Yan Liu | Materials Science | Best Researcher Award

Prof. Yan Liu | Materials Science | Best Researcher Award

The Associate Director of both National Key Laboratory of Automotive Chassis Integration and Bionics and the Key Laboratory of Bionic Engineering (Ministry of Education) at Jilin University, China

Yan Liu, Ph.D. in Engineering, is a distinguished scholar renowned for her contributions to bionic engineering and materials science. She is a CJ Scholar Distinguished Professor under the Major Talent Project Incentive Program of the Ministry of Education of China, a Changbaishan Scholar of Jilin Province, and a professor and Ph.D. supervisor at Jilin University. Currently serving as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, she is instrumental in advancing bionic technologies for automotive and materials applications. As a founding member of the International Society of Bionics and vice chairman of the Jilin Association of Corrosion Prevention Technology, Yan Liu has established herself as a global leader in her field. Her research, which focuses on designing multifunctional materials inspired by biological systems, has led to over 150 publications in prestigious journals and the filing of 40 patents, 17 of which have been granted. Yan Liu’s work has significantly impacted anti-corrosion, anti-icing, and self-repairing materials, making her a pioneer in bionic materials science.

Professional Profile

Education

Yan Liu has a robust academic foundation in engineering and materials science. She earned her Ph.D. in Agricultural Mechanization Engineering from Jilin University in December 2006, following her Master’s degree in the same field from the same institution in July 2003. Her undergraduate studies were completed at the Former School of Materials, Jilin University of Technology, where she graduated with a Bachelor’s degree in July 1997. Her academic journey has been marked by a consistent focus on integrating engineering principles with innovative materials development, laying the groundwork for her expertise in bionics and biomimetic materials. This strong educational background has enabled her to excel in multidisciplinary research, combining agricultural engineering, materials science, and bionic technologies.

Professional Experience

Yan Liu has an illustrious professional career spanning over two decades, primarily at Jilin University. Since September 2013, she has served as a Professor and Ph.D. Supervisor at the Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University. Prior to this, she was an Associate Professor and Master’s Supervisor in the same department from 2008 to 2013. Yan Liu also gained international experience as a Postdoctoral Researcher and Visiting Scholar at the University of Bristol, UK, between 2010 and 2011. Her earlier postdoctoral work, from 2009 to 2013, at the College of Materials Science and Engineering, Jilin University, further honed her expertise in advanced materials research. Currently, as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, Yan Liu plays a vital role in steering cutting-edge research in bionic materials and technologies.

Research Interests

Yan Liu’s research focuses on bionic intelligent protective coatings and materials, with applications in automotive and surface engineering. She draws inspiration from biological structures to develop multifunctional materials, including self-repairing and self-warning coatings, superhydrophobic anti-corrosion surfaces, and anti-icing multifunctional coatings. Her work also extends to flexible electronic devices and polymer-based materials, combining advanced material science with biomimetic principles. Yan Liu is dedicated to addressing real-world challenges such as corrosion resistance and ice formation on automotive surfaces, making her research highly relevant and impactful. Her interdisciplinary approach integrates biology, materials science, and engineering to pioneer innovative solutions that bridge academic research and industrial applications.

Research Skills

Yan Liu possesses a wide array of advanced research skills in bionic and materials engineering. She specializes in designing multifunctional coatings and materials inspired by biological mechanisms, with expertise in self-repairing, anti-corrosion, and anti-icing technologies. Her skills include surface engineering, interface science, and the development of superhydrophobic materials. Yan Liu is adept at leading large-scale research projects, having managed several national and international R&D initiatives, including projects funded by the National Natural Science Foundation and major international collaboration programs. She also excels in intellectual property development, with 40 patent applications, 17 of which have been granted. Her ability to translate complex research into practical innovations highlights her technical acumen and problem-solving expertise.

Awards and Honors

Yan Liu’s exceptional contributions to science and engineering have earned her numerous accolades. She is a recipient of the prestigious CJ Scholar Distinguished Professor Award under the Ministry of Education’s Major Talent Project. As a Changbaishan Scholar of Jilin Province, she has been recognized for her leadership in materials science and bionics. She also holds prominent positions, including the Associate Directorship of the National Key Laboratory of Automotive Chassis Integration and Bionics and vice chairmanship of the Jilin Association of Corrosion Prevention Technology. Yan Liu’s work has been supported by over seven national-level grants and international collaboration programs, underscoring her excellence in research leadership. Her contributions to the field are further validated by her extensive publication record and numerous granted patents.

Conclusion

Yan Liu is an exceptional candidate for the Best Researcher Award due to her groundbreaking contributions in bionic engineering and materials science. Her achievements in developing multifunctional coatings, securing competitive funding, and publishing extensively in high-impact journals firmly establish her as a leading figure in her field. While enhancing international collaborations and emphasizing the practical impact of her innovations could further bolster her profile, her existing accomplishments position her as a highly suitable nominee for this prestigious recognition.

Publication Top Notes

  1. Fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zaihang Zheng, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.jmst.2024.05.052
  2. Eucalyptus spp.-inspired degradable lubricant-releasing coating for marine antifouling surfaces
    • Authors: Yafei Shi, Miaomiao Qian, Dongsong Wei, Wenliang Zhang, Ting Lu, Zhen Zhang, Shuyi Li, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.porgcoat.2024.108917
  3. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation
  4. Facile and effective construction of superhydrophobic, multi-functional and durable coatings on steel structure
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Zaihang Zheng, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.compositesb.2024.111850
  5. A fluorine-free bioinspired multifunctional slippery coating for ultra-long-term anticorrosion of Mg alloy, static/dynamic anti-icing, antibacterial and antifouling
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zhiwu Han, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.cej.2024.157516
  6. Ultralight, elastic, hydrophobic Willow moss-derived aerogels for efficient oil-water separation
    • Authors: Zhibiao Chen, Bin Zhan, Shuyi Li, Dongsong Wei, Wenting Zhou, Zhengping Fang, Guoyong Wang, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.colsurfa.2024.134648
  7. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
  8. Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination
  9. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring
  10. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Yan Liu
    • Year: 2024
    • DOI: 10.1021/acs.langmuir.4c02001
  11. Fabrication of superhydrophobic all-biomass aerogels with ultralight, elasticity and degradability for efficient oily wastewater treatment
    • Authors: Zhengping Fang, Jiaqi Li, Shiting Li, Chaohuan Yang, Chenchen Liao, Chengyu Du, Zhibiao Chen, Dongsong Wei, Jiayu Qi, Xiaopeng Guo, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.jwpe.2024.105607
  12. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances

 

Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Prof. Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Distinguished Professor of Biomaterials of Tecnologico de Monterrey, Mexico.

Prof. Gabriel Luna-Barcenas is a prominent figure in chemical engineering and materials science, currently affiliated with the Institute of Advanced Materials for Sustainable Manufacturing at Tecnologico de Monterrey, Mexico. His distinguished academic background includes a PhD from The University of Texas at Austin and postdoctoral work at Princeton University. Prof. Luna-Barcenas has garnered numerous accolades, including the Fulbright Scholar awards and the National Investigator SNI-III designation. His research, spanning over 280 publications and several patents, focuses on polymer science, nanotechnology, and green chemistry. He has led significant industrial projects and secured diverse funding sources. Known for his impactful work and high citation count, he has also been actively involved in teaching, supervising numerous theses, and organizing major conferences. His leadership roles include President of the Mexican Polymer Society and Delegate for the IUPAC Polymer Division, highlighting his substantial influence in the scientific community.

Profile
Education

Professor Gabriel Luna-Barcenas has a robust academic foundation in chemical engineering, marked by an illustrious educational journey. He earned his Bachelor of Science (BSc) degree in Chemical Engineering from Instituto Tecnológico de Celaya, Mexico, in 1988. He continued his studies at the same institution, completing his Master of Science (MSc) in Chemical Engineering in 1991. His quest for advanced knowledge led him to The University of Texas at Austin, where he obtained his Ph.D. in 1997, specializing in chemical engineering. Following his doctoral studies, Prof. Luna-Barcenas expanded his expertise through a prestigious Postdoctoral Fellowship at Princeton University, where he conducted advanced research from 1997 to 1999. His education, spanning top institutions in Mexico and the United States, laid a strong foundation for his influential career in materials science and engineering, contributing significantly to his expertise in polymer science and sustainable manufacturing.

Professional Experience

Professor Gabriel Luna-Barcenas is a highly accomplished researcher and academic with extensive experience in chemical engineering and materials science. He currently serves as a Senior Researcher at the Industrial R&D Center (CID-DESC) and holds the position of Honorary Joint Professor in the Chemical Engineering Department at The University of Texas at Austin, a role he has held since 2000. Prof. Luna-Barcenas has made significant contributions to the field through his research at Cinvestav Unidad Querétaro, where he also served as Graduate Advisor from 2012 to 2015. His professional journey includes leading numerous industrial projects with prominent companies in Mexico and internationally, focusing on sustainable manufacturing, nanotechnology, and polymer science. Prof. Luna-Barcenas is recognized for his leadership in both academic and industrial settings, demonstrating a commitment to advancing science through collaborative research, innovation, and education. His work has had a profound impact on the development of new materials and processes.

Research Interest

Professor Gabriel Luna-Barcenas is a leading expert in the field of chemical engineering, with a research focus on the development and application of advanced materials for sustainable manufacturing. His work spans across polymer science, nanotechnology, and green chemistry, with a particular emphasis on the use of supercritical fluids and deep eutectic solvents for environmentally friendly polymer processing. Prof. Luna-Barcenas is also deeply involved in the study of biopolymers for biomedical applications, exploring their potential in tissue engineering and regenerative medicine. His research includes the synthesis and characterization of nanocomposites, with a focus on enhancing their antimicrobial, electrical, and mechanical properties for use in various industrial and medical applications. Through his innovative approach, Prof. Luna-Barcenas aims to develop sustainable materials and processes that contribute to a cleaner and more efficient manufacturing industry, while also advancing the understanding of complex polymer systems.

Research Skills

Prof. Gabriel Luna-Barcenas is a highly skilled researcher with expertise in polymer science, nanotechnology, and sustainable materials. His research focuses on the development of advanced materials through innovative processing techniques, such as supercritical fluid processing and deep eutectic solvents. Prof. Luna-Barcenas excels in the synthesis and characterization of polymers, nanocomposites, and biomaterials, with a strong emphasis on their environmental and biomedical applications. He is proficient in using advanced analytical techniques, including high-resolution turbidimetry, to investigate the structural and functional properties of materials. His work is characterized by a multidisciplinary approach, integrating principles of chemical engineering, materials science, and nanotechnology to address complex challenges in sustainable manufacturing. Prof. Luna-Barcenas is also skilled in mentoring and guiding graduate students, fostering a collaborative research environment that promotes innovation and excellence. His contributions to the field are reflected in his extensive publication record, patents, and impactful industrial collaborations.

Awards and Recognition

Professor Gabriel Luna-Barcenas has been widely recognized for his contributions to chemical engineering and materials science. His accolades include the prestigious Fulbright Scholar award in 2014 and 2020, highlighting his international research impact. As a leading figure in the scientific community, he served as President of the Mexican Polymer Society from 2005 to 2007 and has been an influential Delegate to the IUPAC Polymer Division for Mexico and Latin America since 2008. His designation as a National Investigator SNI-III, from 2015 to 2031, reflects his sustained excellence in research. Additionally, he has received the E.D. Farmer Scholarship from the University of Texas at Austin, and his leadership extends to his role as President of the CONACYT Nanoscience & Nanotechnology Network of Mexico since 2015. These awards and recognitions underscore Luna-Barcenas’s exceptional contributions to advancing science and technology on both national and international stages.

Conclusion

Gabriel Luna-Barcenas is highly suitable for the Best Researcher Award due to his outstanding contributions to polymer science, sustainable manufacturing, and nanotechnology. His extensive publication record, impactful patents, and leadership roles underscore his significant influence in the field. Addressing areas for improvement, such as enhancing public engagement and fostering diverse collaborations, could further elevate his already impressive career. Overall, Luna-Barcenas exemplifies the qualities of a leading researcher and innovator.

Publications Top Notes

  • Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples
    • Authors: A. Gutiérrez, M.G. Ramírez-Ledesma, G.A. Rivas, R.A. Escalona-Villalpando, J. Ledesma-García
    • Year: 2024
  • Metathesis of butadiene rubber for the sustainable production of polyesters and polyols
    • Authors: M. Burelo, A.Y. Yau, S. Gutiérrez, G. Luna-Barcenas, C.D. Treviño-Quintanilla
    • Year: 2024
    • Citations: 1
  • Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes
    • Authors: A. Hernandez-Rangel, P. Silva-Bermudez, A. Almaguer-Flores, G. Luna-Barcenas, C. Velasquillo
    • Year: 2024
  • Combined antibacterial and antifouling properties of polyethersulfone mixed matrix membranes with zwitterionic graphene oxide nanostructures
    • Authors: R. Castellanos Espinoza, M.J. Huhn Ibarra, A.J. Montes Luna, M. Guerra Balcázar, B.L. España Sánchez
    • Year: 2024
  • Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis
    • Authors: A. Rodríguez-Buenrostro, A. Martínez-Lázaro, M.V. Contreras-Martínez, J. Ledesma-García, L.G. Arriaga
    • Year: 2024
  • Surface engineering of carbon dots synthesized from green sources with antiviral properties
    • Authors: A. López-Amador, B.I. Jiménez-Muñóz, A. Gutierrez-Ortega, M. Estevez, B. Liliana España-Sánchez
    • Year: 2024
  • Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture
    • Authors: C. Ortega-Sánchez, Y. Melgarejo-Ramírez, R. Rodríguez-Rodríguez, V. Martínez-López, Z.Y. García-Carvajal
    • Year: 2024
    • Citations: 3
  • Rheological, Physicochemical, Thermal, and Mechanical Properties of Biopolymeric Films Incorporated with Micro-Holocellulose from Coffee Residues
    • Authors: J.D. Hernández-Varela, J.J. Chanona-Pérez, G.L. Bárcenas, D.I. Medina
    • Year: 2024
  • Physiological evaluation of PVP-coated AgNP in the rat small intestine: an ex vivo approach
    • Authors: J.A. Chávez-Hernández, B.L. España-Sánchez, P. Aguirre-Bañuelos, G. Luna-Bárcenas, C. Gonzalez
    • Year: 2024
  • Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells
    • Authors: A. Ochoa-Sanchez, P. Sahare, S. Pathak, G. Luna-Bárcenas, S. Paul
    • Year: 2024