and analyze complex data sets. His international research experience at the University of Cambridge also strengthened his adaptability, scientific communication, and teamwork abilities. Furthermore, he is well-versed in using software tools for data modeling, statistical analysis, and device simulation. These technical proficiencies, combined with his innovative mindset, make him a versatile researcher capable of addressing diverse challenges in materials science and device engineering.

Awards and Honors

Dr. Qijing Wang has received notable recognition for his academic and research excellence early in his career. Among his most prestigious honors is the Postdoctoral Innovative Talent Support Program Grant, awarded during his tenure as a postdoctoral fellow at Nanjing University. This national-level fellowship is one of the most competitive and selective programs in China, aimed at identifying and supporting highly promising early-career researchers. Receiving this grant not only highlights Dr. Wang’s research potential but also affirms his capacity to drive independent and impactful scientific inquiries. His selection for a Visiting Postdoctoral Researcher position at the University of Cambridge further underscores his standing in the academic community. This opportunity allowed him to collaborate with leading researchers in organic electronics and broaden his research capabilities in an international environment. In addition to these distinctions, Dr. Wang’s work has been featured in high-impact journals, signaling peer recognition and scholarly merit. These awards and honors are not only commendations of past achievements but also indicators of his future contributions to science and technology. They reflect his ongoing dedication to innovation, academic excellence, and leadership in the field of organic electronic devices.

Conclusion

In summary, Dr. Qijing Wang stands out as an accomplished and innovative researcher in the domain of organic electronics. His academic foundation, built at Nanjing University, has been enriched through nationally and internationally recognized research experiences. With a focus on organic field-effect transistors, he has made significant strides in understanding and optimizing charge transport mechanisms, contributing valuable knowledge to both academia and industry. His achievements, including high-impact publications and prestigious fellowships, highlight his commitment to scientific rigor and originality. Dr. Wang combines deep technical expertise with a collaborative and forward-thinking approach, evidenced by his research visit to the University of Cambridge and active engagement in interdisciplinary projects. While still early in his academic career, he has shown the qualities of a future leader—innovative thinking, strong communication skills, and a clear vision for advancing technology. Continued emphasis on research leadership roles, mentorship, and broader application of his findings will further enhance his impact. Overall, Dr. Wang is a highly deserving candidate for the Best Researcher Award, with demonstrated excellence and the potential for continued breakthroughs in electronic materials and device research.

Publications Top Notes

  • Additive-assisted “metal-wire-gap” process for N-type two-dimensional organic crystalline films
    Authors: Yang, C.; Qian, J.; Wang, Q.; Jiang, S.; Duan, Y.; Wang, H.; Dai, H.; Li, Y.
    Year: 2019

  • PJ-Level Energy-Consuming, Low-Voltage Ferroelectric Organic Field-Effect Transistor Memories
    Authors: Pei, M.; Qian, J.; Jiang, S.; Guo, J.; Yang, C.; Pan, D.; Wang, Q.; Wang, X.; Shi, Y.; Li, Y.
    Year: 2019

  • Two-dimensional organic materials and their electronic applications
    Authors: Wang, H.; Wang, Q.; Li, Y.
    Year: 2019

  • Interfacial Flat-Lying Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Jiang, S.; Qiu, L.; Qian, J.; Ono, L.K.; Leyden, M.R.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly
    Authors: Jiang, S.; Qian, J.; Duan, Y.; Wang, H.; Guo, J.; Guo, Y.; Liu, X.; Wang, Q.; Shi, Y.; Li, Y.
    Year: 2018

  • Spin-Coated Crystalline Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Juarez-Perez, E.J.; Jiang, S.; Qiu, L.; Ono, L.K.; Sasaki, T.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Temperature dependence of piezo- and ferroelectricity in ultrathin P(VDF-TrFE) films
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Yang, C.; Duan, Y.; Wang, H.; Guo, J.; Shi, Y.; Li, Y.
    Year: 2018

  • Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Zheng, S.; Guo, S.; Yi, C.; Wang, J.; Wang, X.; Tsukagoshi, K.; Shi, Y. et al.
    Year: 2018

  • Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors
    Authors: Zhang, Y.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q.; Wang, X.; Shi, Y.; Wang, X.; Li, Y.
    Year: 2017

  • Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors
    Authors: Wang, Q.; Jiang, S.; Qian, J.; Song, L.; Zhang, L.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wang, X.; Shi, Y. et al.
    Year: 2017

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology

 

 

Hao Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hao Li | Materials Science | Best Researcher Award

Professor at South China Normal University, China

Hao Li, an accomplished Associate Professor at the South China Academy of Advanced Optoelectronics, South China Normal University, is a distinguished researcher in polymeric chemistry and physics. With over a decade of experience in academia and research, Hao Li specializes in stimulus-responsive polymers, self-assembled polymeric nanosystems, and smart polymeric surfaces/interfaces. His contributions to polymer science have garnered recognition through numerous grants and high-impact publications in prestigious journals like Macromolecular Chemistry and Physics and Journal of Materials Chemistry. As a dedicated academic, he actively mentors students, serves as a reviewer for reputed journals, and contributes to cutting-edge advancements in polymer research.

Professional Profile

Education

Hao Li holds a Ph.D. in Polymeric Chemistry and Physics (2006) from Wuhan University, P. R. China. His doctoral work laid the foundation for his expertise in polymerization techniques and polymeric nanosystems. Prior to this, he earned his Bachelor’s degree in Applied Chemistry (2001) from the same institution, where he cultivated his passion for chemistry and materials science.

Professional Experience

Since 2014, Hao Li has been an Associate Professor at the South China Academy of Advanced Optoelectronics, contributing to research and education in advanced materials. He was previously a lecturer at Sun Yat-sen University (2010–2014), focusing on biomedical polymers, and a postdoctoral fellow specializing in self-assembled nanosystems (2007–2010). His career also includes lecturing at Liaoning University of Traditional Chinese Medicine, where he explored biomedical polymers.

Research Interests

Hao Li’s research centers on stimulus-responsive polymers, self-assembled polymeric micro-/nano-systems, and smart polymeric surfaces/interfaces. His innovative work explores the application of these materials in drug delivery, diagnostic tools, and functional nanomaterials, driving advancements in biomedicine and materials science.

Research Skills

Hao Li is proficient in designing and synthesizing functional polymeric materials and self-assembled nanosystems. He has expertise in advanced polymerization techniques, polymer characterization, and nanofabrication. His skills extend to developing pH-sensitive and MRI-visible nanocarriers, highlighting his aptitude for interdisciplinary applications in chemistry and biomedical engineering.

Awards and Honors

Hao Li has been awarded several prestigious research grants, including the National Natural Science Foundation of China General Program and Youth Foundation. He has led and participated in numerous multimillion-yuan projects, such as the Key Research and Development Program of China, solidifying his reputation as a leading researcher in his field. His dedication and impactful work have positioned him as an influential figure in polymer and nanomaterial research.

Conclusion

Hao Li is a strong candidate for the Best Researcher Award due to his significant contributions to polymer science, particularly in smart polymers and biomedical applications. His extensive funding history, impactful publications, and academic leadership demonstrate excellence in research. To further enhance his candidacy, efforts to boost global collaborations, publish in broader-impact journals, and establish a stronger patent portfolio would solidify his position as an outstanding researcher. Overall, he is a worthy contender for this recognition.

Publication Top Notes

  1. Sheet-on-sheet architectural assembly of MOF/graphene for high-stability NO sensing at room temperature
    • Authors: Yanwei Chang, Jingxing Zhang, Ruofei Lu, Weiran Li, Yuchen Feng, Yixun Gao, Haihong Yang, Fengnan Wang, Hao Li, Yi-Kuen Lee, et al.
    • Year: 2024
  2. Adjusting Interface Action and Spacing for Control of Particle Potential
    • Authors: Mian Qin, Jiangsong Ren, Jiamin Cheng, Ruisi Gao, Linli Li, Yao Wang, Pengfei Bai, Hao Li, Guofu Zhou
    • Year: 2024
  3. One Stone Several Birds: Self‐Localizing Submicrocages With Dual Loading Points for Multifunctional Drug Delivery
    • Authors: Shuxuan Liu, Jifei Wang, Yong Jiang, Yao Wang, Bin Yang, Hao Li, Guofu Zhou
    • Year: 2024
  4. CO2-induced switching between MOF-based bio-mimic slow anion channel and proton pump for medical exhalation detection
    • Authors: Honghao Chen, Xiaorui Yue, Yifei Fan, Bin Zheng, Sitao Lv, Fengnan Wang, Yixun Gao, Hao Li, Yi-Kuen Lee, Patrick J. French, et al.
    • Year: 2024
  5. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature
    • Authors: Yubo Yin, Yixun Gao, Jianqiang Wang, Quan Wang, Fengnan Wang, Hao Li, Paddy J. French, Peerasak Paoprasert, Ahmad M. Umar Siddiqui, Yao Wang, et al.
    • Year: 2024
  6. Optically Tunable Multistable Liquid Crystal Grating for Anti‐Counterfeiting through Multilayer Continuous Phase Analysis
    • Authors: Jingxing Zhang, Rundong Wu, Yancong Feng, Rongzeng Lai, Jinglun Liao, Zhijian Mai, Yao Wang, Ying Xiang, Hao Li, Guofu Zhou
    • Year: 2024
  7. Biomimicking TRPM8: A Conversely Temperature-Dependent Nonionic Retrorse Nanochannel for Ion Flow Control
    • Authors: Tao Yang, Zelin Yang, Weiwen Xin, Yuchen Feng, Xiangyu Kong, Yao Wang, Hao Li, Liping Wen, Guofu Zhou
    • Year: 2024
  8. A bio-inspired and switchable H+/OH− ion-channel for room temperature exhaled CO2 chemiresistive sensing
    • Authors: Honghao Chen, Ruofei Lu, Yixun Gao, Xiaorui Yue, Haihong Yang, Hao Li, Yi-Kuen Lee, Paddy J. French, Yao Wang, Guofu Zhou
    • Year: 2023