Kowsar Rezvanian | Chemical Engineering | Best Researcher Award

Ms. Kowsar Rezvanian | Chemical Engineering | Best Researcher Award

Graduate Research Assistant (GRA) from Tuskegee University, United States

Kowsar Rezvanian is an accomplished researcher with a strong academic background and a focus on sustainability and material science. She holds a Ph.D. in Materials Science and Engineering from Tuskegee University, where she achieved a perfect GPA of 4.0, reflecting her academic excellence and dedication. Kowsar’s research addresses critical environmental challenges, particularly in the fields of polymer science, food packaging, and wastewater treatment. Her work involves innovative methods such as upcycling multilayer plastic films and optimizing materials for food preservation, contributing significantly to both scientific knowledge and environmental sustainability. In addition to her academic accomplishments, Kowsar has presented her research at various international conferences, demonstrating her global perspective on the importance of sustainable practices. Through her publications in high-impact journals, she has made valuable contributions to her field. Kowsar’s leadership roles in research teams and her involvement in industry-related projects underscore her commitment to advancing scientific knowledge and providing real-world solutions.

Professional Profile

Education

Kowsar Rezvanian has a solid educational foundation, having earned a Ph.D. in Materials Science and Engineering from Tuskegee University, where she maintained a perfect GPA of 4.0. She also holds an M.Sc. in Chemical Engineering from the same institution, where she achieved an impressive GPA of 3.85/4. Her academic journey began at Tehran Polytechnic, where she completed her BSc in Chemical Engineering with a GPA of 3.10/4. Her exceptional academic performance throughout her studies reflects her passion for research and learning. During her doctoral studies, Kowsar gained expertise in materials science, particularly focusing on sustainability in polymer processing and environmental conservation. She continuously sought to integrate theory with practical solutions, which shaped her ability to develop meaningful and impactful research. Her education laid the groundwork for her research on innovative recycling processes and the optimization of materials for real-world applications, such as food packaging and wastewater treatment, which are central themes of her current work.

Professional Experience

Kowsar Rezvanian has gained extensive professional experience as a Graduate Research Assistant at Tuskegee University, where she has worked since 2021. In this role, she has been responsible for data collection and storage, conducting data analysis, managing project inventories, and developing new research practices and tools. Her work at Tuskegee University has allowed her to further her research in sustainability and materials science, particularly in the optimization of polymer films for food packaging and the upcycling of multilayer plastic films for industrial applications. In addition to her academic role, Kowsar also served as a member of the board of directors at Arka Company, where she contributed to decision-making and project management between 2019 and 2021. Her prior experience as a Heat Transfer Teaching Assistant at Tuskegee University also showcases her capability to communicate complex concepts to students and assist in the development of curriculum materials. This diverse professional experience has provided Kowsar with a comprehensive understanding of both the academic and industrial aspects of materials science and engineering.

Research Interests

Kowsar Rezvanian’s research interests are focused on addressing global challenges through sustainable material science and engineering. Her work primarily revolves around the development of innovative recycling techniques for multilayer plastic films and optimizing materials for food packaging. She is passionate about advancing environmental sustainability through the upcycling of plastic waste into nanocomposite materials, promoting a circular economy. In her research on food packaging, Kowsar focuses on optimizing the thickness and ethylene content of poly(ethylene vinyl alcohol) (EVOH) films to improve their mechanical and thermal properties, ultimately enhancing food preservation and reducing waste. Another key area of her research is wastewater treatment, specifically using photocatalytic processes to treat refinery wastewater and reduce chemical oxygen demand (COD). Kowsar’s research also explores the scale-up of food product manufacturing processes, ensuring that scientific innovations can be translated to large-scale, industrial applications. Through these efforts, Kowsar aims to make significant contributions to the sustainability of materials used in packaging, food preservation, and environmental conservation.

Research Skills

Kowsar Rezvanian possesses a wide range of advanced research skills that support her innovative work in materials science and environmental sustainability. She is proficient in various software tools and programming languages such as Maestro Materials, Aspen HYSYS, MATLAB, and Python, which she uses to model, optimize, and analyze material properties and processes. Kowsar is skilled in material characterization techniques, including Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD), and Fourier Transform Infrared Spectroscopy (FTIR), which she uses to evaluate the properties of different materials, including plastics and polymers. Her hands-on skills also include utilizing equipment such as CNC machines, 3D printers, water jet cutters, and mechanical testing devices for the fabrication and testing of materials. Kowsar’s expertise in design software such as Fusion 360 and Prusa Slicer further complements her research in developing new material solutions for applications like 3D printing and packaging. These technical skills enable her to approach complex challenges with a multidisciplinary and innovative perspective.

Awards and Honors

Kowsar Rezvanian has received several prestigious awards and honors in recognition of her outstanding academic and research achievements. She was the recipient of the GRSP Scholarship for the 2024-2025 academic year, which highlights her potential for continued academic and professional growth in the field of materials science and engineering. Additionally, Kowsar was honored as the IFT Product Development Winner in 2022, an award that recognizes her contributions to food science and packaging technologies. These accolades are a testament to her dedication to advancing knowledge in her field and to the quality of her research. Kowsar’s recognition in both academic and professional circles reflects her ability to produce work that is not only innovative but also impactful. As she continues her research, she is likely to receive further recognition for her efforts to develop sustainable materials and solutions that address pressing global challenges in environmental conservation and industrial applications.

Conclusion

Kowsar Rezvanian is a dedicated and highly skilled researcher whose work in materials science and engineering has made a significant impact on sustainability and environmental conservation. With a strong academic foundation, outstanding research achievements, and a focus on real-world applications, Kowsar has demonstrated exceptional potential for advancing both scientific knowledge and industrial practices. Her ongoing research on upcycling plastic waste, optimizing food packaging, and improving wastewater treatment showcases her commitment to addressing global challenges through innovation. While her professional experience and technical expertise position her for continued success, there are opportunities for Kowsar to further enhance her profile by expanding her leadership roles, strengthening industry collaborations, and exploring additional interdisciplinary research areas. As a result, Kowsar is poised to make even more significant contributions to the field and is well-deserving of recognition for her achievements.

Publications Top Notes

  1. Title: A review on sweet potato syrup production process: Effective parameters and syrup properties
    Authors: K Rezvanian, S Jafarinejad, AC Bovell-Benjamin
    Year: 2023
    Citations: 5

  2. Title: Optimizing Process Variables and Type in a Sweet Potato Starch Syrup: A Response Surface Methodology Approach
    Author: K Rezvanian
    Institution: Tuskegee University
    Year: 2023
    Citations: 5

  3. Title: Mathematical Modeling and Optimization of Poly (Ethylene Vinyl Alcohol) Film Thickness and Ethylene Composition Based on I‐Optimal Design
    Authors: K Rezvanian, R Panickar, F Soso, V Rangari
    Journal: Journal of Applied Polymer Science
    Volume: e56827
    Year: 2025

  4. Title: Cover Image, Volume 142, Issue 18
    Authors: K Rezvanian, R Panickar, F Soso, V Rangari
    Journal: Journal of Applied Polymer Science
    Volume: 142 (18), e54197
    Year: 2025

  5. Title: Innovative Manufacturing and Recycling Approaches for Multilayer Polymer Packaging: A Comprehensive Review
    Authors: K Rezvanian, HT Shahan, D Ghofrani, V Rangari
    Journal: Polymer-Plastics Technology and Materials
    Year: 2025

  6. Title: Response Surface Methodological Approach for Scaling Up an Enzymatic Production of Sweet Potato Starch Syrup
    Authors: K Rezvanian, PN Gichuhi, AC Bovell-Benjamin
    Journal: Journal of Food Processing and Preservation
    Volume: 2025 (1), 8870506
    Year: 2025

  7. Title: A Review on Sweet Potato Syrup Production Process: Effective Parameters and Syrup Properties
    Authors: K Rezvanian, S Jafarinejad, AC Bovell-Benjamin
    Journal: Processes
    Volume: 11, 3280
    Year: 2023

  8. Title: Recent Advances in the Fabrication of High-Performance Forward Osmosis Membranes to Concentrate Ammonium in Wastewater
    Authors: K Rezvanian, S Jafarinejad
    Conference: Euro-Mediterranean Conference for Environmental Integration
    Pages: 83-84
    Year: 2022

Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Dr. Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Associate Professor at Motilal Nehru National Institute of Technology, India.

Dr. Sushil Kumar is an Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, with over two decades of academic and research experience. He holds a Ph.D. in Chemical Engineering from BITS Pilani and has extensive expertise in process intensification, reactive extraction, wastewater treatment, green technology, and biofuels. Dr. Kumar has successfully supervised multiple Ph.D. and M.Tech theses and led numerous funded research and consultancy projects. His work includes innovative research in biopolymers, electrochemical treatments, and nanophotocatalysts for environmental and industrial applications. With an h-index of 25 and over 2000 citations, he has made significant contributions to scientific literature and holds patents in the field of wastewater treatment and nanotechnology. His ongoing projects focus on green composites, hydroponic wastewater treatment systems, and biodiesel production, establishing him as a leader in sustainable chemical engineering research.

Profile:

Education

Dr. Sushil Kumar holds an impressive academic background in Chemical Engineering. He completed his Ph.D. in 2010 from the prestigious Birla Institute of Technology and Science (BITS), Pilani, where his research focused on the intensification of the recovery of carboxylic acids from aqueous solutions using reactive extraction. Prior to his Ph.D., Dr. Kumar earned his M.Tech. in Chemical Engineering from the renowned Indian Institute of Technology (IIT), Kanpur, in 2003, with a CGPA of 8.33/10. His master’s thesis revolved around the synthesis and characterization of metallocene catalysts and their role in ethylene polymerization. He began his academic journey with a B.Tech. degree in Chemical Engineering from Harcourt Butler Technological Institute (HBTI), Kanpur, in 2000, securing 67%. Dr. Kumar’s extensive academic training and research experience have provided a solid foundation for his contributions to chemical engineering, particularly in the areas of process intensification and green technology.

Professional Experiences 

Dr. Sushil Kumar is an accomplished Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, where he has been serving since December 2012. Prior to this, he held the position of Assistant Professor at Birla Institute of Technology and Science (BITS), Pilani from 2010 to 2012. His extensive academic career began as a Lecturer and Assistant Lecturer at BITS Pilani in 2005, where he contributed to both teaching and research activities. Dr. Kumar also gained valuable industry experience at the Central Institute of Plastics Engineering and Technology (CIPET), Lucknow, where he served as a Technical Officer and Graduate Engineer Trainee. His expertise spans process intensification, wastewater treatment, reactive extraction, and green technologies. With over two decades of experience, Dr. Kumar has successfully led numerous funded research projects and consultancy assignments, advancing sustainable technologies and chemical engineering innovations.

Research Interests

Dr. Sushil Kumar’s research interests focus on sustainable and innovative solutions in chemical and environmental engineering. His work extensively explores process intensification, with a particular emphasis on reactive extraction, which aims to enhance efficiency in separation processes. He is also actively engaged in developing advanced wastewater treatment techniques, such as electrochemical and bioremediation methods, to mitigate environmental pollution. A strong advocate for green technology, Dr. Kumar investigates biofuels and biopolymers, promoting the use of eco-friendly materials and processes in energy production and material science. Additionally, his research into polymer science and technology seeks to develop novel materials for various industrial applications. With a commitment to addressing global sustainability challenges, Dr. Kumar’s research is at the forefront of biochemical engineering, integrating scientific innovation with environmental stewardship to create more sustainable chemical processes and pollution control systems.

Research skills 

Dr. Sushil Kumar is a highly skilled researcher with extensive expertise in chemical engineering, focusing on process intensification, reactive extraction, and green technologies. His research spans critical areas such as wastewater treatment through electrochemical and bioremediation methods, biofuels, and biopolymer synthesis. With a solid foundation in experimental and theoretical modeling, Dr. Kumar has successfully led numerous research projects funded by prestigious agencies like DST and SERB. His proficiency in developing innovative solutions, such as ionic liquid-based nanophotocatalysts for biodiesel production and bioremediation techniques for industrial waste treatment, highlights his commitment to sustainable development. Additionally, Dr. Kumar has supervised multiple PhD and M.Tech students, contributing to the advancement of chemical engineering through impactful mentorship. His research outcomes, evidenced by high-impact publications and patents, demonstrate his ability to tackle complex environmental challenges while promoting green technologies for industrial applications. His dedication to interdisciplinary approaches underpins his prominence in the field.

Award And Recognition 

Dr. Sushil Kumar, a distinguished academician and researcher in Chemical Engineering, has garnered numerous awards and recognitions for his groundbreaking contributions to science and technology. His innovative work in process intensification, wastewater treatment, and green technologies has earned him prestigious fellowships, including Fellow of the Indian Institute of Chemical Engineers (FIIChE) and the Institution of Engineers India (FIEI). His research excellence has been highlighted through national and international funded projects, patents, and impactful publications in high-ranking journals. Dr. Kumar’s patents, particularly in bioremediation and nanophotocatalytic applications, have been recognized for their potential in addressing environmental challenges. His mentorship of students and supervision of several Ph.D. theses further emphasize his dedication to advancing academic and research excellence. Additionally, Dr. Kumar’s active role in consultancy projects and industrial collaborations has enhanced his reputation as a leader in developing sustainable engineering solutions for global challenges.

Conclusion

Dr. Sushil Kumar has demonstrated significant expertise and contributions in chemical engineering, especially in areas like wastewater treatment, green technologies, and bioremediation. His ability to secure research funding, publish in high-impact journals, and mentor young researchers showcases his dedication to advancing his field. With a growing international presence and more commercialization of his work, Dr. Kumar is a strong candidate for the Best Researcher Award.

Publication Top Notes
  1. Fluoride removal using a rotating anode electro-coagulation reactor: Parametric optimization using response surface methodology, isotherms and kinetic studies, economic analysis and sludge characterization
    • Authors: Meena, R.R., Singh, R.M., Soni, P., Kumar, R., Kumar, S.
    • Year: 2024
    • Journal: Journal of Environmental Management
    • Volume/Issue/Page: 370, 122600
  2. Emerging and futuristic phyto-technologies for sustainable wastewater treatment with resource recovery and economical aspects
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Volume/Issue/Page: 65, 105753
  3. Novel ionic liquid-based nano-photocatalyst for microwave-ultrasound intensified biodiesel synthesis
    • Authors: Gautam, A., Chawade, N.S., Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Energy Conversion and Management
    • Volume/Issue/Page: 313, 118599
  4. Correction to: Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11725
  5. Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11723
  6. Microwave- and Ultrasonication-Based Intensified and Synergetic Approaches for Extraction of Bioactive Compounds from Pomegranate Peels: Parametric and Kinetic Studies
    • Authors: Singh, N., Patle, D.S., Kumar, S.
    • Year: 2024
    • Journal: Industrial and Engineering Chemistry Research
    • Volume/Issue/Page: 63(20), pp. 9214–9224
  7. Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: ChemBioEng Reviews
    • Volume/Issue/Page: 11(1), pp. 115–135
  8. Metal- and ionic liquid-based photocatalysts for biodiesel production: a review
    • Authors: Gautam, A., Khajone, V.B., Bhagat, P.R., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Environmental Chemistry Letters
    • Volume/Issue/Page: 21(6), pp. 3105–3126
  9. Process intensification opportunities in the production of microalgal biofuels
    • Authors: Gautam, A., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Microalgae-Based Systems: Process Integration and Process Intensification Approaches
    • Pages: 377–407
  10. Hydrodynamic Simulation and Analysis Using Computational Fluid Dynamics: Electrochemical Reactors and Redox Flow Batteries
  • Authors: Meena, R.R., Kumar, S., Soni, P.
  • Year: 2023
  • Journal: ChemBioEng Reviews
  • Volume/Issue/Page: 10(5), pp. 670–683