Sun Chenyu | Chemical Engineering | Best Researcher Award

Mr. Sun Chenyu | Chemical Engineering | Best Researcher Award

PhD candidate at Shandong University, China

Sun Chenyi is a dedicated researcher in the field of materials science, currently pursuing a combined Master’s and Ph.D. degree at Shandong University. His work primarily focuses on the development of advanced energy storage systems, particularly lithium-sulfur batteries, where he has made significant contributions through innovative research and publications. Sun has demonstrated a strong commitment to academic excellence, leading to several accolades and recognition for his research achievements. With a solid foundation in materials science and engineering, Sun possesses a unique blend of theoretical knowledge and practical skills, making him a valuable asset to the scientific community. His leadership experience as a student council president further highlights his ability to manage projects and collaborate effectively with peers. As he continues to advance his research, Sun is well-positioned to make meaningful contributions to the field, focusing on enhancing battery technologies and exploring new materials for energy applications.

Professional Profile

Education

Sun Chenyi’s educational journey began with a Bachelor’s degree in Materials Science and Engineering from Shandong University of Science and Technology, where he graduated in July 2020. His coursework included fundamental subjects such as analytical chemistry, physical chemistry, and solid-state physics, laying a strong groundwork for his future studies. Since September 2020, he has been enrolled in a dual Master’s and Ph.D. program at Shandong University, specializing in materials and chemical engineering. His advanced studies encompass modern research methodologies in materials, thermodynamics, and electrochemical kinetics, equipping him with essential theoretical and practical skills. Sun’s academic endeavors have not only deepened his understanding of materials science but also fostered his interest in the electrochemical behavior of materials, particularly in energy storage applications. This rigorous education has shaped him into a competent researcher, ready to tackle complex challenges in the field.

Professional Experience

Sun Chenyi has accumulated valuable professional experience through his ongoing research at Shandong University. He has been actively involved in projects focusing on lithium metal anodes and lithium-sulfur batteries since 2020. His work addresses critical challenges in the commercialization of lithium batteries, such as dendrite growth and volume expansion of lithium metal anodes. Sun has successfully designed and modified current collectors to enhance the stability of lithium metal batteries, resulting in multiple high-impact publications. Additionally, he is engaged in research measuring diffusion coefficients of metallic melts under strong magnetic fields, aiming to improve the understanding of liquid-solid phase transitions. His hands-on experience with cutting-edge research techniques, combined with his leadership as a student council president at his previous university, reflects his capability to lead and collaborate effectively in diverse research settings. Sun’s professional background demonstrates his commitment to advancing materials science and energy technologies.

Research Interests

Sun Chenyi’s research interests primarily focus on the development of advanced materials for energy storage applications, specifically lithium-sulfur (Li-S) batteries and lithium metal anodes. He is particularly interested in addressing the challenges associated with lithium metal batteries, including dendrite formation and polysulfide shuttle effects, which hinder their commercial viability. Sun’s research aims to enhance the electrochemical performance and stability of these batteries through innovative material design and modification techniques. He explores the use of functional materials and structural engineering to optimize electrode configurations, thereby improving charge/discharge efficiency and battery lifespan. Additionally, his work encompasses theoretical calculations related to adsorption energy and electronic properties, utilizing advanced computational tools like VASP and Materials Studio. Sun is keen on expanding his research scope to include other areas of materials science and engineering, aiming to contribute to the development of sustainable energy solutions.

Research Skills

Sun Chenyi possesses a robust set of research skills that make him proficient in the field of materials science. He is well-versed in first-principles calculations and computational modeling, utilizing software tools such as VASP and Materials Studio for electrochemical analyses. His ability to perform independent theoretical calculations allows him to analyze adsorption energies and electronic properties effectively. In addition to his computational expertise, Sun has hands-on experience in experimental techniques related to battery fabrication and characterization. He is skilled in synthesizing novel materials and modifying existing structures to enhance electrochemical performance. Sun’s research also includes a strong understanding of thermodynamic principles and kinetics, which are critical for exploring new battery technologies. Furthermore, his leadership and organizational skills, demonstrated through his experience as a student council president, enhance his ability to collaborate with colleagues and manage research projects efficiently. Together, these skills position Sun as a competent and innovative researcher in the field.

Awards and Honors

Sun Chenyi has received numerous awards and honors throughout his academic career, recognizing his dedication and excellence in research. In 2024, he was awarded the Excellent Academic Achievement Award for his outstanding contributions to the field of materials science, particularly in the area of lithium-sulfur batteries. Additionally, he has earned several academic scholarships from Shandong University, including the First-Class Academic Scholarship in 2021 and the Second-Class Academic Scholarship in 2023, which reflect his consistent academic performance. His commitment to academic excellence was also recognized with the Freshman Scholarship during his initial years at the university in 2020 and 2022. These accolades underscore Sun’s dedication to his research endeavors and his potential for future contributions to the scientific community. As he continues his academic journey, these honors serve as a testament to his capabilities and commitment to advancing materials science.

Publications Top Notes

  1. Publication: 3D lithiophilic collector coated by amorphous g-C3N4 enabling Ultra-Stable cycling Li metal batteries
    Authors: Gao, L., Sun, C., Li, X., Bai, Y., Bian, X.
    Year: 2024
  2. Publication: Enhanced Al-Storage Performance by Electronic Properties Optimization and Structural Customization in MOF-Derived Heterostructure
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  3. Publication: Configurational Entropy Strategy Enhanced Structure Stability Achieves Robust Cathode for Aluminum Batteries
    Authors: Kang, R., Zhang, D., Du, Y., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  4. Publication: Enhanced d-p Orbital Hybridization for Lithium Polysulfide Capturing and Lithium Deposition Inducing of AgVO3 Skeleton Enabling High-Performance Li-Sulfur Batteries
    Authors: Sun, C., Gao, L., Rong, W., Bai, Y., Bian, X.
    Year: 2024
  5. Publication: Functional lithiophilic skeleton/evolving lithium sulfide artificial protective layer for dendrite-free Li metal anode
    Authors: Sun, C., Gao, L., Rong, W., Tian, X., Bian, X.
    Year: 2024
    Citations: 3
  6. Publication: Modification of 2D materials using MoS2 as a model for investigating the Al-storage properties of diverse crystal facets
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2023
    Citations: 6
  7. Publication: Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework
    Authors: Kang, R., Du, Y., Zhou, W., Chen, G., Zhang, J.
    Year: 2023
    Citations: 9
  8. Publication: Ultrafast microwave-induced synthesis of lithiophilic oxides modified 3D porous mesh skeleton for high-stability Li-metal anode
    Authors: Sun, C., Gao, L., Yang, Y., Zhang, D., Bian, X.
    Year: 2023
    Citations: 11
  9. Publication: Amorphous TiO2-x modified Sb nanowires as a high-performance sodium-ion battery anode
    Authors: Gao, L., Lu, D., Yang, Y., Liu, S., Bian, X.
    Year: 2022
    Citations: 8
  10. Publication: Morphology-tunable synthesis of CuO modified with Cu-Zn/Cu-Sn intermetallic compounds as high-performance anode for lithium-ion batteries
    Authors: Zhang, D., Wang, C., Yang, Y., Sun, C., Bian, X.
    Year: 2022
    Citations: 11

 

 

Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006