Swati Gangwar | Chemical Engineering | Women Researcher Award

Ms. Swati Gangwar | Chemical Engineering | Women Researcher Award

Research scholar from Indian institute of Technology, India

Swati Gangwar is a dedicated research scholar currently pursuing her PhD in Chemical Engineering at the Indian Institute of Technology (IIT), Jammu. With a strong academic foundation marked by a first-class chemical engineering degree from AITH Kanpur and a Master’s degree from Harcourt Butler Technical University (HBTU), Kanpur, she has steadily advanced her expertise in thermal hydraulics and fluid flow. Under the mentorship of P.K. Vijayan, a distinguished expert with extensive experience at BARC, Swati has focused on natural circulation systems, which are critical in energy-efficient and safe passive heat transfer technologies. Her research contributions include experimental, numerical, and analytical studies of thermosyphon heat transport devices, indoor solar cooktops, and passive cooling systems applicable to renewable energy and nuclear safety sectors. Swati’s work has been published in prestigious international journals such as Nuclear Engineering and Design and IEEE Electrification Magazine, demonstrating her ability to contribute novel insights to her field. With ongoing projects and collaborative efforts, she continues to advance research that bridges theoretical understanding and practical innovation in heat transfer mechanisms, positioning herself as a promising leader in chemical engineering research.

Professional Profile

Education

Swati Gangwar completed her Bachelor of Technology (B.Tech) degree in Chemical Engineering from AITH Kanpur in 2016, graduating with first-class honors. She pursued her Master of Technology (M.Tech) in Chemical Engineering at Harcourt Butler Technical University (HBTU), Kanpur, completing it in 2019. Her graduate studies laid a solid foundation in core chemical engineering principles, with a growing interest in thermal systems and fluid mechanics. Currently, she is enrolled in a PhD program at the Indian Institute of Technology Jammu, focusing on heat transfer and fluid flow under the guidance of Professor P.K. Vijayan. The doctoral program enables her to engage deeply in research related to natural circulation loops, thermosyphon heat transport devices, and their applications in sustainable energy systems and nuclear safety. Her education trajectory reflects a consistent focus on advancing her expertise in thermal hydraulics and related engineering challenges, supported by rigorous academic training and research exposure at premier Indian institutions.

Professional Experience

Swati’s professional experience is primarily academic and research-oriented, centered on her PhD studies at IIT Jammu. She has actively contributed to research projects involving thermosyphon heat transport devices and natural circulation systems, focusing on experimental design, numerical modeling, and performance analysis. Her collaboration with her supervisor, Prof. P.K. Vijayan, who has a rich background in nuclear thermal hydraulics and reactor engineering, has enriched her exposure to practical challenges in energy systems design and safety. Swati has also worked on projects related to solar indoor cooktops, a novel application of thermosyphon technology, reflecting her ability to translate research into practical innovations. She has been involved in publishing several peer-reviewed papers in high-impact journals and presenting findings at scientific forums, contributing to the academic community. Although her experience is mainly research-focused, it reflects strong technical skills, teamwork in collaborative environments, and dedication to advancing applied thermal engineering solutions.

Research Interests

Swati’s research interests lie in the field of heat transfer, fluid dynamics, and passive cooling systems. Specifically, she focuses on natural circulation loops (NCLs) and thermosyphon heat transport devices (THTDs), which utilize buoyancy-driven flow to enable efficient heat transfer without mechanical pumps. Her work encompasses both single-phase and two-phase natural circulation systems, with a strong emphasis on stability analysis and flow instabilities. She is particularly interested in developing innovative applications of these passive heat transfer technologies, such as solar indoor cooking devices, passive fuel cooling systems in small modular reactors (SMRs), and sustainable energy solutions like solar space heating. Swati’s research aims to address critical challenges in renewable energy and nuclear safety by optimizing thermal-hydraulic performance and enhancing system stability. Her work bridges theoretical modeling, numerical simulations, and experimental validations to provide comprehensive insights into these systems’ behavior under various boundary conditions, contributing to safer and more efficient energy technologies.

Research Skills

Swati possesses a robust set of research skills combining experimental, analytical, and computational techniques. She is proficient in designing and conducting experiments related to thermosyphon heat transport devices and natural circulation loops, including setup fabrication, instrumentation, and data acquisition. Her skills include numerical modeling and simulation using system codes to predict thermo-hydraulic behavior and flow stability. She has experience in analytical methods for stability criteria development and performance analysis under varying operating conditions. Swati’s ability to integrate experimental data with numerical models allows her to validate and refine theoretical predictions effectively. Additionally, she has strong scientific writing skills, demonstrated through multiple publications in reputed journals. Her research also involves using computational fluid dynamics (CFD) tools for detailed flow analysis. Collaborating with multidisciplinary teams and managing complex research projects further highlights her organizational and teamwork capabilities. Overall, Swati’s research skills position her to make meaningful contributions to passive cooling and heat transfer technologies.

Awards and Honors

Swati Gangwar’s recognition primarily stems from her academic excellence and research contributions during her ongoing PhD. While specific external awards or honors were not explicitly mentioned, her work’s acceptance and publication in high-impact, peer-reviewed journals such as Nuclear Engineering and Design and IEEE Electrification Magazine are significant markers of her research quality and impact. Being mentored by a leading expert in the field, Prof. P.K. Vijayan, also adds to her academic prestige. Her participation in advanced research projects and collaborations, coupled with acceptance of her work in reputed journals, reflects peer recognition within the scientific community. Future recognition may include awards related to innovations in renewable energy or nuclear safety, given the societal relevance of her research areas. Encouragingly, her trajectory and ongoing scholarly output suggest a promising career with potential for further accolades and honors as she continues to contribute to her field.

Conclusion

Swati Gangwar exemplifies a promising young researcher with strong academic foundations, relevant professional experience, and a clear focus on impactful research in thermal hydraulics and fluid flow. Her work on natural circulation loops and thermosyphon devices addresses important challenges in renewable energy and nuclear safety, combining theoretical, numerical, and experimental approaches. With multiple high-quality journal publications and ongoing innovative projects, she is steadily establishing herself as a capable and impactful researcher. To strengthen her profile further, opportunities to demonstrate leadership in research projects, increase engagement with the wider scientific community through conferences, and pursue external funding or patents would be beneficial. Overall, Swati’s dedication and contributions position her well as a deserving candidate for the Women Researcher Award, highlighting her potential as a future leader in engineering research.

Publications Top Notes

  1. Title: Insight on the steady-state performance of single-phase Natural circulation loops
    Year: 2025
    Authors: Swati Gangwar, P. K. Vijayan, Goutam Dutta
    Journal: Nuclear Engineering and Design, Volume 440, 114128

  2. Title: Insights on the instability and stabilizing techniques for natural circulation loops
    Year: 2025
    Authors: P. K. Vijayan, Swati Gangwar, Dev Banitia, U. C. Arunachala, S. Nakul, D. N. Elton, K. Varun
    Journal: Nuclear Engineering and Design, Volume 438, 114017

  3. Title: Intrinsically Safe Thermohydraulic Designs for SMRs: Design advantages and challenges
    Year: 2024
    Authors: P. K. Vijayan, Swati Gangwar
    Journal: IEEE Electrification Magazine, Volume 12, Issue 4, pp. 75–83
    DOI: 10.1109/MELE.2024.3473332

  4. Title: CFD analysis of the steady-state performance of a cooktop integrated Thermosyphon heat transport device with two bends
    Year: 2025
    Authors: Sonu Kumar, Pallippattu Krishnan Vijayan, Swati Gangwar, Satya Sekhar Bhogilla
    Journal: Heat Transfer Engineering Journal (Accepted for publication)

  5. Title: Experimental performance of a novel solar indoor cooktop using THTD
    Year: 2024
    Authors: Swati Gangwar, A. Budakoti, S. S. Bhogilla, G. Dutta, P. K. Vijayan
    Journal: ASTFE Digital Library, Begell House Inc.

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Assistant Professor at Jazan University, Saudi Arabia.

Dr. Mohammad Ehtisham Khan is an Assistant Professor in the Department of Chemical Engineering at Jazan University, Saudi Arabia. With a robust academic and research background, he specializes in nanotechnology, wastewater treatment, and environmental remediation. Dr. Khan has published numerous high-impact research articles in leading journals and has played a key role in advancing chemical engineering technologies, particularly in sustainable practices for water purification. His work spans diverse fields including nanocomposites, biosensors, and renewable energy applications, showcasing his commitment to addressing environmental challenges. Dr. Khan’s international exposure through postdoctoral research in South Korea and extensive experience in academia highlights his dedication to fostering scientific innovation. He has earned multiple prestigious awards and consistently contributes to scientific literature, editorial responsibilities, and advanced research projects, further solidifying his reputation as a leading researcher in his field.

Profile👤

Google Scholar

Education📝

Dr. Khan holds a Ph.D. in Chemical Engineering from Yeungnam University, South Korea, where he completed a dissertation on graphene-based nanocomposites for photocatalytic and photoelectrochemical applications. His doctoral research encompassed advanced coursework and experimental work, achieving an A+ in all subjects. Prior to his Ph.D., he earned a Master’s in Technology (M. Tech) in a related engineering discipline. He also undertook a postdoctoral research position at the same university, contributing to cutting-edge studies in chemical engineering. His academic journey is marked by a strong focus on nanotechnology and environmental sciences, equipping him with the expertise to address complex challenges in water purification and renewable energy systems. His education, combined with his global exposure, positions him as an expert in chemical engineering technology.

Experience👨‍🏫

Dr. Khan has accumulated a wealth of academic and research experience. He is currently an Assistant Professor in the Department of Chemical Engineering at Jazan University, where he has been since 2018. Prior to this, he held a postdoctoral research associate position at Yeungnam University, South Korea, working on advanced chemical engineering projects. Dr. Khan also served as a researcher at the Institute of Clean Technology and the School of Chemical Engineering at Yeungnam University, focusing on sustainable technologies for environmental applications. Additionally, he has taken on administrative responsibilities as the head of the Chemical Engineering Technology Department at Jazan University, overseeing academic programs and student projects. His experience also includes supervising final-year projects, mentoring undergraduate students, and managing multiple funded research projects.

Research Interest🔬 

Dr. Khan’s primary research interests lie in the development of nanotechnology-based solutions for environmental and industrial applications. His work focuses on the synthesis of nanocomposites and their use in photocatalytic and photoelectrochemical processes, particularly for water treatment and energy applications. He is also deeply involved in the fabrication of biosensors for environmental monitoring and medical diagnostics. Dr. Khan is interested in the intersection of chemical engineering with sustainability, exploring carbon-based nanomaterials for wastewater purification and renewable energy storage. His ongoing research includes projects on smart nanostructured catalysts, recycling of wastewater, and the development of affordable, environmentally-friendly materials for energy and environmental applications. His expertise positions him at the forefront of efforts to address global environmental challenges through innovative chemical engineering technologies.

Awards and Honors🏆

Dr. Khan has been recognized for his significant contributions to chemical engineering and environmental science. He was listed among the top 2% of scientists in the world based on a 2023 analysis by Stanford University. He has also received the prestigious “Best Young Scientist Award (Male)” at the International Academic and Research Excellence Awards (IARE) in 2019. Additionally, he has been appointed as the “Bentham Brand Ambassador” by the Editor-in-Chief of the journal Current Medicinal Chemistry, a reflection of his influence in the scientific community. He is also a member of several editorial boards of international journals, further acknowledging his role in shaping the field through peer review and scientific discourse. His achievements underscore his dedication to advancing research in chemical engineering and environmental sustainability.

Skills🛠️

Dr. Khan possesses a comprehensive skill set that spans across chemical engineering, nanotechnology, and environmental sciences. He has expertise in the synthesis and characterization of nanocomposites, specifically for use in photocatalytic, photoelectrochemical, and biosensor applications. His technical skills also include advanced laboratory techniques, project management, and the use of analytical tools for environmental monitoring. As an academic, he has strong teaching and mentoring skills, having supervised numerous final-year student projects and managed research teams. Dr. Khan is also proficient in coordinating interdisciplinary research projects, as demonstrated by his leadership roles in various funded initiatives. His skills in scientific writing, peer review, and editorial responsibilities are further enhanced by his contributions to high-impact journals and international conferences.

Conclusion 🔍 

Dr. Mohammad Ehtisham Khan is a distinguished academic and researcher whose contributions to chemical engineering and environmental sustainability have earned him international recognition. His extensive research in nanotechnology, particularly in the development of materials for water purification and renewable energy, aligns with global efforts to combat environmental degradation. Dr. Khan’s expertise, coupled with his leadership roles in academia, make him a strong candidate for research-focused awards. His accolades, including being listed among the top 2% of scientists, highlight his impact on the field. Overall, his dedication to advancing chemical engineering technologies, mentoring students, and contributing to scientific discourse solidifies his position as a leading figure in his field.

Publication Top Notes

A focused review on organic electrochemical transistors: A potential futuristic technological application in microelectronics
Authors: A Raza, U Farooq, K Naseem, S Alam, ME Khan, A Mohammad, W Zakri, et al.
Year: 2024
Journal: Microchemical Journal, Article 111737

Comparative analysis of dye degradation methods: Unveiling the most effective and environmentally sustainable approaches, a critical review
Authors: FU Nisa, K Naseem, A Aziz, W Hassan, N Fatima, J Najeeb, SU Rehman, et al.
Year: 2024
Journal: Review in Inorganic Chemistry, Vol. 1, pp. 1-27

Advancement in optical and dielectric properties of unsaturated polyester resin/zinc oxide nanocomposite: Synthesis to application in electronics
Authors: H Noor, A Zafar, A Raza, A Baqi, U Farooq, ME Khan, W Ali, SK Ali, et al.
Year: 2024
Journal: Journal of Materials Science: Materials in Electronics, Vol. 35(23), pp. 1598
Citations: 1

Excellent electrochemical performance of N and Mn doped NiCo2O4 functional nanostructures: An effective approach for symmetric supercapacitor application
Authors: A Sasmal, AK Nayak, ME Khan, W Ali, SK Ali, AH Bashiri
Year: 2024
Journal: Physica Scripta, Vol. 99(8), Article 085919

Fabrication and characterization of binary composite MgO/CuO nanostructures for the efficient photocatalytic ability to eliminate organic contaminants: A detailed spectroscopic analysis
Authors: U Farooq, M Raza, SA Khan, S Alam, ME Khan, W Ali, W Al Zoubi, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 315, Article 124264
Citations: 9

Insight into mechanism of excellent visible-light photocatalytic activity of CuO/MgO/ZnO nanocomposite for advanced solution of environmental remediation
Authors: M Imran, M Raza, H Noor, SM Faraz, A Raza, U Farooq, ME Khan, SK Ali, et al.
Year: 2024
Journal: Chemosphere, Vol. 359, Article 142224
Citations: 5

An affordable label-free ultrasensitive immunosensor based on gold nanoparticles deposited on glassy carbon electrode for the transferrin receptor detection
Authors: A Ahmad, G Rabbani, MA Zamzami, S Hosawi, OA Baothman, H Altayeb, ME Khan, et al.
Year: 2024
Journal: International Journal of Biological Macromolecules, Vol. 273(2), Article 133083
Citations: 3

Computational Drug Discovery of Medicinal Compounds for Cancer Management -Volume II
Authors: K Ahmad, S Shaikh, FI Khan, ME Khan
Year: 2024
Journal: Frontiers in Chemistry, Vol. 1, Article 1446510

Temperature and pressure dependent tunable GaAsSb/InGaAs QW heterostructure for application in IR-photodetector
Authors: W Ali, AM Quraishi, K Kumawat, ME Khan, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Physica E: Low-dimensional Systems and Nanostructures, Vol. 160, Article 115939

Solving the fouling mechanisms in composite membranes for water purification: An advanced approach
Authors: Y Ezaier, A Hader, A Latif, ME Khan, W Ali, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Environmental Research, Vol. 250, Article 118487
Citations: 4

Synthesis and characterization of X (X= Ni or Fe) modified BaTiO3 for effective degradation of Reactive Red 120 dye under UV-A light and its biological activity
Authors: K Balu, T Abisheik, T Niyitanga, S Kumaravel, W Ali, ME Khan, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124556
Citations: 1

Applications of nanomedicine-integrated phototherapeutic agents in cancer theranostics: A comprehensive review of the current state of research
Authors: A Shoaib, S Javed, M Tabish, ME Khan, M Zaki, SS Alqahtani, MH Sultan, et al.
Year: 2024
Journal: Nanotechnology Reviews, Vol. 13, Article 20240023

Preparation and Spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen production: Reaction kinetics and mechanisms
Authors: M Raza, U Farooq, SA Khan, Z Ullah, ME Khan, SK Ali, OY Bakather, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124513
Citations: 6

Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
Authors: N Sobahi, MM Alam, M Imran, ME Khan, A Mohammad, T Yoon, et al.
Year: 2024
Journal: Molecules, Vol. 29(11), Article 2439