Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Dr. Aenas Laith Ali | Materials Science | Best Academic Researcher Award

Babylon University | Iraq

Enas Laith Ali Al-Dulaimi is an accomplished researcher and materials engineer from Iraq, recognized for her expertise in alloy development, corrosion resistance, and aerospace materials. With a strong academic foundation in metallurgy and materials engineering, she has contributed significantly to advancing knowledge in the areas of alloy processing, microstructural analysis, and mechanical property improvement. Her work is deeply rooted in both academic research and practical laboratory investigations, bridging the gap between theoretical insights and industrial applications. Over the years, she has developed a strong research portfolio, including multiple publications in internationally indexed journals, book chapters, and conference proceedings. Enas has also demonstrated her leadership skills by guiding students, contributing to academic projects, and engaging in training programs to share her expertise. Her work spans various advanced techniques, including X-ray diffraction, optical microscopy, and corrosion testing methods, positioning her as a specialist in material characterization and alloy performance evaluation. In addition to her academic contributions, she has earned professional certifications and participated in interdisciplinary collaborations, reflecting her commitment to continuous learning and professional growth. Her research excellence, combined with a strong vision for innovation and societal impact, makes her a valuable contributor to the global scientific and engineering community.

Professional Profile

Scopus | Google Scholar

Education

Enas Laith Ali Al-Dulaimi holds a distinguished academic background in materials engineering, with both undergraduate and postgraduate degrees from the University of Babylon, Iraq. She earned her Bachelor’s degree in Metallurgical and Materials Engineering (Metals Division), where she graduated with high distinction, ranking fourth in her department. During her undergraduate studies, she completed a major project on improving corrosion resistance in Nitinol alloys through surface treatment techniques, which demonstrated her early research capabilities and passion for materials development. Building on this foundation, she pursued a Master’s degree in Metallurgical and Materials Engineering (Metals Division) at the University of Babylon. Her Master’s research was focused on the role of alloying techniques in enhancing the properties of Al-Li alloys used in aerospace industries, which showcased her ability to address complex engineering challenges with real-world applications. This work contributed valuable insights into the aerospace field, particularly regarding alloy strength, durability, and resistance to corrosion. Alongside her formal education, she has pursued continuous learning through professional certifications and specialized training, including programs on Python programming, artificial intelligence, electronic teaching methods, and advanced laboratory practices, ensuring her academic profile is well-rounded and internationally competitive.

Professional Experience

Enas Laith Ali Al-Dulaimi has accumulated extensive professional experience as a materials engineer, academic researcher, and laboratory specialist at the University of Babylon. In her role, she has actively contributed to teaching, guiding students in practical experiments, and assisting in advanced laboratory investigations related to metallurgy and materials characterization. Her hands-on experience covers mechanical testing, hardness, tensile and compression strength evaluations, as well as corrosion resistance studies, all of which are essential for assessing material performance under different industrial conditions. Beyond her academic role, she has served as a research associate in various collaborative projects, particularly in developing advanced alloys for aerospace and industrial applications. Enas is skilled in operating modern laboratory instruments such as optical microscopes, X-ray diffraction systems, and metallurgical testing setups, which have been instrumental in her research output. Her professional contributions also extend to writing academic reports, research papers, and technical documents that bridge scientific knowledge with industrial relevance. Additionally, she has played a role in organizing academic seminars and workshops, enabling knowledge exchange between researchers and students. By combining teaching, applied research, and laboratory training, she has developed a strong professional profile that highlights her technical expertise, leadership qualities, and dedication to advancing material sciences.

Research Interests

The research interests of Enas Laith Ali Al-Dulaimi lie primarily in the field of advanced materials engineering, alloy development, and aerospace materials applications. She is particularly focused on studying the corrosion behavior, microstructure, and mechanical properties of Al-Li alloys, Ni-Ti alloys, and high-strength steels, which are widely used in aerospace, medical, and industrial sectors. Her work emphasizes the role of alloying elements, surface treatment, and thermal processing techniques in improving the durability and performance of these materials. She has conducted detailed studies on the effect of micro-alloying with elements such as Ag, Ge, Mg, and Cu, contributing new knowledge on how these additions enhance alloy strength, toughness, and corrosion resistance. In addition to alloy development, she is interested in nanomaterials and advanced composites for engineering applications, particularly those with biomedical and aerospace potential. Enas is also engaged in interdisciplinary research that integrates statistical modeling, materials characterization, and experimental testing methods to provide comprehensive solutions to engineering challenges. With a vision to expand her work globally, she aims to further explore sustainable materials development, environmentally friendly alloys, and innovative processing techniques, ensuring that her research contributes to both industrial advancement and societal progress.

Research Skills

Enas Laith Ali Al-Dulaimi possesses a wide range of technical, analytical, and academic research skills that make her a highly competent materials engineer and researcher. She is proficient in conducting structural and microstructural analysis using X-ray diffraction (XRD), optical microscopy, and scanning techniques, which are critical for evaluating alloy composition and performance. Her expertise extends to mechanical property testing, including hardness, tensile, fracture toughness, and corrosion resistance measurements. Enas is skilled in experimental design, statistical data analysis, and technical report writing, supported by her proficiency in tools such as SPSS, Microsoft Excel, and other statistical platforms. She is also experienced in 3D design and modeling using AutoCAD and Home Design 3D, complementing her engineering expertise with design capabilities. Her software knowledge includes Microsoft Office Suite, Adobe Photoshop, and presentation design tools, enhancing her ability to present research findings effectively. Beyond technical skills, she has strong abilities in academic writing, publishing in peer-reviewed journals, and presenting at conferences. Her personal skills include critical thinking, teamwork, problem-solving, and mentoring younger researchers, making her not only an independent investigator but also a collaborative academic professional with a strong commitment to continuous learning and innovation.

Awards and Honors

Throughout her career, Enas Laith Ali Al-Dulaimi has received several academic honors, certifications, and professional recognitions that underscore her contributions to the field of materials engineering. She has published multiple papers in Scopus and IEEE-indexed journals, including IOP Conference Series: Materials Science and Engineering, Journal of Engineering and Applied Sciences, and International Journal of Mechanical Engineering and Technology (IJMET), with her works receiving citations from international researchers. In addition to journal publications, she has authored and co-authored book chapters on alloy development and microstructure analysis, demonstrating her contribution to academic literature. Enas has also earned professional certifications, including the prestigious TOT (Certified Trainer) accreditation, a University of Baghdad certification in E-learning and Zoom teaching platforms, and recognition from the American Association of Neurological Surgeons (AANS) for intensive care management training. She has further enhanced her international profile by completing Udemy certifications in Python programming, artificial intelligence, and advanced presentation design. These achievements reflect not only her academic and research excellence but also her commitment to continuous professional development. Her awards and recognitions highlight her growing influence in the academic community and her readiness to take on more impactful global research roles.

Publication Top Notes

  • The Effects of Chemical Oxidation on Corrosion Behavior of Ni-Ti Alloy — 2021 — 5 citations

  • Experimental and theoretical analysis of bismuth Co-doped erbium-based hydroxyapatites — 2025 — 1 citation

  • Microstructure and mechanical properties of Ag and Ge multi-micro alloyed Al-(3.2) Cu-(2) Li-(0.6) Mg alloys — 2019 — 1 citation

  • Influence of Alloying Element on Corrosion Behavior of (Al-Li) Alloys used in Aerospace Industries — 2019 — 1 citation

  • Comprehensive analysis of the impact of iron and terbium co-dopant levels on the structural, thermal, and spectroscopic properties of hydroxyapatite — 2025

  • Optimizing the welding performance of 2024-T351 aluminum alloy through friction stir welding technology — 2024

  • Investigation of the effect of chitosan nanoparticles on MDR Bacillus cereus isolated from pasteurized milk — 2024

Conclusion

In conclusion, Enas Laith Ali Al-Dulaimi represents a dynamic and forward-thinking researcher whose contributions to materials engineering, alloy development, and aerospace applications position her as a rising leader in her field. Her academic journey, professional experience, and diverse research portfolio demonstrate a clear commitment to advancing knowledge while ensuring practical applications that benefit industry and society. She has successfully combined strong technical expertise with academic leadership, mentorship, and professional training, making her profile well-rounded and globally relevant. Through her publications, certifications, and collaborations, she has already built a foundation for international recognition. However, her vision goes further—she aims to expand her research on sustainable and advanced alloys, participate in global collaborations, and contribute to the development of environmentally friendly materials for future generations. With her blend of academic excellence, professional achievements, and innovative mindset, Enas is highly deserving of recognition as a Best Researcher Award nominee. Her ability to bridge academic research with practical impact reflects her true potential as a scientist, educator, and global contributor to the engineering community.

Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Prof. Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Professor from College of Engineering, University of Tehran, Iran

Professor Saeed Reza Allahkaram is a highly accomplished academic and researcher specializing in corrosion science and engineering. Currently serving as a Professor at the School of Metallurgy and Materials Engineering, University of Tehran, he has over 25 years of expertise in corrosion protection, materials characterization, and surface engineering. He leads several key research groups and laboratories, including the Metallurgical Chemistry Group and the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels. His research is not only scientifically significant but also holds direct industrial applications, particularly in Iran’s oil, gas, petrochemical, and automotive sectors. He is an influential figure in corrosion management and surface coating development, having authored numerous books and impactful journal articles. Professor Allahkaram has earned several prestigious national and international awards, including recognition as a Highly Cited Researcher among the Top 2% of Scientists Worldwide in 2024. His leadership extends to academic administration and professional societies, further evidenced by his role as Editor-in-Chief of the journal “Corrosion Science and Engineering.” His research blends fundamental scientific inquiry with practical, solution-driven applications that have benefited both academia and industry. Professor Allahkaram’s extensive career reflects a commitment to advancing corrosion science through teaching, research, and industry collaboration.

Professional Profile

Education

Professor Saeed Reza Allahkaram has pursued an extensive and prestigious academic path primarily in the United Kingdom. He earned his Ph.D. in Materials Science, specializing in Corrosion and Protection of Materials, from Imperial College of Medicine, Science, and Engineering, London, in 1994. His doctoral thesis focused on electrochemical potential mapping and corrosion studies of rapidly solidified processed light alloys. Additionally, he was awarded the D.I.C. Honoree Degree from Imperial College in the same year, highlighting his outstanding academic performance. Prior to his doctoral studies, Professor Allahkaram completed his M.Sc. in Corrosion Science and Engineering from London Guild Hall University in 1987, where his research concentrated on corrosion inhibition studies in controlled environments. He holds a B.Sc. in Applied Physics from the same university, earned in 1985, with a project focused on fiber optic transmission efficiency. His educational journey began with an O.N.D. in Technology from Bromley College of Technology, Kent, in 1981. Throughout his education, he combined theoretical learning with hands-on projects, establishing a solid foundation for his subsequent career in corrosion science. His diverse academic background provided him with both interdisciplinary knowledge and practical skills that have supported his research and teaching excellence for decades.

Professional Experience

Professor Saeed Reza Allahkaram has developed an impressive professional career, marked by leadership roles in both academic and industrial sectors. He has served as a Professor of Corrosion Science and Engineering at the University of Tehran since 1998, where he also leads the Metallurgical Chemistry Group and the Mechanically Assisted Laboratory. Since 2017, he has headed the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels, contributing significantly to Iran’s critical infrastructure industries. He has been an active member of the Centre of Excellence for Surface Engineering and Corrosion of Materials since 2015. His professional influence extends beyond academia, having worked as an executive consultant for the Kerman Copper Production Complex between 1999 and 2011. Professor Allahkaram has played a significant organizational role in national scientific communities, including serving as the Executive Secretary of the Eighth National Corrosion Conference in Iran in 2003. He is also the current Editor-in-Chief of the scientific journal “Corrosion Science and Engineering.” His professional experience bridges the gap between fundamental research and industrial application, demonstrating his ability to lead large-scale projects and foster collaborations that impact national industries and infrastructure resilience.

Research Interests

Professor Saeed Reza Allahkaram’s research interests are wide-ranging within the field of corrosion science and engineering. His primary focus is on cathodic and anodic protection techniques, essential for preserving the integrity of pipelines, vessels, and critical structures. He has made significant advances in the development of composite, nano, and self-healing coatings using innovative methods such as plasma electrolytic oxidation (PEO), electroless deposition, electroplating, and electrophoretic deposition. Professor Allahkaram’s work also addresses the mitigation of corrosion caused by DC/AC interference on cathodically protected underground pipelines, a key challenge in modern infrastructure maintenance. He investigates the use of inhibitors and cathodic protection to control corrosion in reinforced concrete structures, extending the life and safety of buildings and industrial plants. His studies further cover stress corrosion cracking (SCC), corrosion fatigue, cavitation corrosion, fretting corrosion, and the erosion resistance of advanced coatings. Additionally, Professor Allahkaram is deeply involved in corrosion cost assessment and the implementation of comprehensive corrosion management systems for industrial equipment. His research seamlessly integrates scientific exploration with practical problem-solving, offering impactful solutions for industries such as oil, gas, petrochemicals, and automotive manufacturing.

Research Skills

Professor Saeed Reza Allahkaram has cultivated advanced research skills throughout his distinguished career in corrosion science. He possesses expert knowledge in electrochemical testing methods, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise analysis. His technical expertise extends to developing and deploying on-line corrosion monitoring systems, particularly for oil and gas pipeline networks. Professor Allahkaram is proficient in failure analysis techniques, regularly diagnosing complex material degradation in high-risk environments. He has mastered various surface engineering processes such as electroless and electroplating coatings, plasma electrolytic oxidation, and nano-structured coating applications. His hands-on skills also include using wavelet transforms for electrochemical signal processing and employing advanced material characterization tools to evaluate corrosion behavior. Professor Allahkaram demonstrates a unique ability to translate laboratory research into practical industrial solutions, a skill that has led to his successful collaborations with major companies in Iran’s energy sector. He is also an accomplished technical author and educator, having written comprehensive books and developed course materials for undergraduate and postgraduate corrosion engineering programs. His multifaceted research skills position him as a leader in developing both preventive and remedial strategies against corrosion in challenging operational settings.

Awards and Honors

Professor Saeed Reza Allahkaram has received numerous prestigious awards and honors in recognition of his contributions to corrosion science and engineering. Notably, in 2024, he was listed among the Top 2% of Scientists Worldwide as a Highly Cited Researcher, underscoring his significant influence on the global research community. In 2023, the Iranian Corrosion Association honored him as a Veteran in Corrosion Science and Engineering at the 21st National Corrosion Congress of Iran. He was selected as the Outstanding Researcher at the University of Tehran’s 27th Festival of Research in 2018 and similarly recognized in 2013 and 2011. His work on applied industrial research projects, particularly those related to online corrosion monitoring systems in gas refinery plants and transmission pipelines, earned him additional distinctions. Professor Allahkaram has also been celebrated for his research contributions in the automotive industry, particularly with Iran Khodro. His remarkable ability to bridge academic research with industrial applications has been consistently acknowledged at national research festivals and by leading industrial stakeholders. His awards reflect not only the quality and originality of his research but also its tangible impact on infrastructure safety and technological advancement in Iran and beyond.

Conclusion

Professor Saeed Reza Allahkaram is a distinguished figure in the field of corrosion science, whose career has seamlessly integrated academic excellence with impactful industrial contributions. His leadership roles, prolific research output, innovative teaching, and dedication to solving practical engineering problems have made him a highly respected researcher nationally and internationally. His extensive body of work demonstrates a rare ability to translate scientific concepts into real-world applications, particularly in the oil, gas, petrochemical, and automotive sectors. Professor Allahkaram’s recognition among the Top 2% of scientists worldwide and his numerous national awards attest to his sustained influence and the global relevance of his research. His technical skills, leadership in research centers, and role as Editor-in-Chief further emphasize his multifaceted contributions to the scientific community. While future expansion into more international collaborations could further elevate his profile, his current achievements position him as an exemplary researcher and leader in his discipline. Professor Allahkaram’s career embodies the qualities of a Best Researcher Award recipient, blending scientific rigor, practical problem-solving, and academic mentorship to create lasting value in corrosion science and engineering.

Publications Top Notes

  1. Optimization of Ti/TiO2 Nanotube/Nano PbO2 Anodes for Enhanced Electrocatalytic Degradation of Methylene Blue: Pulse vs Direct Current Approaches

    • Authors: H. Eslami, S.R. Allahkaram

    • Year: 2025

  2. Electrophoretic Deposition of Chitosan/Gelatin/Hydroxyapatite Nanocomposite Coatings on 316L Stainless Steel for Biomedical Applications

    • Authors: A. Mohammadsadegh, S.R. Allahkaram, M. Gharagozlou

    • Year: 2025

  3. Enhanced Erosion-Corrosion Resistance of Monolithic ENP Coating on Ductile Cast Iron by Using Electrochemical Pretreatment and Heat Treatment

    • Authors: H. Kheirabadi, S.R. Allahkaram, A. Zarebidaki

    • Year: 2024

  4. Electrochemical Analysis on Localized Corrosion of PEO/Magnesium Oxide Coating

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 4

  5. Evaluation of Biodegradability of ZX504 Alloy/PEO Coating Using Mott-Schottky, Electrochemical Tests, and Microstructural Analysis

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 5

  6. Modeling of PEO Coatings by Coupling an Artificial Neural Network and Taguchi Design of Experiment

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

  7. Surface Roughness Increasing of 2205 Duplex Stainless Steel Using Ultrasonic Cavitation Process

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

    • Citations: 2

  8. Characterization and Corrosion Behavior of Nano-ceramic Coatings Produced by MAO Method: The Role of Process Time

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 2

  9. Passivation Effects on Corrosion and Cavitation Erosion Resistance of UNS S32205 Duplex Alloy in 3.5% NaCl

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

  10. Synthesis and Characterization of Electrodeposited Ni-Co Self-Healing Coating with Hybrid Shell Microcapsules

  • Authors: H. Sadabadi, S.R. Allahkaram, A. Kordijazi, P.K. Rohatgi

  • Year: 2024

  • Citations: 1

Yan Liu | Materials Science | Best Researcher Award

Prof. Yan Liu | Materials Science | Best Researcher Award

The Associate Director of both National Key Laboratory of Automotive Chassis Integration and Bionics and the Key Laboratory of Bionic Engineering (Ministry of Education) at Jilin University, China

Yan Liu, Ph.D. in Engineering, is a distinguished scholar renowned for her contributions to bionic engineering and materials science. She is a CJ Scholar Distinguished Professor under the Major Talent Project Incentive Program of the Ministry of Education of China, a Changbaishan Scholar of Jilin Province, and a professor and Ph.D. supervisor at Jilin University. Currently serving as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, she is instrumental in advancing bionic technologies for automotive and materials applications. As a founding member of the International Society of Bionics and vice chairman of the Jilin Association of Corrosion Prevention Technology, Yan Liu has established herself as a global leader in her field. Her research, which focuses on designing multifunctional materials inspired by biological systems, has led to over 150 publications in prestigious journals and the filing of 40 patents, 17 of which have been granted. Yan Liu’s work has significantly impacted anti-corrosion, anti-icing, and self-repairing materials, making her a pioneer in bionic materials science.

Professional Profile

Education

Yan Liu has a robust academic foundation in engineering and materials science. She earned her Ph.D. in Agricultural Mechanization Engineering from Jilin University in December 2006, following her Master’s degree in the same field from the same institution in July 2003. Her undergraduate studies were completed at the Former School of Materials, Jilin University of Technology, where she graduated with a Bachelor’s degree in July 1997. Her academic journey has been marked by a consistent focus on integrating engineering principles with innovative materials development, laying the groundwork for her expertise in bionics and biomimetic materials. This strong educational background has enabled her to excel in multidisciplinary research, combining agricultural engineering, materials science, and bionic technologies.

Professional Experience

Yan Liu has an illustrious professional career spanning over two decades, primarily at Jilin University. Since September 2013, she has served as a Professor and Ph.D. Supervisor at the Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University. Prior to this, she was an Associate Professor and Master’s Supervisor in the same department from 2008 to 2013. Yan Liu also gained international experience as a Postdoctoral Researcher and Visiting Scholar at the University of Bristol, UK, between 2010 and 2011. Her earlier postdoctoral work, from 2009 to 2013, at the College of Materials Science and Engineering, Jilin University, further honed her expertise in advanced materials research. Currently, as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, Yan Liu plays a vital role in steering cutting-edge research in bionic materials and technologies.

Research Interests

Yan Liu’s research focuses on bionic intelligent protective coatings and materials, with applications in automotive and surface engineering. She draws inspiration from biological structures to develop multifunctional materials, including self-repairing and self-warning coatings, superhydrophobic anti-corrosion surfaces, and anti-icing multifunctional coatings. Her work also extends to flexible electronic devices and polymer-based materials, combining advanced material science with biomimetic principles. Yan Liu is dedicated to addressing real-world challenges such as corrosion resistance and ice formation on automotive surfaces, making her research highly relevant and impactful. Her interdisciplinary approach integrates biology, materials science, and engineering to pioneer innovative solutions that bridge academic research and industrial applications.

Research Skills

Yan Liu possesses a wide array of advanced research skills in bionic and materials engineering. She specializes in designing multifunctional coatings and materials inspired by biological mechanisms, with expertise in self-repairing, anti-corrosion, and anti-icing technologies. Her skills include surface engineering, interface science, and the development of superhydrophobic materials. Yan Liu is adept at leading large-scale research projects, having managed several national and international R&D initiatives, including projects funded by the National Natural Science Foundation and major international collaboration programs. She also excels in intellectual property development, with 40 patent applications, 17 of which have been granted. Her ability to translate complex research into practical innovations highlights her technical acumen and problem-solving expertise.

Awards and Honors

Yan Liu’s exceptional contributions to science and engineering have earned her numerous accolades. She is a recipient of the prestigious CJ Scholar Distinguished Professor Award under the Ministry of Education’s Major Talent Project. As a Changbaishan Scholar of Jilin Province, she has been recognized for her leadership in materials science and bionics. She also holds prominent positions, including the Associate Directorship of the National Key Laboratory of Automotive Chassis Integration and Bionics and vice chairmanship of the Jilin Association of Corrosion Prevention Technology. Yan Liu’s work has been supported by over seven national-level grants and international collaboration programs, underscoring her excellence in research leadership. Her contributions to the field are further validated by her extensive publication record and numerous granted patents.

Conclusion

Yan Liu is an exceptional candidate for the Best Researcher Award due to her groundbreaking contributions in bionic engineering and materials science. Her achievements in developing multifunctional coatings, securing competitive funding, and publishing extensively in high-impact journals firmly establish her as a leading figure in her field. While enhancing international collaborations and emphasizing the practical impact of her innovations could further bolster her profile, her existing accomplishments position her as a highly suitable nominee for this prestigious recognition.

Publication Top Notes

  1. Fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zaihang Zheng, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.jmst.2024.05.052
  2. Eucalyptus spp.-inspired degradable lubricant-releasing coating for marine antifouling surfaces
    • Authors: Yafei Shi, Miaomiao Qian, Dongsong Wei, Wenliang Zhang, Ting Lu, Zhen Zhang, Shuyi Li, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.porgcoat.2024.108917
  3. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation
  4. Facile and effective construction of superhydrophobic, multi-functional and durable coatings on steel structure
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Zaihang Zheng, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.compositesb.2024.111850
  5. A fluorine-free bioinspired multifunctional slippery coating for ultra-long-term anticorrosion of Mg alloy, static/dynamic anti-icing, antibacterial and antifouling
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zhiwu Han, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.cej.2024.157516
  6. Ultralight, elastic, hydrophobic Willow moss-derived aerogels for efficient oil-water separation
    • Authors: Zhibiao Chen, Bin Zhan, Shuyi Li, Dongsong Wei, Wenting Zhou, Zhengping Fang, Guoyong Wang, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.colsurfa.2024.134648
  7. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
  8. Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination
  9. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring
  10. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Yan Liu
    • Year: 2024
    • DOI: 10.1021/acs.langmuir.4c02001
  11. Fabrication of superhydrophobic all-biomass aerogels with ultralight, elasticity and degradability for efficient oily wastewater treatment
    • Authors: Zhengping Fang, Jiaqi Li, Shiting Li, Chaohuan Yang, Chenchen Liao, Chengyu Du, Zhibiao Chen, Dongsong Wei, Jiayu Qi, Xiaopeng Guo, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.jwpe.2024.105607
  12. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances

 

Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Prof. Gabriel Luna-Barcenas | Materials Science | Best Researcher Award

Distinguished Professor of Biomaterials of Tecnologico de Monterrey, Mexico.

Prof. Gabriel Luna-Barcenas is a prominent figure in chemical engineering and materials science, currently affiliated with the Institute of Advanced Materials for Sustainable Manufacturing at Tecnologico de Monterrey, Mexico. His distinguished academic background includes a PhD from The University of Texas at Austin and postdoctoral work at Princeton University. Prof. Luna-Barcenas has garnered numerous accolades, including the Fulbright Scholar awards and the National Investigator SNI-III designation. His research, spanning over 280 publications and several patents, focuses on polymer science, nanotechnology, and green chemistry. He has led significant industrial projects and secured diverse funding sources. Known for his impactful work and high citation count, he has also been actively involved in teaching, supervising numerous theses, and organizing major conferences. His leadership roles include President of the Mexican Polymer Society and Delegate for the IUPAC Polymer Division, highlighting his substantial influence in the scientific community.

Profile
Education

Professor Gabriel Luna-Barcenas has a robust academic foundation in chemical engineering, marked by an illustrious educational journey. He earned his Bachelor of Science (BSc) degree in Chemical Engineering from Instituto Tecnológico de Celaya, Mexico, in 1988. He continued his studies at the same institution, completing his Master of Science (MSc) in Chemical Engineering in 1991. His quest for advanced knowledge led him to The University of Texas at Austin, where he obtained his Ph.D. in 1997, specializing in chemical engineering. Following his doctoral studies, Prof. Luna-Barcenas expanded his expertise through a prestigious Postdoctoral Fellowship at Princeton University, where he conducted advanced research from 1997 to 1999. His education, spanning top institutions in Mexico and the United States, laid a strong foundation for his influential career in materials science and engineering, contributing significantly to his expertise in polymer science and sustainable manufacturing.

Professional Experience

Professor Gabriel Luna-Barcenas is a highly accomplished researcher and academic with extensive experience in chemical engineering and materials science. He currently serves as a Senior Researcher at the Industrial R&D Center (CID-DESC) and holds the position of Honorary Joint Professor in the Chemical Engineering Department at The University of Texas at Austin, a role he has held since 2000. Prof. Luna-Barcenas has made significant contributions to the field through his research at Cinvestav Unidad Querétaro, where he also served as Graduate Advisor from 2012 to 2015. His professional journey includes leading numerous industrial projects with prominent companies in Mexico and internationally, focusing on sustainable manufacturing, nanotechnology, and polymer science. Prof. Luna-Barcenas is recognized for his leadership in both academic and industrial settings, demonstrating a commitment to advancing science through collaborative research, innovation, and education. His work has had a profound impact on the development of new materials and processes.

Research Interest

Professor Gabriel Luna-Barcenas is a leading expert in the field of chemical engineering, with a research focus on the development and application of advanced materials for sustainable manufacturing. His work spans across polymer science, nanotechnology, and green chemistry, with a particular emphasis on the use of supercritical fluids and deep eutectic solvents for environmentally friendly polymer processing. Prof. Luna-Barcenas is also deeply involved in the study of biopolymers for biomedical applications, exploring their potential in tissue engineering and regenerative medicine. His research includes the synthesis and characterization of nanocomposites, with a focus on enhancing their antimicrobial, electrical, and mechanical properties for use in various industrial and medical applications. Through his innovative approach, Prof. Luna-Barcenas aims to develop sustainable materials and processes that contribute to a cleaner and more efficient manufacturing industry, while also advancing the understanding of complex polymer systems.

Research Skills

Prof. Gabriel Luna-Barcenas is a highly skilled researcher with expertise in polymer science, nanotechnology, and sustainable materials. His research focuses on the development of advanced materials through innovative processing techniques, such as supercritical fluid processing and deep eutectic solvents. Prof. Luna-Barcenas excels in the synthesis and characterization of polymers, nanocomposites, and biomaterials, with a strong emphasis on their environmental and biomedical applications. He is proficient in using advanced analytical techniques, including high-resolution turbidimetry, to investigate the structural and functional properties of materials. His work is characterized by a multidisciplinary approach, integrating principles of chemical engineering, materials science, and nanotechnology to address complex challenges in sustainable manufacturing. Prof. Luna-Barcenas is also skilled in mentoring and guiding graduate students, fostering a collaborative research environment that promotes innovation and excellence. His contributions to the field are reflected in his extensive publication record, patents, and impactful industrial collaborations.

Awards and Recognition

Professor Gabriel Luna-Barcenas has been widely recognized for his contributions to chemical engineering and materials science. His accolades include the prestigious Fulbright Scholar award in 2014 and 2020, highlighting his international research impact. As a leading figure in the scientific community, he served as President of the Mexican Polymer Society from 2005 to 2007 and has been an influential Delegate to the IUPAC Polymer Division for Mexico and Latin America since 2008. His designation as a National Investigator SNI-III, from 2015 to 2031, reflects his sustained excellence in research. Additionally, he has received the E.D. Farmer Scholarship from the University of Texas at Austin, and his leadership extends to his role as President of the CONACYT Nanoscience & Nanotechnology Network of Mexico since 2015. These awards and recognitions underscore Luna-Barcenas’s exceptional contributions to advancing science and technology on both national and international stages.

Conclusion

Gabriel Luna-Barcenas is highly suitable for the Best Researcher Award due to his outstanding contributions to polymer science, sustainable manufacturing, and nanotechnology. His extensive publication record, impactful patents, and leadership roles underscore his significant influence in the field. Addressing areas for improvement, such as enhancing public engagement and fostering diverse collaborations, could further elevate his already impressive career. Overall, Luna-Barcenas exemplifies the qualities of a leading researcher and innovator.

Publications Top Notes

  • Development of an electrochemical sensor for the quantification of ascorbic acid and acetaminophen in pharmaceutical samples
    • Authors: A. Gutiérrez, M.G. Ramírez-Ledesma, G.A. Rivas, R.A. Escalona-Villalpando, J. Ledesma-García
    • Year: 2024
  • Metathesis of butadiene rubber for the sustainable production of polyesters and polyols
    • Authors: M. Burelo, A.Y. Yau, S. Gutiérrez, G. Luna-Barcenas, C.D. Treviño-Quintanilla
    • Year: 2024
    • Citations: 1
  • Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes
    • Authors: A. Hernandez-Rangel, P. Silva-Bermudez, A. Almaguer-Flores, G. Luna-Barcenas, C. Velasquillo
    • Year: 2024
  • Combined antibacterial and antifouling properties of polyethersulfone mixed matrix membranes with zwitterionic graphene oxide nanostructures
    • Authors: R. Castellanos Espinoza, M.J. Huhn Ibarra, A.J. Montes Luna, M. Guerra Balcázar, B.L. España Sánchez
    • Year: 2024
  • Mesoporous Pdx-Nix aerogels for electrocatalytic evaluation of urea-assisted electrolysis
    • Authors: A. Rodríguez-Buenrostro, A. Martínez-Lázaro, M.V. Contreras-Martínez, J. Ledesma-García, L.G. Arriaga
    • Year: 2024
  • Surface engineering of carbon dots synthesized from green sources with antiviral properties
    • Authors: A. López-Amador, B.I. Jiménez-Muñóz, A. Gutierrez-Ortega, M. Estevez, B. Liliana España-Sánchez
    • Year: 2024
  • Hydrogel Based on Chitosan/Gelatin/Poly(Vinyl Alcohol) for In Vitro Human Auricular Chondrocyte Culture
    • Authors: C. Ortega-Sánchez, Y. Melgarejo-Ramírez, R. Rodríguez-Rodríguez, V. Martínez-López, Z.Y. García-Carvajal
    • Year: 2024
    • Citations: 3
  • Rheological, Physicochemical, Thermal, and Mechanical Properties of Biopolymeric Films Incorporated with Micro-Holocellulose from Coffee Residues
    • Authors: J.D. Hernández-Varela, J.J. Chanona-Pérez, G.L. Bárcenas, D.I. Medina
    • Year: 2024
  • Physiological evaluation of PVP-coated AgNP in the rat small intestine: an ex vivo approach
    • Authors: J.A. Chávez-Hernández, B.L. España-Sánchez, P. Aguirre-Bañuelos, G. Luna-Bárcenas, C. Gonzalez
    • Year: 2024
  • Evaluation of the synergistic effects of curcumin-resveratrol co-loaded biogenic silica on colorectal cancer cells
    • Authors: A. Ochoa-Sanchez, P. Sahare, S. Pathak, G. Luna-Bárcenas, S. Paul
    • Year: 2024