Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Cong Lin | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Cong Lin | Chemistry | Best Researcher Award

Professor from Jiangxi Science & Technology Normal University, China

Cong Lin is an Associate Professor at the College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University. With a strong background in organic chemistry, Lin has made significant contributions to the field through extensive research in transition metal-catalyzed reactions and selective functionalization of organic molecules. Lin has published numerous articles in high-impact journals such as Organic Letters, Advanced Synthesis & Catalysis, and ACS Applied Polymer Materials. His research is widely recognized for its innovation and practical applications in synthetic chemistry and material science. Over the years, Lin has collaborated with multiple researchers, demonstrating strong teamwork and interdisciplinary research skills. His rapid academic progression from lecturer to associate professor reflects his commitment to academic excellence and research leadership.

Professional Profile

Education

Cong Lin completed his Bachelor of Science in Chemistry from Jiangxi Normal University in 2013. He then pursued a Ph.D. in Organic Chemistry at Zhejiang University, one of China’s leading institutions, and graduated in June 2018. His doctoral research focused on transition metal-catalyzed organic synthesis, particularly in selective bond activation and functionalization strategies. His educational background has provided him with a strong foundation in synthetic methodologies, catalysis, and reaction mechanisms, shaping his research direction and contributions to the field.

Professional Experience

After earning his Ph.D., Cong Lin began his academic career as a Lecturer at Jiangxi Science & Technology Normal University in July 2018. Within two years, he was promoted to Associate Professor in June 2020 due to his outstanding research contributions and teaching performance. As an Associate Professor, Lin has been involved in mentoring students, supervising research projects, and conducting innovative studies in organic chemistry. His academic career demonstrates a steady progression, reflecting his dedication to advancing scientific knowledge.

Research Interest

Cong Lin’s research interests lie in transition metal-catalyzed reactions, organic synthesis, and polymer chemistry. His work primarily focuses on the selective functionalization of alkenes and aromatic compounds using metal catalysts such as nickel, palladium, and cobalt. He is particularly interested in developing new methodologies for carbon-carbon and carbon-heteroatom bond formation. His research also explores post-polymerization modifications and sustainable catalytic processes, contributing to advancements in both synthetic chemistry and materials science.

Research Skills

Cong Lin possesses expertise in organic synthesis, transition metal catalysis, and reaction mechanism analysis. He is skilled in designing and optimizing catalytic reactions for efficient bond formation. His research involves advanced spectroscopic and chromatographic techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, and gas chromatography. Lin is also proficient in computational chemistry for reaction pathway predictions and mechanistic studies. His ability to integrate experimental and theoretical approaches enhances the impact of his research.

Awards and Honors

Cong Lin has received recognition for his contributions to organic chemistry through various awards and honors. His research articles have been featured as cover stories in high-impact journals, and some of his works have been listed as highly cited papers. He has been invited to present his findings at academic conferences and has collaborated on prestigious projects. His rapid career advancement to Associate Professor further highlights the recognition of his scientific contributions within the academic community.

Conclusion

Cong Lin is a distinguished researcher with a strong academic background, impressive publication record, and expertise in transition metal-catalyzed synthesis. His research has significantly contributed to the field of organic chemistry, particularly in selective bond functionalization and catalysis. While his work is widely recognized, expanding international collaborations, securing more research funding, and increasing involvement in mentorship and patenting would further enhance his impact. Overall, Lin’s dedication to research and academic excellence makes him a strong candidate for prestigious research awards.

Publications Top Notes

  1. Title: Post-Polymerization Modification of Polystyrene through Mn-Catalyzed Phosphorylation of Aromatic C(sp²)-H Bonds
    Authors: R. Liu, Ruixing; C. Lin, Cong; Y. Zou, Yubai; J. Zhong, Jiang; L. Shen, Liang
    Year: 2024
    Citations: 1

  2. Title: Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air
    Authors: Y. Wang, Yihua; C. Lin, Cong; Z. Zhang, Zongxu; L. Shen, Liang; B. Zou, Boya
    Year: 2023
    Citations: 2

  3. Title: Room temperature-curable, easily degradable, and highly malleable and recyclable vanillin-based vitrimers with catalyst-free bond exchange
    Authors: M. Liu, Min; F. Gao, Fei; X. Guo, Xinru; F. Lin, Faman; L. Shen, Liang
    Year: 2022
    Citations: 11

Nadezhda Markova | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Nadezhda Markova | Chemistry | Best Researcher Award

Theoretical chemistry at Institute of Organic Chemistry with Centre of Phytochemistry (IOCCP), Bulgarian 

Nadezhda Vasileva Markova is a distinguished Bulgarian scientist specializing in theoretical chemistry. She currently holds the position of Associate Professor at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. With a rich academic and professional background, she is renowned for her expertise in quantum chemical calculations, tautomerism, and the application of theoretical models to elucidate the structure and biological activity of plant-derived compounds. Throughout her career, she has demonstrated a strong commitment to advancing scientific knowledge through extensive research, mentoring, and collaboration with international scientific partners. Markova has co-authored 44 published and 2 accepted scientific articles, receiving over 600 citations. Her impactful research focuses on proton transfer reactions, solvent effects, and the molecular modeling of biologically active compounds. She is also recognized for her collaborative spirit and organizational skills in leading scientific projects. Her notable achievements include winning first place in the competition for high scientific achievements by the Union of Scientists in Bulgaria in 2011. Markova’s contributions continue to shape the field of theoretical and quantum chemistry, making her a leading figure in the Bulgarian scientific community.

Professional Profile

Education

Nadezhda Markova has a strong educational background in chemistry, with a focus on theoretical and organic chemistry. She earned her PhD in Theoretical Chemistry from the Bulgarian Academy of Sciences’ Institute of Organic Chemistry with Centre of Phytochemistry, where she honed her expertise in quantum chemical calculations and molecular modeling. Prior to her doctoral studies, she completed her Master of Science in Organic Chemistry at Shoumen University “Konstantin Preslavsky” between 1995 and 2000. Her master’s studies equipped her with a solid foundation in organic synthesis, analytical methods, and computational chemistry. Markova’s academic training emphasized both experimental and theoretical approaches, enabling her to develop skills in applying quantum chemical models to real-world molecular challenges. Her education has been instrumental in her ability to explore complex chemical processes, particularly in the areas of tautomerism, proton transfer reactions, and the interaction of biological molecules. With a robust academic foundation, she has continued to build on her expertise, contributing significantly to scientific research and publications in the field of theoretical chemistry.

Professional Experience

Nadezhda Markova’s professional career spans nearly two decades, during which she has held various academic and research positions at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. Since 2020, she has served as an Associate Professor, where she leads research projects, supervises doctoral students, and conducts cutting-edge studies in theoretical chemistry. From 2006 to 2020, she worked as an Assistant Professor, actively engaging in research focused on quantum chemical modeling, solvent effects, and the molecular structure of biologically active compounds. During her early career (2005–2006), she held the position of Chemist at the same institute, gaining hands-on experience in experimental and computational chemistry. Throughout her career, Markova has excelled in applying specialized software for quantum chemical calculations, such as GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her professional journey highlights her dedication to advancing theoretical chemistry through meticulous research, scientific publications, and collaborative projects.

Research Interest

Nadezhda Markova’s research interests center around theoretical and quantum chemistry, with a particular focus on molecular modeling, proton transfer reactions, and solvent effects. She is deeply engaged in the study of tautomerism and its impact on the biological activity of various chemical compounds. Her work frequently explores the application of quantum chemical calculations in phytochemistry to elucidate the structure and biological action of plant-derived compounds. Additionally, Markova investigates the interactions of biologically significant molecules with nucleic acids, exploring their potential as fluorescent probes and antiviral agents. Her recent studies include the quantum chemical and metabolomic characterization of plant compounds against SARS-CoV-2 and Herpes Simplex Virus DNA polymerase, showcasing her contribution to medicinal chemistry. She is also interested in the effects of external electric fields on molecular tautomeric equilibrium, highlighting her innovative approach to molecular dynamics. Through her research, Markova aims to bridge the gap between computational models and experimental validation, offering valuable insights into molecular behavior and drug development.

Research Skills

Nadezhda Markova possesses an extensive set of research skills, particularly in the field of quantum chemical modeling and computational chemistry. She is highly proficient in utilizing specialized software for quantum chemical calculations, including GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her expertise lies in conducting complex simulations to study proton transfer reactions, solvent effects, and tautomeric equilibria. Markova is skilled in applying hybrid statistical mechanics and quantum chemical models to investigate molecular interactions, making her a leader in the field of theoretical chemistry. Additionally, she is adept at using molecular docking and metabolomic profiling techniques to explore the inhibitory potential of natural compounds against viral enzymes. Her research skills extend to scientific writing, data analysis, and result interpretation, as evidenced by her numerous peer-reviewed publications. Furthermore, she excels in collaborating with multidisciplinary teams, organizing research projects, and mentoring doctoral students. Her technical proficiency and analytical capabilities have contributed to significant advancements in the study of molecular structure and biological activity.

Awards and Honors

Nadezhda Markova’s scientific excellence has been recognized through various awards and honors. In 2011, she achieved first place in the competition for high scientific achievements organized by the Union of Scientists in Bulgaria. This prestigious accolade highlighted her impactful contributions to the field of theoretical chemistry. Additionally, Markova’s extensive publication record—comprising 44 published and 2 accepted scientific articles—has received over 600 citations, underscoring the influence and recognition of her research within the scientific community. Her collaborative work with international research teams and participation in high-impact scientific projects further demonstrate her reputation as a leading figure in her field. Through her dedication to scientific innovation and knowledge dissemination, Markova has earned respect and recognition from peers and institutions alike. Her contributions continue to inspire and drive advancements in quantum chemical research and its applications in medicinal and organic chemistry.

Conclusion

Nadezhda Markova is a highly accomplished scientist whose expertise in theoretical chemistry has made a significant impact on the scientific community. Her academic background, extensive research experience, and proficiency in quantum chemical calculations have positioned her as a leading figure in her field. With a strong focus on molecular modeling, proton transfer reactions, and phytochemistry, she continues to push the boundaries of scientific knowledge. Markova’s dedication is reflected in her numerous publications, collaborations, and mentoring of young researchers. Her innovative work has earned her prestigious awards and widespread recognition, highlighting her role as a pioneer in quantum chemistry. As she continues to contribute to the advancement of scientific research, Markova’s legacy of excellence will undoubtedly inspire future generations of scientists and researchers.

Publications Top Notes

  1. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model

    • Authors: Shweta Sinha, Bikash Medhi, B. D. Radotra, Daniela Batovska, Nadezhda Markova, Rakesh
    • Year: 2023
  2. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting herpes simplex virus DNA polymerase – metabolome profiling, molecular docking, and quantum-chemical analysis

    • Authors: Nadezhda Todorova, Miroslav Rangelov, Ivayla Dincheva, Ilian Badjakov, Venelin Enchev, Nadezhda Markova
    • Year: 2022
  3. Potential of Hydroxybenzoic Acids From Graptopetalum paraguayense for Inhibiting Herpes Simplex Virus DNA Polymerase – Metabolome Profiling, Molecular Docking and Quantum-chemical Analysis

    • Authors: Nadezhda Hristova Todorova, Miroslav Angelov Rangelov, Ivayla Nedyalkova Dincheva, Ilian Kostadinov Badjakov, Venelin Georgiev Enchev, Nadezhda Vasileva Markova
    • Year: 2021
  4. Binding Expedient of 2‐carbamido‐1,3‐indandione to Nucleic Acids: Potential Fluorescent Probe

    • Authors: Nina Stoyanova, Nadezhda Markova, Ivan Angelov, Irena Philipova, Venelin Enchev
    • Year: 2021
  5. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives

    • Authors: Shweta Sinha, B.D. Radotra, Bikash Medhi, Daniela Batovska, Nadezhda Markova, Rakesh Sehgal
    • Year: 2020
  6. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study

    • Authors: Margarita Zaharieva, Penka Genova-Kalоu, Ivayla Dincheva, Ilian Badjakov, Svetla Krumova, Venelin Enchev, Hristo Najdenski, Nadezhda Markova
    • Year: 2019
  7. Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold

    • Authors: Nadezhda V. Markova, Milen I. Rogojerov, Valentina T. Angelova, Nikolay G. Vassilev
    • Year: 2019
  8. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes

    • Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B.D. Radotra, Anil Bhalla, Nadezhda Markova, Rakesh Sehgal
    • Year: 2019
  9. Synthesis, characterization, quantum-chemical calculations, and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids

    • Authors: Ekaterina D. Naydenova, Milen N. Marinov, Georgi T. Momekov, Ralitsa Y. Prodanova, Nadezhda V. Markova, Yavor T. Voynikov, Nikolay M. Stoyanov
    • Year: 2019
  10. Tautomerism of Inosine in Water: Is It Possible?

  • Authors: Nadezhda Markova, Venelin Enchev
  • Year: 2019
  1. 2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution
  • Authors: Venelin Enchev, Nadezhda Markova, Milen Marinov, Nikolay Stoyanov, Milen Rogojerov, Aleksandr Ugrinov, Ireneusz Wawer, Dorota M. Pisklak
  • Year: 2017
  1. Green synthesis, structure and fluorescence spectra of new azacyanine dyes
  • Authors: Venelin Enchev, Nikolay Gadjev, Ivan Angelov, Stefka Minkovska, Atanas Kurutos, Nadezhda Markova, Todor Deligeorgiev
  • Year: 2017
  1. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir
  • Authors: Nadezhda Markova, Ljupco Pejov, Nina Stoyanova, Venelin Enchev
  • Year: 2017
  1. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides – Structural characterization and antimicrobial evaluation
  • Authors: Borislava Stoykova, Mariya Chochkova, Gergana Ivanova, Nadezhda Markova, Venelin Enchev, Ivanka Tsvetkova, Hristo Najdenski, Miloslav Štícha, Tatiana Milkova
  • Year: 2017
  1. 2-Carbamido-1,3-indandione – A Fluorescent Molecular Probe and Sunscreen Candidate
  • Authors: Venelin Enchev, Ivan Angelov, Violeta Mantareva, Nadezhda Markova
  • Year: 2015
  1. A hybrid statistical mechanics – Quantum chemical model for proton transfer in 5-azauracil and 6-azauracil in water solution
  • Authors: Nadezhda Markova, Ljupco Pejov, Venelin Enchev
  • Year: 2015
  1. Synthesis of 3′,4′-Dihydro-2H,2′H,5H-spiro [imidazolidine-4,1′-naphthalene]-2,5-dione and its Derivatives
  • Authors: Milen Marinov, Plamena Marinova, Nikolay Stoyanov, Nadezhda Markova, Venelin Enchev
  • Year: 2014
  1. A model system with intramolecular hydrogen bonding: Effect of external electric field on the tautomeric conversion and electronic structures
  • Authors: Venelin Enchev, Vasil Monev, Nadezhda Markova, Milen Rogozherov, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Excited state proton transfer in 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1, 2-diol
  • Authors: Venelin Enchev, Nadezhda Markova, Milena Stoyanova, Plamen Petrov, Milen Rogozherov, Natalia Kuchukova, Ivanka Timtcheva, Vasil Monev, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Tautomeric equilibria of 5-fluorouracil anionic species in water
  • Authors: Nadezhda Markova, Venelin Enchev, Gergana Ivanova
  • Year: 2010
  1. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles
  • Authors: Maria Simeonova, Gergana Ivanova, Venelin Enchev, Nadezhda Markova, Milen Kamburov, Chavdar Petkov, Aidan Devery, Rod O’Connor, Declan Brougham
  • Year: 2009
  1. Ab initio and DFT study of the structure of metal ion complexes with N-benzalaniline-15-crown-5
  • Authors: Venelin Enchev, Snezhina Angelova, Nadezhda Markova, Ireneusz Wawer, Evgenia Stanoeva, Mariana Mitewa
  • Year: 2008
  1. Ab initio study of 2,4-substituted azolidines. II. Amino-imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution
  • Authors: Venelin Enchev, Nadezhda Markova, Snezhina Angelova
  • Year: 2005

Annu Thomas | Chemistry | Best Researcher Award

Assist. Prof. Dr Annu Thomas | Chemistry | Best Researcher Award

Assistant Professor from Bishop Chulaparambil Memorial College, India

Dr. Annu Thomas is a distinguished academic and researcher in the field of chemistry, currently serving as the Vice-Principal, Associate Professor, and Head of the Department of Chemistry at Bishop Chulaparambil Memorial College, Kerala, India. With a Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, her expertise spans biomimetic growth, nanomaterials, and environmental chemistry. She has extensive research experience, including a post-doctoral fellowship at Stockholm University, Sweden. Dr. Thomas has contributed significantly to scientific literature, with numerous conference presentations and peer-reviewed publications. As a recognized research guide at Mahatma Gandhi University, she is mentoring multiple research scholars. Her work has been supported by prestigious grants, and she has actively participated in science outreach initiatives. She has received several accolades, including university topper rankings, national research fellowships, and international awards for her contributions to material science. An active member of professional organizations, Dr. Thomas plays a key role in promoting scientific advancements. Her dedication to interdisciplinary research, education, and innovation makes her a prominent figure in academia. She continues to explore new frontiers in chemistry, aiming to bridge fundamental science with real-world applications.

Professional Profile

Education

Dr. Annu Thomas has an impressive academic background in chemistry. She earned her Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, under the Faculty of Natural Sciences at Technical University Dresden. Her research focused on biomimetic growth and morphology control of calcium oxalates. She previously obtained an M.Sc. in Physical Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, where she secured the first rank in her university. Prior to that, she completed her B.Sc. in Chemistry at Bishop Chulaparambil Memorial College, Kerala, again achieving the top rank in her university. In addition to her formal education, Dr. Thomas has engaged in research training at various prestigious institutions, including Stockholm University, Sweden, and the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Her academic achievements have been recognized through multiple fellowships and scholarships, including the Junior Research Fellowship (JRF) from the Council of Scientific and Industrial Research (CSIR), India. Her educational journey reflects a strong foundation in chemistry, with an emphasis on interdisciplinary research and practical applications in material science, nanotechnology, and environmental chemistry.

Professional Experience

Dr. Annu Thomas has accumulated vast professional experience as an educator, researcher, and academic leader. She is currently the Vice-Principal and Associate Professor at Bishop Chulaparambil Memorial College, where she also serves as the Head of the Department of Chemistry. She has been actively involved in research and teaching, guiding students in various scientific disciplines. Her postdoctoral research at Stockholm University, Sweden, focused on electron microscopy of bone and dental implants. Additionally, she worked as a Research and Development Assistant at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, on mesoporous material synthesis. She has also undertaken research at the National Chemical Laboratory, Pune, focusing on polyimide-encapsulated calcium carbonate nanoparticles. Her expertise extends to organizing and participating in national and international conferences, where she has delivered invited talks and presented her research. Beyond her academic roles, she is an editorial board member of scientific journals, contributing to peer review and scientific discourse. Dr. Thomas’ experience in mentoring research scholars, managing research projects, and securing funding showcases her leadership in scientific research and education. Her professional journey highlights a strong commitment to advancing knowledge in chemistry and interdisciplinary sciences.

Research Interest

Dr. Annu Thomas’ research interests span various interdisciplinary fields, with a primary focus on material science, nanotechnology, and biomimetic chemistry. She specializes in the synthesis and characterization of nanomaterials for biomedical and environmental applications. Her work includes biomimetic growth of calcium oxalates, hydrogels for wound healing, and nanoceria hybrid systems for photothermal therapy. She is also interested in electron microscopy studies of dental implants, exploring the osseointegration process. Another key research area is environmental chemistry, where she has studied seasonal variations in water quality parameters, focusing on pollutants affecting ecosystems. Dr. Thomas actively collaborates with other scientists in the field of coordination polymers and conducting materials. Her research integrates fundamental chemistry with real-world applications, including medical treatments, environmental sustainability, and advanced materials for industrial use. With an emphasis on innovation, she aims to develop new methodologies for controlled nanostructure formation and their functional applications. Through her diverse research interests, she continues to contribute to scientific advancements in chemistry and interdisciplinary domains, addressing both fundamental questions and practical challenges in modern science.

Research Skills

Dr. Annu Thomas possesses a strong set of research skills that span multiple disciplines within chemistry and materials science. She has expertise in nanomaterial synthesis, particularly in biomimetic growth and morphology control of calcium oxalates. Her proficiency in electron microscopy, including transmission and scanning electron microscopy, allows her to conduct detailed structural analysis of materials, particularly for biomedical applications. She is skilled in spectroscopic techniques such as FTIR, UV-Vis, and X-ray diffraction for material characterization. Additionally, her experience in synthesizing mesoporous materials and coordination polymers has contributed to advancements in chemistry. Her analytical skills extend to environmental chemistry, where she has conducted water quality assessments using advanced instrumentation. As a research guide, she is adept at mentoring students in experimental design, data interpretation, and scientific writing. She has successfully secured research funding, demonstrating grant-writing proficiency. Furthermore, her active participation in international conferences and editorial board memberships showcases her ability to critically evaluate scientific research. With a strong background in interdisciplinary research, Dr. Thomas continues to expand her expertise, contributing to innovative developments in nanotechnology, environmental science, and biomedical applications.

Awards and Honors

Dr. Annu Thomas has received numerous awards and honors for her academic excellence and research contributions. She was the university topper during both her B.Sc. and M.Sc. in Chemistry at Mahatma Gandhi University, Kerala. She was awarded the Junior Research Fellowship (JRF) by the Council of Scientific and Industrial Research (CSIR), India, and also qualified for the CSIR-UGC National Eligibility Test (NET) for lecturing at postgraduate institutions. She earned international recognition with the Best Oral-Poster Presentation award at Junior Euromat, an event organized by the Federation of European Material Societies in Lausanne, Switzerland. Her Ph.D. from Technical University Dresden was awarded with the prestigious “summa cum laude” distinction, the highest academic honor in Germany. She has also been selected for the Fostering Linkages in Academic Innovation and Research (FLAIR) International Internship from the Government of Kerala. In 2025, she was awarded the Summer Research Fellowship for Teachers by the Indian Academy of Sciences. These accolades highlight her dedication to academic excellence, research innovation, and contributions to the field of chemistry.

Conclusion

Dr. Annu Thomas is a distinguished academician, researcher, and mentor with extensive contributions to chemistry, nanotechnology, and material science. Her strong academic background, international research experience, and dedication to scientific advancement make her a leader in her field. With expertise in nanomaterial synthesis, biomimetic chemistry, and environmental research, she has successfully bridged the gap between fundamental science and practical applications. Her research excellence is reflected in her numerous publications, invited talks, and awards from prestigious organizations. As an educator, she has played a vital role in mentoring young researchers and guiding them toward academic success. Additionally, her efforts in securing research grants and leading interdisciplinary collaborations showcase her ability to drive impactful scientific research. Dr. Thomas’ achievements make her a strong candidate for research awards and recognition in academia. Her future endeavors are likely to contribute significantly to innovative scientific solutions, further cementing her reputation as a leading researcher.

Publications Top Notes

  1. Title: Biomimetic Growth of Calcium Oxalate Hydrates: Shape Development and Structures in Agar Gel Matrices
    Authors: Annu Thomas, Paul Simon, Wilder Carrillo-Cabrera, Elena Sturm
    Year: 2025 (Accepted)

  2. Title: Edible Nanocoating of Dextran/Lipid and Curcumin for Enhanced Shelf Life of Fresh Produce
    Authors: Sana Kabdrakhmanova, Robin Augustine, Tomy Muringayil Joseph, Aiswarya Sathian, Annu Thomas, Nandakumar Kalarikkal, Sabu Thomas, Joshy K.S, Anwarul Hasan
    Year: 2025

  3. Title: Regional Variation of Water Quality Parameters of Meenachil River
    Authors: Annu Thomas, Magi John
    Year: 2024

  4. Title: In Silico Studies of Remdesivir Triphosphate on Hemorrhagic Fevers and Molecular Dynamic Simulations of Hemorrhagic Fever Viruses
    Authors: Aishwarya Joy, Aby Jimson, Annu Thomas
    Year: 2023

  5. Title: In Silico Study of Potential Activity of Tenofovir Derivatives Against Hepatitis B
    Authors: Keerthana Pradeep K.V, Aby Jimson, Annu Thomas
    Year: 2023

  6. Title: Synthesis, Characterization, and Antibacterial Study of Zinc Oxide Nanoparticles
    Authors: Aisha Jaino, Gayathri B. Raj, Sandra A., Aby Jimson, Annu Thomas
    Year: 2023

  7. Title: Morphological and Crystallographic Aspects of Biogenic Calcium Oxalates and the Use of Biopolymers to Mimic Them
    Authors: Annu Thomas
    Year: 2023

  8. Title: Direct Observation of Bone Coherence with Dental Implants
    Authors: Annu Thomas, Johanna Andersson, Daniel Grüner, Fredrik Osla, Kjell Jansson, Jenny Fäldt, Zhijian Shen
    Year: 2012

  9. Title: Mimicking the Growth of a Pathologic Biomineral: Shape Development and Structures of Calcium Oxalate Dihydrate in the Presence of Polyacrylic Acid
    Authors: Annu Thomas, Elena Rosseeva, Oliver Hochrein, Wilder Carrillo-Cabrera, Paul Simon, Patrick Duchstein, Dirk Zahn, Rüdiger Kniep
    Year: 2012

  10. Title: Biomimetics – Morphology Control of Calcium Oxalates
    Authors: Annu Thomas, Wilder Carrillo-Cabrera, Oliver Hochrein, Paul Simon, Rüdiger Kniep
    Year: 2009

  11. Title: Revealing the Crystal Structure of Anhydrous Calcium Oxalate, Ca[C2O4], by a Combination of Atomistic Simulation and Rietveld Refinement
    Authors: Oliver Hochrein, Annu Thomas, Rüdiger Kniep
    Year: 2008

  12. Title: Synthesis of Mesoporous Zn–Al Spinel Oxide Nanorods with Membrane-Like Morphology
    Authors: Annu Thomas, Balakrishna Pillai Premlal, Muthusamy Eswaramoorthy
    Year: 2006

Ajmal Khan | Chemistry | Best Researcher Award

Prof. Ajmal Khan | Chemistry | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Dr. Ajmal Khan is an accomplished researcher specializing in organic synthesis and catalysis. Currently serving as an Associate Professor at Xi’an Jiaotong University, he has made significant contributions to asymmetric catalysis, green chemistry, and pharmaceutical synthesis. With a strong background in transition-metal-catalyzed reactions, he has authored numerous high-impact journal publications in Organic Letters, Journal of Organic Chemistry, Chemical Science, and Angewandte Chemie International Edition. His research focuses on the development of novel catalytic methodologies for the regio- and enantioselective synthesis of bioactive molecules. Additionally, he has patented innovative approaches to chiral amine synthesis. Despite his extensive publication record, Dr. Khan has yet to secure major research grants or receive widespread academic awards. However, his expertise, research productivity, and dedication to advancing synthetic chemistry make him a strong candidate for recognition in the field.

Professional Profile

Education

Dr. Ajmal Khan has a strong academic background in chemistry. He earned his Ph.D. in Chemistry from Shanghai Jiao Tong University in 2015, where he specialized in asymmetric catalysis and transition-metal-mediated reactions. Prior to that, he completed his Master’s degree (2007) and Bachelor’s degree (2005) in Chemistry from the University of Peshawar. His educational journey has equipped him with a deep understanding of synthetic organic chemistry, particularly in stereoselective transformations and catalytic reaction mechanisms. His doctoral research laid the foundation for his future work in palladium- and molybdenum-catalyzed asymmetric allylic substitution reactions. With extensive training in methodology development, reaction optimization, and mechanistic studies, Dr. Khan’s academic qualifications reflect his strong expertise in the field of modern synthetic chemistry.

Professional Experience

Dr. Ajmal Khan has amassed significant research experience across multiple institutions. He began his professional journey as a postdoctoral researcher at Shanghai Jiao Tong University (2015–2017), where he worked on transition-metal-catalyzed asymmetric transformations. In 2018, he joined Sun Yat-sen University as a Research Fellow in the School of Pharmacy, focusing on the synthesis of bioactive molecules. Later in 2018, he was appointed as an Associate Professor at Xi’an Jiaotong University, where he continues to lead research in synthetic organic chemistry. Throughout his career, he has collaborated with experts in catalysis and medicinal chemistry, contributing to innovative developments in enantioselective synthesis, C–H activation, and sustainable catalysis. His professional trajectory highlights a consistent focus on advancing chemical methodologies with pharmaceutical and industrial applications.

Research Interests

Dr. Ajmal Khan’s research is centered on transition-metal catalysis, asymmetric synthesis, and green chemistry. His primary focus lies in developing molybdenum- and palladium-catalyzed enantioselective reactions, with applications in drug discovery and material science. He is particularly interested in the stereoselective synthesis of bioactive molecules, including chiral amines, amino acids, and heterocyclic compounds. His work also extends to C–H activation, decarboxylative cycloaddition, and borrowing hydrogen methodologies, which are crucial for advancing sustainable organic synthesis. Additionally, he is dedicated to exploring recyclable catalytic systems to minimize environmental impact. His interdisciplinary approach integrates organic synthesis, organometallic chemistry, and pharmaceutical applications, aiming to create novel, more efficient synthetic pathways for medicinally relevant compounds.

Research Skills

Dr. Ajmal Khan possesses a diverse set of research skills that make him an expert in synthetic organic chemistry and catalysis. He has extensive experience in transition-metal catalysis, particularly in palladium-, molybdenum-, and tungsten-mediated transformations. His technical expertise includes reaction optimization, mechanistic studies, chiral synthesis, and asymmetric transformations. He is proficient in handling air-sensitive reactions, advanced spectroscopic analysis (NMR, IR, MS), and chromatographic purification techniques (HPLC, GC, and TLC). Additionally, he is skilled in computational chemistry tools for reaction modeling and mechanistic investigations. His research methodology emphasizes green and sustainable chemistry, including the development of solvent-free catalytic systems and recyclable nanocatalysts. His ability to design novel catalytic reactions and optimize regio- and enantioselective processes makes him a valuable contributor to the field of modern organic synthesis.

Awards and Honors

Dr. Ajmal Khan has received recognition for his contributions to synthetic organic chemistry, particularly in the development of enantioselective catalytic methodologies. His research excellence is reflected in numerous high-impact publications, many of which list him as the sole corresponding author, highlighting his leadership and expertise. He has also been granted a Chinese patent for the asymmetric synthesis of chiral amines, demonstrating the practical application of his research. Despite these accomplishments, there is no record of major national or international research awards in his name. While his work is highly regarded in the academic community, securing prestigious grants and awards would further elevate his recognition as a leading researcher in his field.

Conclusion

Dr. Ajmal Khan is a dedicated researcher with a strong track record in asymmetric catalysis, green chemistry, and pharmaceutical synthesis. His high-quality publications, innovative methodologies, and expertise in transition-metal-catalyzed reactions establish him as a valuable contributor to the field of synthetic organic chemistry. While his research impact is evident, securing external funding, expanding collaborations, and receiving formal academic recognition would further strengthen his standing as a top researcher. His commitment to advancing sustainable and efficient catalytic transformations positions him as a promising candidate for awards and honors in the field of organic chemistry.

Publications Top Notes

  1. Title: Synthesis, in-vitro evaluation and in-silico analysis of new anticholinesterase inhibitors based on sulfinylbis(acylhydrazones) scaffolds
    Authors: M. Ibrahim Muhammad, M.Z. Ali Mumtaz Z., S.A.S.A. Halim Sobia Ahsan Syed Abd, A.L. Khan Ajmal L., A.S. Al-Harrasi Ahmed Sulaiman
    Year: 2025

  2. Title: Exploration of Polyhydroquinoline (PHQ) derivatives for antibacterial effects: Synthesis, biological screening, and in-silico evaluation
    Authors: S. Hussain Sajid, A. Latif Abdul, M.Z. Ali Mumtaz Z., A.S. Al-Harrasi Ahmed Sulaiman, F.A. Özdemir Fethi Ahmet
    Year: 2025

  3. Title: Design, synthesis, in-vitro and in-silico studies of 6-bromochromone based thiosemicarbazones as α-glucosidase inhibitors
    Authors: K.A. Dahlous Kholood Ahmed, M.M. Ajmal Muhammad Maroof, S.A. Ullah Saeed Aqib, A.S. Al-Harrasi Ahmed Sulaiman, Z. Shafiq Zahid
    Year: 2025

  4. Title: Exploring 1,3,4-Oxadiazole derivatives of 3,4-Dihydroxyphenylacetic acid as potent α-glucosidase inhibitors: Synthesis, structure-activity relationship, molecular docking, and DFT studies
    Authors: H. Khan Hammad, F. Jan Faheem, Aqsa, M. Khan Momin, S. Ali Shaukat
    Year: 2025

  5. Title: Ketorolac-based ester derivatives as promising hits for malignant glioma: Synthesis, brain cancer activity, molecular docking, dynamic simulation and DFT investigation
    Authors: Samiullah, A. Alam Aftab, Zainab, A.S. Al-Harrasi Ahmed Sulaiman, M.M. Ahmad M.M.
    Year: 2025

  6. Title: Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
    Authors: M. Ng Marie, E. Gakidou Emmanuela, J. Lo Justin, M. Al-Wardat Mohammad, Y.M. Al-Worafi Yaser Mohammed
    Year: 2025
    Citations: 2

  7. Title: Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
    Authors: J.A. Kerr Jessica A., G.C. Patton George C., K.I. Cini Karly I., F.J. Alvi Farrukh Jawad, N.R. Alvis-Guzman Nelson Rafael
    Year: 2025
    Citations: 2

  8. Title: Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021
    Authors: N. Steel N., C.M.M. Bauer-Staeb Clarissa Maria Mercedes, J.A. Ford John A., N.B. Bhala Neeraj B., S.M. Bhaskar Sonu M.M.
    Year: 2025

  9. Title: Global, regional, and national burden of suicide, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
    Authors: N. Davis Weaver Nicole, G.J. Bertolacci Gregory J., E. Rosenblad Emily, O.P. Doshi Ojas Prakashbhai, H.L. Dsouza Haneil Larson
    Year: 2025

  10. Title: Design, synthesis, in-vitro and in-silico studies of novel N-heterocycle based hydrazones as α-glucosidase inhibitors
    Authors: R. Farooqi Rehmatullah, S.A. Ullah Saeed Aqib, A.L. Khan Ajmal L., Z. Shafiq Zahid, S. Schenone Silvia
    Year: 2025