Yasmin Shabeer | Chemical Engineering | Best Researcher Award

Ms. Yasmin Shabeer | Chemical Engineering | Best Researcher Award

University of Waterloo, Canada

Yasmin Shabeer is a highly motivated Ph.D. candidate in Chemical Engineering with a specialization in Electrochemical Engineering and Battery Systems, currently pursuing her doctorate at the University of Waterloo under the supervision of Dr. Michael Fowler. She holds a B.Tech in Rubber and Plastics Technology from Anna University, India, and has gained extensive research experience in high-energy-density aluminum-air batteries, lithium-ion thermal modeling, metal-air battery comparative studies, and corrosion analysis of Al6061 electrodes. Her research focuses on integrating experimental electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), distribution of relaxation time (DRT) analysis, linear sweep voltammetry (LSV), and cyclic voltammetry (CV), with advanced data-driven approaches including machine learning models for predicting polarization behavior, corrosion current density, and impedance parameters, alongside life cycle assessment (LCA) for environmental sustainability. She has contributed to the design, prototyping, and optimization of battery systems through systematic experimental studies, collaboration with industry partners like AlumaPower and Stellantis, and applied modeling using MATLAB, COMSOL, Python, and simulation software for design-of-experiments (DoE). Yasmin has authored five peer-reviewed publications with 111 citations and an h-index of 4, reflecting the impact of her work on the field of sustainable energy storage. She has been recognized with awards including the Bhattacharyya Award, Mitacs Graduate Fellowship, Devani Charities Graduate Award, and International Master’s Award of Excellence, highlighting her academic excellence, innovation, and leadership potential. Beyond research, she has served as a teaching assistant, laboratory manager, Mitacs mentor, and graduate student leader, demonstrating her commitment to education, mentorship, and community engagement. With expertise spanning electrochemical systems, material characterization, battery optimization, AI-assisted modeling, and sustainability analysis, Yasmin combines scientific rigor, interdisciplinary collaboration, and practical innovation, positioning her as a promising future leader in clean energy technology, electrochemical research, and sustainable battery solutions.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

  1. Mevawalla, A., Shabeer, Y., Tran, M. K., Panchal, S., Fowler, M., & Fraser, R. (2022). Thermal modelling utilizing multiple experimentally measurable parameters. Batteries, 8(10), 147

  2. Madani, S. S., Shabeer, Y., Allard, F., Fowler, M., Ziebert, C., Wang, Z., & Panchal, S. (2025). A comprehensive review on lithium-ion battery lifetime prediction and aging mechanism analysis. Batteries, 11(4), 127.

  3. Shabeer, Y., Madani, S. S., Panchal, S., Mousavi, M., & Fowler, M. (2025). Different metal–air batteries as range extenders for the electric vehicle market: A comparative study. Batteries, 11(1), 35.

  4. Madani, S. S., Allard, F., Shabeer, Y., Fowler, M., Panchal, S., & Ziebert, C. (2025). Exploring the aging dynamics of lithium-ion batteries for enhanced lifespan understanding. Journal of Physics: Conference Series, 2968(1), 01201.

  5. Shabeer, Y., Madani, S. S., Panchal, S., & Fowler, M. (2025). Performance optimization of high energy density aluminum–air batteries: Effects of operational parameters and electrolyte composition. Future Batteries, 100082.

Yasmin Shabeer’s work advances the development of high-performance, sustainable energy storage systems by integrating experimental electrochemistry, machine learning, and life cycle assessment. Her research directly contributes to cleaner energy technologies, efficient battery design for electric vehicles, and environmentally responsible industrial applications, driving innovation in both science and industry.

Tian Wang | Chemical Engineering | Best Researcher Award

Dr. Tian Wang | Chemical Engineering | Best Researcher Award

Kyung Hee University, China

Dr. Tian Wang is a distinguished researcher in the field of electrochemistry and energy storage materials, holding a Ph.D. in Electronics and Information Convergence Engineering from Kyung Hee University, Korea, with prior M.Sc. and B.Sc. degrees in Materials Physics, Chemistry, and Materials Chemistry from Shaanxi University of Science and Technology, China. He has focused his research on optimizing the Zn electrode/electrolyte interface in aqueous Zn metal batteries, revealing critical effects of interfacial mass and electron transfer on Zn electrochemistry, and successfully developing long-term stable Zn anodes and high-energy quasi-solid-state anode-free Zn metal batteries for potential wearable device applications. His earlier work includes research on MoO2, MoS2, and biomass carbon as anode materials for Li/Na-ion batteries, demonstrating his broad expertise in advanced energy materials. Dr. Wang possesses strong research skills in materials synthesis, electrochemical characterization, interface engineering, nanodevice fabrication, and performance evaluation, complemented by capabilities in experimental design and problem-solving for energy storage applications. He has published 32 documents with over 1,017 citations and holds an h-index of 16, reflecting the high impact of his work in the scientific community. His awards and honors, though not detailed here, recognize his innovation and contributions to energy materials research, highlighting both national and international recognition. Throughout his professional experience, Dr. Wang has demonstrated excellence in leading research projects, collaborating with interdisciplinary teams, mentoring students, and contributing to advancements in battery technologies. In conclusion, Dr. Wang’s combination of theoretical knowledge, experimental expertise, and practical innovation positions him as a leading researcher in the field of energy storage, with significant potential to drive breakthroughs in sustainable energy solutions, wearable electronics, and next-generation battery technologies, reinforcing his role as a visionary contributor to global scientific and technological advancement.

Profiles: Scopus | ORCID

Featured Publications

Wang, T., Tang, S., Xiao, Y., Xiang, W., & Yu, J. S. (2025). Strategies of interfacial chemistry manipulated zinc deposition towards high-energy and long-cycle-life aqueous anode-free zinc metal batteries. Energy & Environmental Science.

Wang, T., Xiao, Y., Xiang, W., Tang, S., & Yu, J. S. (2025, August). Stable zinc electrode/separator interface enabled by phthalocyanine-modified separator for advanced zinc metal batteries. Small.

Wang, T., Xiao, Y., Tang, S., Xiang, W., & Yu, J. S. (2025, June). Unlocking quasi-solid-state anode-free zinc metal batteries through robust bilayer interphase engineering. Advanced Energy Materials.

Wang, T., & Yu, J. S. (2024). Stabilized lithium metal nanocomposite anode for high-performance lithium–sulfur batteries. In Engineering Materials (pp. 1–??). Springer.

Wang, T., Xu, L., Xiang, W., Tang, S., Xiao, Y., & Yu, J. S. (2024, December). Interfacial lattice strain-induced vacancy evolution facilitating highly reversible dendrite-free zinc metal anodes. Advanced Energy Materials.

Dr. Tian Wang’s work on optimizing Zn metal batteries and developing high-energy, stable anode-free systems advances sustainable energy storage technologies, enabling safer and more efficient batteries for wearable devices and grid applications, thereby contributing to global energy innovation, environmental sustainability, and next-generation electronics.

Vijyendra Kumar | Chemical Engineering | Best Researcher Award

Dr. Vijyendra Kumar | Chemical Engineering | Best Researcher Award

Raipur Institute Of Technology Raipur, India

Dr. Vijyendra Kumar is a distinguished researcher and academic leader in Chemical and Environmental Engineering, currently serving as HOD & Associate Professor at RIT Raipur, with extensive experience in wastewater treatment, heterogeneous Fenton catalysts, process intensification, and sustainable environmental technologies. He earned his Ph.D. in Chemical Engineering from NIT Raipur in 2019, focusing on the application and reuse of heterogeneous Fenton catalysts for industrial and synthetic wastewater treatment under the guidance of Dr. P. Ghosh. Dr. Kumar also holds an M.Tech in Environmental Chemical Engineering (CPI 8.64) and a B.E. in Chemical Engineering (CPI 7.41) from RITEE, Raipur. His professional journey spans over a decade and includes roles as Postdoctoral Research Associate at IIT Guwahati, Temporary Faculty at NIT Raipur, Project Engineer at PLIPL Raipur, Senior and Junior Research Fellow at NIT Raipur, and Assistant Professor at RITEE Raipur, where he has contributed significantly to research, teaching, mentorship, and departmental leadership. Dr. Kumar’s research interests focus on advanced oxidation processes, wastewater remediation, catalyst development, green energy materials, and sustainable chemical processes, supported by strong research skills in gas chromatography, UV-Vis spectroscopy, BET analysis, CHNS analysis, TOC analysis, and photochemical reactor operations. He has authored over 50 publications with 1,451 citations and an h-index of 22, including articles in high-impact Scopus and SCI-indexed journals, and 12 book chapters with renowned publishers such as Elsevier and De Gruyter. He has actively participated in national and international conferences, faculty development programs, and professional communities, holding memberships

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

  1. Kumar, V., Mohapatra, T., Dharmadhikari, S., & Ghosh, P. (2020). A review paper on heterogeneous Fenton catalyst: Types of preparation, modification techniques, factors affecting the synthesis, characterization, and application in the … Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 1–34.

  2. Vijyendra Kumar, P. G., Pandey, N., & Dharmadhikari, S. (2019). Degradation of mixed dye via heterogeneous Fenton process: Studies of calcination, toxicity evaluation and kinetics. Water Environment Research, 91(24), 1–12.

  3. Mohapatra, T., Kumar, V., Sharma, M., & Ghosh, P. (2021). Hybrid Fenton oxidation processes with packed bed or fluidized bed reactor for the treatment of organic pollutants in wastewater: A review. Environmental Engineering Science, 38(6), 443–457.

  4. Suraj, P. G., Vijyendra Kumar, P., & Thakur, C. K. (2019). Taguchi optimization of COD removal by heterogeneous Fenton process using copper ferro spinel catalyst in a fixed bed reactor: RTD, kinetic and thermodynamic study. Journal of Environmental Chemical Engineering, 7(6), 103488.

  5. Sahu, G., & Kumar, V. (2021). The toxic effect of fluoride and arsenic on behaviour and morphology of catfish (Clarias batrachus). Nature Environment and Pollution Technology, 20(1), 371–375.

 

Xuegang Liu | Chemical Engineering | Best Researcher Award

Prof. Xuegang Liu | Chemical Engineering | Best Researcher Award

Professor from Tsinghua Univerisity, China

Dr. Xuegang Liu is a highly accomplished research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. His extensive expertise focuses on nuclear chemical engineering, nuclear fuel cycle strategies, radioactive waste management, and nuclear decommissioning technologies. Over the years, Dr. Liu has contributed significantly to advancing nuclear fuel cycle policy and technical applications, making substantial impacts in the nuclear energy and safety sectors. He is also an influential educator, actively teaching graduate-level courses such as “Nuclear Fuel Cycle Strategy” and “Nuclear Chemical Engineering” at Tsinghua University. Dr. Liu balances his academic roles with his responsibilities as a project manager, overseeing major scientific research and engineering initiatives related to nuclear decommissioning. His research not only addresses scientific challenges but also integrates policy-making, aligning technical innovation with sustainable nuclear energy strategies. Dr. Liu’s career reflects a harmonious blend of research, education, and practical applications, positioning him as a leading figure in nuclear science. His commitment to both the development of innovative nuclear technologies and the training of future experts underscores his multi-dimensional contributions to the field.

Professional Profile

Education

Dr. Xuegang Liu earned his doctoral degree, specializing in nuclear-related disciplines, which laid the foundation for his subsequent achievements in nuclear fuel cycle research and nuclear chemical engineering. Though specific details about his undergraduate and postgraduate institutions are not explicitly provided, it is evident that his academic training has been of the highest standard, aligning with his current prestigious role at Tsinghua University. His education has been deeply rooted in nuclear energy systems, chemical processing, and radioactive waste management, enabling him to develop expertise that spans both theoretical knowledge and applied research. Dr. Liu’s educational journey is complemented by his active teaching role at Tsinghua University, where he shares his specialized knowledge with graduate students through courses focusing on nuclear fuel cycle strategies and nuclear chemical engineering. This dual contribution as both a scholar and an educator reflects the solid academic foundation upon which his career is built. His ability to translate complex nuclear science concepts into applicable research and policies demonstrates the strength and depth of his educational background.

Professional Experience

Dr. Xuegang Liu is currently a research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. Throughout his career, he has taken on multiple roles that integrate research, education, and engineering project management. Dr. Liu has been a key figure in managing scientific and technological initiatives, particularly in the area of nuclear decommissioning. His leadership in overseeing complex research projects and engineering applications related to nuclear chemical processing and radioactive waste management highlights his ability to bridge scientific innovation with real-world solutions. Apart from his research responsibilities, Dr. Liu has made significant contributions as an educator by teaching graduate-level courses at Tsinghua University, nurturing the next generation of nuclear scientists and engineers. His role extends to guiding doctoral students and managing interdisciplinary research collaborations within the nuclear energy field. His professional experience showcases a balance between advancing scientific research and contributing to the sustainable management of nuclear energy systems, reinforcing his reputation as an expert in the nuclear sector.

Research Interest

Dr. Xuegang Liu’s research interests are strongly centered around the advancement of nuclear chemical engineering, with a special focus on the nuclear fuel cycle, radioactive waste treatment, nuclear reprocessing, and nuclear decommissioning technologies. His work seeks to provide both innovative scientific solutions and sustainable strategies for the long-term management of nuclear materials. Dr. Liu is particularly engaged in developing fuel cycle strategies and nuclear policy frameworks that contribute to national and international nuclear safety and sustainability. His interest in nuclear waste management is critical to minimizing the environmental impact of nuclear energy, while his focus on decommissioning technologies addresses the safe dismantling of obsolete nuclear facilities. Additionally, Dr. Liu is keenly involved in research concerning the separation of radioactive nuclides, which plays an essential role in both waste reduction and fuel recovery processes. His broad research interests demonstrate a commitment to advancing nuclear technology while ensuring responsible and safe nuclear energy practices.

Research Skills

Dr. Xuegang Liu possesses a diverse set of advanced research skills that make him a highly capable scientist in the nuclear energy field. His expertise includes nuclear chemical process design, radioactive waste treatment technologies, fuel cycle strategy development, and nuclear decommissioning management. He is highly skilled in managing large-scale, interdisciplinary research projects that combine nuclear engineering, chemical engineering, and environmental safety considerations. Dr. Liu’s proficiency extends to radioactive nuclide separation technologies, which are crucial for waste processing and fuel recycling in nuclear reactors. He also demonstrates significant ability in policy-oriented research, enabling him to align his technical solutions with national energy strategies and regulatory frameworks. Additionally, his research skills encompass experimental design, project supervision, and teaching complex nuclear engineering concepts to graduate students. His technical versatility and leadership in both research and practical engineering applications position him as a well-rounded researcher with comprehensive nuclear science capabilities.

Awards and Honors

Although specific awards and honors are not listed, Dr. Xuegang Liu’s position as a research professor at Tsinghua University and his leadership in multiple high-impact nuclear research projects strongly imply recognition within his field. His entrusted responsibility to manage national-level nuclear decommissioning initiatives and advanced research projects indicates significant professional respect and acknowledgment from academic, governmental, and engineering communities. His continuous involvement in both teaching and critical nuclear policy research also suggests he is regarded as a key contributor to the future of China’s nuclear energy strategy. It would be reasonable to infer that his achievements and contributions have likely earned him accolades, commendations, or leadership positions within the nuclear research community. As an educator, his influence on student development and his commitment to advancing nuclear safety and sustainability further highlight his professional stature. Further details regarding specific awards could enrich this section and solidify his recognition at both national and international levels.

Conclusion

Dr. Xuegang Liu is an exemplary nuclear scientist whose contributions to nuclear chemical engineering, radioactive waste management, nuclear fuel cycle strategy, and nuclear decommissioning have had a profound impact on the advancement of nuclear technology and sustainability. His dual commitment to cutting-edge research and higher education has positioned him as a valuable asset in both academic and practical nuclear sectors. His work at Tsinghua University, particularly within the Institute of Nuclear and New Energy Technology, reflects his ability to lead complex research projects, educate future experts, and contribute to national nuclear strategies. Dr. Liu’s career demonstrates a rare blend of scientific depth, technical proficiency, and strategic vision, making him a highly deserving candidate for the Best Researcher Award. With further international collaborations, an expanded global publication presence, and continued leadership in nuclear innovation, Dr. Liu has the potential to elevate his influence to an even greater level. His dedication to improving nuclear safety, sustainability, and education will continue to benefit the global nuclear community.

Publications Top Notes

  1. Micro-oxidation calcination: transforming nuclear graphite into high-performance anode materials for lithium-ion batteries

    • Authors: Naizhe Zhang, Meng Li, Shuaiwei Wang, Zhen Shang, Xuegang Liu

    • Year: 2025

  2. 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements

    • Authors: Shangzhen Zhu, Jianzhu Cao, Sheng Fang, Xinwen Dong, Wenqian Li, Xuegang Liu, Qiange He, Xinghai Wang

    • Year: 2022

  3. Summary of Tritium Source Term Study in 10 MW High Temperature Gas-Cooled Test Reactor

    • Authors: Xuegang Liu

    • Year: 2020

  4. A Comprehensive Study of the 14C Source Term in the 10 MW High-Temperature Gas-Cooled Reactor

    • Authors: Xuegang Liu

    • Year: 2019

  5. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction

    • Authors: Xuegang Liu

    • Year: 2019

  6. Measurement of oxygen reduction/evolution kinetics enhanced (La,Sr)CoO3/(La,Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs

    • Authors: Xuegang Liu

    • Year: 2019

  7. A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant

    • Authors: Xuegang Liu

    • Year: 2019

  8. Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

    • Authors: Xuegang Liu

    • Year: 2019

  9. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3

    • Authors: Xuegang Liu

    • Year: 2019

  10. A comprehensive study on source terms in irradiated graphite spheres of HTR-10

  • Authors: Xuegang Liu

  • Year: 2018

Shiqun Wu | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Shiqun Wu | Chemical Engineering | Best Researcher Award

Associate Professor from East China University of Science and Technology, China

Dr. Shiqun Wu is an accomplished Associate Professor and Master’s Supervisor at the School of Chemistry and Molecular Engineering, East China University of Science and Technology (ECUST). He is a dynamic researcher specializing in photocatalytic materials, with a sharp focus on developing sustainable solutions for energy conversion and environmental remediation. His scientific pursuits contribute significantly to China’s national objectives in carbon neutrality and clean energy innovation. Dr. Wu has authored over 20 SCI-indexed research articles in prestigious journals such as JACS, Angewandte Chemie, Advanced Materials, and Chem, reflecting both the quality and impact of his work. His extensive research has led to over ten patent filings, with two granted, underscoring his efforts to bridge fundamental science with practical application. He has also secured several competitive national and regional grants and actively mentors students, leading them to win top innovation awards. With active roles in editorial boards and professional societies, Dr. Wu continues to shape the research landscape in renewable energy and catalysis. His career reflects a balanced integration of academic excellence, research leadership, and societal relevance, positioning him as an outstanding candidate for recognitions such as the Best Researcher Award.

Professional Profile

Education

Dr. Shiqun Wu has pursued his entire academic career at East China University of Science and Technology (ECUST), a leading institution in applied sciences in China. He began with a Bachelor of Science degree in Applied Chemistry from ECUST, graduating in 2016. During his undergraduate studies, he developed a strong foundation in chemical principles and laboratory techniques, which laid the groundwork for his research trajectory. Following this, he continued at ECUST to pursue a Ph.D. in Applied Chemistry, awarded in 2021 under the mentorship of Professor Jinlong Zhang, a foreign academician of the European Academy of Sciences. His doctoral research focused on the atomic-level design of photocatalytic materials for energy and environmental applications, establishing him as a capable and innovative researcher early in his career. Dr. Wu’s academic training provided him with deep theoretical knowledge and practical expertise in catalysis, nanomaterials, and photochemistry, all essential areas for addressing energy conversion challenges. His educational journey reflects a seamless and accelerated transition from student to scientist, and now to a university-level educator and mentor, equipping him with the pedagogical and technical capabilities to guide the next generation of chemists.

Professional Experience

Dr. Wu’s professional experience has been entirely centered at East China University of Science and Technology, allowing him to develop within a cohesive academic and research environment. After completing his Ph.D. in 2021, he was appointed as a Postdoctoral Fellow at ECUST, where he continued his research under the guidance of Professor Jinlong Zhang. During this three-year postdoctoral phase, he led multiple high-impact research projects, including those funded by the National Natural Science Foundation of China and the China Postdoctoral Science Foundation. His efforts resulted in significant contributions to the field of photocatalysis and material science. In June 2024, Dr. Wu was promoted to the position of Associate Professor in the School of Chemistry and Molecular Engineering. In this role, he not only continues his research but also supervises master’s students, mentors undergraduates, and engages in curriculum development. His progression from student to faculty member within the same institution signifies both loyalty and academic maturity. His career reflects strong leadership, project management, and collaboration with peers and students alike. The continuity and depth of his institutional experience also empower him to influence departmental research direction, making him a valuable asset to ECUST’s academic community.

Research Interests

Dr. Shiqun Wu’s research is primarily focused on the development and engineering of photocatalytic materials aimed at energy conversion and environmental remediation. His work plays a critical role in addressing the global challenges of carbon emissions and sustainable energy. Specifically, his research targets the green transformation of inert molecules such as methane (CH₄), carbon dioxide (CO₂), and nitrogen (N₂), aligning with national and international goals of carbon peaking and neutrality. He investigates atomic-level control of catalyst surface active sites and explores the underlying mechanisms of molecular activation, aiming to optimize efficiency and selectivity in photocatalytic processes. Dr. Wu is especially interested in single-atom catalysts, spin polarization effects, and structure-performance relationships. His interdisciplinary approach blends inorganic chemistry, material science, surface chemistry, and reaction engineering. Through precise material design and performance evaluation, he seeks to advance new-generation photocatalysts with superior conversion efficiencies under solar or visible light. His work contributes to cleaner chemical processes and greener technologies, reinforcing his status as a high-impact researcher. These interests not only contribute to the advancement of academic science but also offer scalable and practical solutions for industrial environmental challenges.

Research Skills

Dr. Wu possesses an advanced skill set that spans synthesis, characterization, and performance evaluation of nanostructured photocatalysts. His expertise includes atomic-level engineering of catalyst surfaces, single-atom dispersion techniques, and the controlled doping of semiconducting materials for enhanced light-driven reactions. He is proficient in a range of experimental methods, including solid-phase synthesis, hydrothermal methods, and sol-gel techniques for preparing oxide-based nanomaterials. Dr. Wu also excels in using advanced characterization tools such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR) to probe the structural and chemical properties of catalysts. Furthermore, he is skilled in photochemical and photoelectrochemical measurement techniques to assess the catalytic performance, quantum efficiencies, and charge transport properties of photocatalysts. His ability to integrate computational insights with experimental data enhances his understanding of catalytic mechanisms. Dr. Wu’s interdisciplinary approach—spanning materials design, reaction engineering, and mechanism analysis—equips him to develop practical and scalable solutions. His research capabilities are further enriched by experience in leading research teams, writing competitive grant proposals, mentoring graduate students, and disseminating findings through high-impact publications and patents.

Awards and Honors

Dr. Shiqun Wu has received a wide range of prestigious awards and honors throughout his academic and research career, recognizing both his scientific excellence and leadership. He has been the recipient of the Shanghai “Rising Star” Talent Program, the Postdoctoral Innovative Talent Support Program, and the Shanghai “Super Postdoc” Incentive Program. His successful applications to the National Natural Science Foundation of China and the China Postdoctoral Science Foundation reflect his ability to secure highly competitive research funding. Dr. Wu has also demonstrated excellence in mentorship, serving as the first advisor to student teams that won Gold and Bronze Awards at the China International University Student Innovation Competition and the China “Internet+” Innovation and Entrepreneurship Competition. He was a National Finalist in the China Postdoctoral Innovation and Entrepreneurship Competition and was named an Excellent Postdoctoral Researcher in Shanghai in 2021. During his Ph.D., he received the National Graduate Scholarship, the Zhang Jiang Excellent Ph.D. Fellowship, and the third prize in the ACS Graduate Research Achievement Contest. These accolades reflect not only his scientific merit but also his commitment to educational and societal advancement through innovation and collaboration.

Conclusion

Dr. Shiqun Wu represents a new generation of chemists who integrate deep theoretical understanding with experimental rigor to address some of the most pressing challenges in energy and environmental science. His work in photocatalytic materials demonstrates both creativity and precision, aiming to transform inert molecules into valuable chemicals using sustainable, light-driven processes. With over 20 high-impact publications and more than ten patent filings, he has established a strong research profile at an early stage of his career. His contributions extend beyond the lab through effective mentorship, academic leadership, and successful project management. While his international visibility could benefit from further global collaboration and independent project branding, his current trajectory is highly promising. Dr. Wu’s interdisciplinary skills, strategic research focus, and dedication to innovation position him as an outstanding candidate for the Best Researcher Award. His work not only contributes to the scientific community but also aligns with broader environmental and societal goals, reflecting both intellectual merit and practical relevance. As he continues to grow in his academic role, Dr. Wu is expected to make transformative contributions to the field of green chemistry and sustainable catalysis.

Publications Top Notes

  1. Core–Shell MIL-125(Ti)@In2S3 S-Scheme Heterojunction for Boosting CO2 Photoreduction
    Authors: Mazhar Khan, Zeeshan Akmal, Muhammad Tayyab, Seemal Mansoor, Dongni Liu, Junwen Ding, Ziwei Ye, Jinlong Zhang, Shiqun Wu, Lingzhi Wang
    Journal: ACS Applied Materials & Interfaces
    Year: 2025 (May 16)
    DOI: 10.1021/acsami.5c03817

  2. Regulating Atomically‐Precise Pt Sites for Boosting Light‐Driven Dry Reforming of Methane
    Authors: Chengxuan He, Qixin Li, Zhicheng Ye, Lijie Wang, Yalin Gong, Songting Li, Jiaxin Wu, Zhaojun Lu, Shiqun Wu, Jinlong Zhang
    Journal: Angewandte Chemie
    Year: 2024 (Nov 11)
    DOI: 10.1002/ange.202412308

  3. Optimizing Reaction Kinetics and Thermodynamics for Photocatalytic CO2 Reduction through Spin Polarization Manipulation
    Authors: Mingyang Li, Shiqun Wu, Dongni Liu, Zhicheng Ye, Chengxuan He, Jinlong Wang, Xiaoyi Gu, Zehan Zhang, Huizi Li, Jinlong Zhang
    Journal: ACS Catalysis
    Year: 2024 (Sept 20)
    DOI: 10.1021/acscatal.4c03802

  4. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO2 Methanation
    Authors: Mingyang Li, Shiqun Wu, Dongni Liu, Zhicheng Ye, Lijie Wang, Miao Kan, Ziwei Ye, Mazhar Khan, Jinlong Zhang
    Journal: Journal of the American Chemical Society
    Year: 2024 (June 5)
    DOI: 10.1021/jacs.4c04264

  5. Single‐Atom Alloys Materials for CO2 and CH4 Catalytic Conversion
    Authors: Chengxuan He, Yalin Gong, Songting Li, Jiaxin Wu, Zhaojun Lu, Qixin Li, Lingzhi Wang, Shiqun Wu, Jinlong Zhang
    Journal: Advanced Materials
    Year: 2024 (April)
    DOI: 10.1002/adma.202311628

  6. Boosting CO production from visible-light CO2 photoreduction via defects-induced electronic-structure tuning and reaction-energy optimization on ultrathin carbon nitride
    Authors: J. Li, C. He, J. Wang, X. Gu, Z. Zhang, H. Li, M. Li, L. Wang, S. Wu, J. Zhang
    Journal: Green Chemistry
    Year: 2023
    DOI: 10.1039/d3gc02371k

  7. Combing Hollow Shell Structure and Z-Scheme Heterojunction Construction for Promoting CO2 Photoreduction
    Authors: Z. Deng, J. Cao, S. Hu, S. Wu, M. Xing, J. Zhang
    Journal: Journal of Physical Chemistry C
    Year: 2023
    DOI: 10.1021/acs.jpcc.3c01375

 

Behnam Rezvani | Chemical Engineering | Best Researcher Award

Mr. Behnam Rezvani | Chemical Engineering | Best Researcher Award

Laboratory Operator from University of Tehran, Iran 

Behnam (Benjamin) Rezvani is a promising chemical engineer whose academic and research credentials place him among the top emerging scientists in the field of sustainable energy and environmental engineering. With a strong foundation in chemical engineering from Hakim Sabzevari University and advanced specialization in separation processes from the University of Tehran—Iran’s top-ranked university—Rezvani has built an interdisciplinary research portfolio that integrates bio-oil production, biodiesel synthesis, and wastewater treatment technologies. His ability to blend experimental proficiency with software modeling and data-driven methods such as machine learning demonstrates his versatility and innovation in tackling global environmental challenges. He has authored multiple peer-reviewed articles in high-impact journals and presented research at international congresses. His projects span from catalyst optimization to advanced adsorption techniques using biochar, emphasizing his commitment to sustainable and scalable chemical engineering solutions. Beyond research, he has served as a teaching assistant in various laboratory courses and holds editorial and review positions in reputable scientific platforms. With awards from national competitions and a growing number of publications, Rezvani stands out as a dynamic contributor to scientific advancement. His passion for clean energy and sustainable technologies marks him as a strong contender for the Best Researcher Award.

Professional Profile

Education

Behnam Rezvani’s educational journey reflects a progressive commitment to excellence in chemical engineering, particularly in areas tied to sustainability, green chemistry, and process optimization. He earned his Bachelor of Science degree in Chemical Engineering from Hakim Sabzevari University, where he developed a solid foundation in core chemical engineering principles. He then pursued his Master of Science degree in Chemical Engineering with a specialization in Separation Processes at the prestigious University of Tehran, Iran’s leading academic institution. During his graduate studies, he maintained a commendable GPA of 3.65/4.00 and undertook significant research, including his thesis on the removal of Alizarine Red S from wastewater using a biochar composite derived from rice husk and sewage sludge pyrolysis. His advanced education involved both experimental and computational modeling, allowing him to blend theoretical knowledge with practical skills. In addition to core engineering courses, he engaged in interdisciplinary projects incorporating design of experiments, process simulation, and environmental remediation. His language proficiency, demonstrated by an IELTS score of 7, further qualifies him for international collaboration and academic endeavors. This robust academic background, enriched by hands-on lab work and innovative research, has positioned Rezvani as a capable and globally aware chemical engineering researcher.

Professional Experience

Behnam Rezvani has amassed a diverse range of professional experiences that reflect his technical acumen, interdisciplinary expertise, and proactive engagement with industry challenges. He served as a teaching assistant at the University of Tehran in courses such as Thermodynamics, Heat Transfer Laboratory, Processes Control Laboratory, and Unit Operations Laboratory. These roles underscore his hands-on proficiency and teaching capabilities in key engineering disciplines. Additionally, Rezvani has contributed to research and development initiatives across several companies, including AMPER INNOVATION Center, Pishgam Rooyesh Espadana Company, Payafan Yakhteh Alborz Company, and Arfa Iron and Steel Company. His work has spanned a variety of applied domains, from interface thermal materials and fertilizer development to wastewater treatment system design for industrial facilities. He has also served as a laboratory specialist at Gemizdar Petrorefinery, reinforcing his practical skills in a petrochemical setting. His experience with simulation software such as HYSYS, MATLAB, and Design-Expert, alongside programming in Python and C++, has enabled him to lead data-driven and computational modeling projects. Whether designing biodiesel production processes, simulating complex chemical reactions, or developing machine learning models for medical applications, Rezvani consistently demonstrates an ability to integrate scientific innovation with real-world solutions.

Research Interests

Behnam Rezvani’s research interests center around sustainable energy technologies, environmental remediation, and advanced chemical process engineering. His academic and experimental focus lies in bio-oil and biodiesel production through pyrolysis and transesterification, particularly using agricultural and industrial waste biomass. He is keenly interested in developing innovative adsorbents from biochar and activated carbon for water treatment and pollution mitigation, employing chemical modifications and modern pyrolysis techniques to enhance efficiency. His research also explores catalytic systems for oxidation processes and eco-friendly indigo dye synthesis, indicating a broader commitment to green chemistry. Rezvani’s interest in adsorption and biosorption extends to electrospun bio-nanocomposites, such as chitosan/Chlorella vulgaris, for heavy metal removal from wastewater. Additionally, he is invested in techno-economic analyses and design of experiments (DOE), aiming to bridge laboratory innovation with industrial scalability. His emerging work in machine learning, particularly in predicting medical outcomes from biochemical data, adds a computational edge to his experimental profile. Through these multidisciplinary interests, Rezvani seeks to develop sustainable, cost-effective, and technologically advanced solutions for global environmental challenges. His ongoing research contributions not only address critical environmental concerns but also aim to advance circular economy principles and resource recovery from waste materials.

Research Skills

Behnam Rezvani possesses a wide range of research skills that make him a well-rounded and capable chemical engineering researcher. His expertise spans both experimental and computational methodologies, allowing him to bridge theory and practice effectively. In the laboratory, he has conducted extensive work on pyrolysis for bio-oil and biochar production, biodiesel synthesis from halophytic plants, catalyst development, and wastewater treatment through biosorption and advanced adsorption methods. He is proficient in various analytical and fabrication techniques, including electrospinning, FTIR spectroscopy, and SEM imaging. Rezvani is also skilled in using MATLAB for modeling partial differential equations and performing advanced statistical analyses via Minitab and Design-Expert for experimental optimization. His software skills include HYSYS for chemical process simulations, ChemDraw for chemical structure design, and Python for machine learning applications, achieving high-accuracy predictive models in healthcare analytics. Additionally, he has conducted techno-economic assessments and scaling feasibility studies to ensure practical applicability of his research. His strong technical communication is evidenced by published journal articles, conference presentations, and experience as an editor and reviewer for scientific journals. These combined skills equip him to tackle complex, interdisciplinary problems in chemical engineering, particularly in the pursuit of cleaner energy, efficient resource recovery, and sustainable industrial processes.

Awards and Honors

Behnam Rezvani has earned numerous distinctions that highlight his scientific excellence, innovation, and leadership in chemical engineering. His notable achievements include securing 1st place in the prestigious Rah Neshan National Competition in Iran by proposing a novel indigo synthesis method using a microflow reactor—an innovative take on the traditional Heumann & Pfleger process. He also placed 3rd in the Rahisho National Competition for a pioneering wastewater treatment and reuse proposal tailored to steel manufacturing processes. Rezvani’s editorial contributions further exemplify his leadership; he served as an editor and editorial board member of the student-led ‘Farayand’ scientific journal for over two years, promoting scientific literacy in chemical engineering. His academic engagement extended internationally through his role as a peer reviewer for the International Journal of Biological Macromolecules (IF: 7.7), demonstrating his analytical acumen and contribution to global research. Additionally, his published research in high-impact journals like Bioresource Technology Reports, Canadian Journal of Chemical Engineering, and Journal of the Energy Institute has garnered professional recognition. With several accepted conference papers, under-review articles, and two registered inventions, Rezvani’s award record showcases his innovation, productivity, and impact on sustainable technologies and environmental remediation.

Conclusion

In conclusion, Behnam Rezvani exemplifies the qualities of a dedicated, innovative, and impactful researcher. With a multidisciplinary approach rooted in chemical engineering and sustainability, he has consistently demonstrated the ability to convert complex scientific ideas into practical and scalable solutions. His contributions to bio-oil and biodiesel production, waste-to-resource conversion, and water treatment technologies address some of the most urgent environmental challenges of our time. He skillfully integrates experimental research with computational modeling, simulation, and data analysis, embodying a modern and systems-thinking perspective. His achievements, including national awards, editorial roles, and international publications, reflect his commitment to excellence and advancement in his field. Furthermore, his engagement in teaching, industry collaboration, and ongoing innovation—through registered inventions and cutting-edge research—underscores his leadership potential. Behnam Rezvani’s well-rounded profile, global mindset, and dedication to sustainable development make him an outstanding candidate for the Best Researcher Award. With continued support and recognition, he is poised to make lasting contributions to science, industry, and society at large.

Publications Top Notes

  1. Title: Enhanced bio-oil production from Co-pyrolysis of cotton seed and polystyrene waste; fuel upgrading by metal-doped activated carbon catalysts
    Authors: Mahshid Vaghar Mousavi, Behnam Rezvani, Ahmad Hallajisani
    Year: 2025

  2. Title: Super-effective biochar adsorbents from Co-pyrolysis of rice husk and sewage sludge: Adsorption performance, advanced regeneration, and economic analysis
    Authors: Behnam Rezvani, Ahmad Hallajisani, Omid Tavakoli
    Year: 2025

  3. Title: Novel techniques in bio‐oil production through catalytic pyrolysis of waste biomass: Effective parameters, innovations, and techno‐economic analysis
    Authors: Behnam Rezvani
    Year: 2025

  4. Title: Canola, Camelina, and Linseed Biodiesel: A Sustainable Pathway for Renewable Energy
    Authors: Behnam Rezvani
    Year: 2024

  5. Title: Exploring the Potential of Biosorption By Algae: A Sustainable Solution for Water Treatment
    Authors: Behnam Rezvani
    Year: 2024

  6. Title: Mercury Removal by Biochar and Activated Carbon: An Effective Approach for Environmental Remediation
    Authors: Behnam Rezvani
    Year: 2024

  7. Title: Safflower, Moringa, and Salicornia Biodiesel: A Comparative Analysis of Sustainable Fuel Alternatives
    Authors: Behnam Rezvani
    Year: 2024

 

 

Chithra K | Chemical Engineering | Best Researcher Award

Dr. Chithra K | Chemical Engineering | Best Researcher Award

Professor at Anna University, India

Dr. K. Chithra is a distinguished professor in the Department of Chemical Engineering at Anna University, Chennai, with a robust background in both academia and industry. With over 25 years of experience, her career spans across teaching, research, and consultancy, contributing to several high-impact projects in the field of environmental engineering. Her research focuses primarily on wastewater treatment, nanotechnology, environmental sustainability, and pollution control. She has authored numerous publications in leading journals and co-investigated projects with prominent institutions like ISRO. Dr. Chithra is also involved in industry collaborations for pollution studies and process optimization, making her work relevant to both scientific and industrial communities. She exemplifies a commitment to blending academic knowledge with practical applications to address pressing environmental challenges.

Professional Profile

Education:

Dr. K. Chithra completed her B.Tech, M.Tech, and Ph.D. in Chemical Engineering from A.C. Tech Campus, Anna University, Chennai. Her strong educational background has been the foundation of her career, equipping her with the technical skills and knowledge to excel in both academia and industry. Her education at a renowned institution provided a comprehensive understanding of chemical processes, environmental engineering, and research methodologies. This academic training has enabled her to take on significant research challenges, produce impactful publications, and contribute to the scientific community with notable expertise.

Professional Experience:

Dr. K. Chithra’s professional experience is marked by roles that reflect both leadership and technical expertise. She is currently a professor at Anna University, Chennai, where she has taught and mentored numerous students. Her earlier positions as an associate professor and assistant professor at SRMIST also contributed significantly to her teaching and research profile. In addition to her academic roles, Dr. Chithra served as an Assistant Engineer at the Tamil Nadu Pollution Control Board (TNPCB), where she gained valuable practical experience in environmental management and pollution control. Her professional journey showcases her ability to lead, collaborate, and innovate within both educational and industrial sectors.

Research Interest:

Dr. Chithra’s research interests span a wide range of topics within the chemical engineering and environmental sustainability fields. She is particularly focused on wastewater treatment processes, the application of nanotechnology for environmental remediation, and the development of sustainable materials for pollution control. Her research also explores the use of bio-based materials for heavy metal removal and the design of efficient waste management systems. She has a keen interest in investigating the mechanisms behind chemical reactions, as evidenced by her co-investigation on dielectric spectroscopy with ISRO. Dr. Chithra’s interdisciplinary approach to research has led to innovative solutions for contemporary environmental issues, making her work both relevant and impactful.

Research Skills:

Dr. Chithra possesses a diverse set of research skills that encompass both theoretical and applied aspects of chemical engineering. Her expertise includes experimental design, reaction kinetics, nanomaterials synthesis, environmental modeling, and simulation. She is skilled in advanced analytical techniques, such as dielectric spectroscopy and simulation tools like ANSYS Fluent and Aspen Plus, which she uses for process optimization and environmental impact assessments. Dr. Chithra’s ability to integrate practical problem-solving with cutting-edge scientific techniques has resulted in numerous successful projects and publications. Her strong data analysis, problem-solving, and critical thinking abilities ensure that her research continues to push the boundaries of environmental engineering.

Awards and Honors:

Dr. K. Chithra’s career is marked by several awards and honors for her contributions to chemical engineering and environmental sustainability. Her work in pollution control, wastewater treatment, and the application of nanotechnology in environmental science has been widely recognized in academic circles. Although specific awards are not detailed in the provided information, her consistent publication in high-impact journals and successful industry collaborations stand as a testament to her excellence. Further, her involvement in significant research projects, including those funded by prominent agencies like ISRO, highlights the recognition she has earned within both academic and industrial communities.

Conclusion:

Dr. K. Chithra is a highly accomplished academic and researcher, whose expertise in chemical engineering and environmental sustainability makes her an ideal candidate for the Best Researcher Award. Her strong academic foundation, extensive research experience, and active involvement in both industry and academia have led to impactful contributions to the field. Dr. Chithra’s research on pollution control, wastewater treatment, and nanotechnology has provided innovative solutions to pressing environmental challenges. While she has an impressive body of work, further expansion of international collaborations and patentable innovations would further strengthen her profile. Overall, Dr. Chithra exemplifies the qualities of a leader in research and continues to push the boundaries of her field with a commitment to sustainability and environmental impact.

Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Associate Professor at Abai University, Kazakhstan

Yerbol Tileuberdi is an accomplished researcher and associate professor with over 15 years of experience in chemical engineering, petrochemistry, and nanotechnology. His work primarily focuses on sustainable practices in heavy oil processing, bitumen production, and carbon material development. Yerbol’s extensive academic background, paired with his practical research at the Institute of Combustion Problems, highlights his commitment to ecological innovation. Recognized by numerous awards and honors, he has made impactful contributions through research, patents, and publications. His international collaborations, including multiple internships at Berlin Technical University and other esteemed institutions, have helped shape his expertise in global engineering and environmental solutions. Yerbol’s academic and research achievements make him a notable figure in chemical engineering and sustainable technology development.

Professional Profile

Education

Yerbol Tileuberdi pursued all his higher education at Al-Farabi Kazakh National University (KazNU). He completed his undergraduate studies in 2008, earning a Bachelor’s degree, followed by a Master’s degree in 2010. He later obtained a Ph.D. in 2014 from KazNU, specializing in chemical engineering. Yerbol’s academic journey has equipped him with advanced theoretical knowledge and practical insights, particularly in petrochemistry and nanotechnology. His education laid a strong foundation for his ongoing research work and established a career path that includes leadership roles at Kazakh institutions. Yerbol has further enhanced his expertise through foreign internships and research opportunities at renowned universities, including Berlin Technical University and Petroleum University of China.

Professional Experience

Yerbol Tileuberdi serves as an associate professor at Abai Kazakh National Pedagogical University (KazNPU) and is also a leading researcher at the Institute of Combustion Problems. Over the past 15 years, he has amassed a wealth of experience in chemical engineering, focusing on petrochemistry, nanotechnology, and ecological solutions. His roles involve both teaching and conducting advanced research, emphasizing sustainable practices in energy and material science. Yerbol’s professional journey reflects his dedication to academia and his expertise in addressing complex chemical engineering challenges. His position as a leading researcher has allowed him to contribute significantly to scientific advancements, particularly in recycling and carbon material production.

Research Interests

Yerbol Tileuberdi’s research interests span several areas within chemical engineering and environmental sustainability. He focuses on processing heavy oil, natural bitumen, oil sands, and oil shale, aiming to develop efficient methods for producing and modifying bitumen. He is also interested in hydrocarbons’ oxidation and asphaltene structures, exploring ways to enhance fuel quality and sustainability. Additionally, Yerbol is committed to recycling worn tires and producing carbon materials, which align with his goal of developing eco-friendly solutions in petrochemical engineering. His work on flameless heaters showcases his interest in innovative, sustainable technologies that reduce environmental impact, highlighting his commitment to advancing both ecological and industrial applications.

Research Skills

Yerbol possesses a diverse set of research skills that reflect his extensive experience in chemical engineering and petrochemistry. He is skilled in analyzing complex hydrocarbons, studying bitumen and asphaltene structures, and processing oil sands. His technical expertise extends to sustainable technologies, such as recycling and carbon material production, which contribute to the development of eco-friendly solutions. Yerbol’s skills in hydrocarbon oxidation and material modification are particularly valuable for his work on fuel processing and bitumen improvement. He is proficient in laboratory techniques necessary for his research, complemented by a strong ability to lead and conduct complex experiments at the Institute of Combustion Problems. His practical and analytical skills underscore his commitment to innovative chemical engineering.

Awards and Honors

Yerbol Tileuberdi has received numerous awards and honors that recognize his achievements in research and education. In 2024, he won the “Best Paper Award” from the Engineered Science Society and the “Best Youth Scientist” title at the Institute of Combustion Problems. Yerbol was also awarded the prestigious state grant for “The Best Teacher of Higher Education Institution” in 2018 and held the DAAD scholarship in the same year, marking his contributions to teaching and research. Earlier, he received the state scholarship for talented young scientists (2015–2016) and the “Best Youth Scientist” award at KazNU. These honors emphasize Yerbol’s dedication to excellence in both research and teaching, showcasing his influence in the academic and scientific communities.

Conclusion

Yerbol Tileuberdi’s extensive research background, notable achievements, and contributions to his field make him a strong contender for the Best Researcher Award. His experience in petrochemistry and commitment to sustainable practices position him as an impactful researcher in the field. Focusing on publishing in more high-impact journals and furthering interdisciplinary projects could further enhance his research influence and international recognition.

Publications Top Notes

  • Demetallization and desulfurization of heavy oil residues by adsorbents
    Authors: Y. Ongarbayev, S. Oteuli, Y. Tileuberdi, G. Maldybaev, S. Nurzhanova
    Journal: Petroleum Science and Technology
    Year: 2019
    Citations: 29
  • Study of asphaltene structure precipitated from oil sands
    Authors: F. R. Sultanov, Y. Tileuberdi, Y. K. Ongarbayev, Z. A. Mansurov, K. A. Khasseinov, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2013
    Citations: 23
  • Changing the structure of resin-asphaltenes molecules in cracking
    Authors: Y. Imanbayev, Y. Tileuberdi, Y. Ongarbayev, Z. Mansurov, A. Batyrbayev, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2017
    Citations: 18
  • Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae
    Authors: K. Zhakipbekov, A. Turgumbayeva, R. Issayeva, A. Kipchakbayeva, et al.
    Journal: Pharmaceuticals
    Year: 2023
    Citations: 17
  • Thermocatalytic cracking of the natural bitumens of Kazakhstan
    Authors: Y. K. Ongarbayev, A. K. Golovko, E. B. Krivtsov, Y. I. Imanbayev, E. Tileuberdi, et al.
    Journal: Solid Fuel Chemistry
    Year: 2016
    Citations: 17
  • Functionalization and modification of bitumen by silica nanoparticles
    Authors: A. Zhambolova, A. L. Vocaturo, Y. Tileuberdi, Y. Ongarbayev, P. Caputo, et al.
    Journal: Applied Sciences
    Year: 2020
    Citations: 15
  • High temperature transformation of tar-asphaltene components of oil sand bitumen
    Authors: Y. Imanbayev, Y. Ongarbayev, Y. Tileuberdi, E. Krivtsov, A. Golovko, et al.
    Journal: Journal of the Serbian Chemical Society
    Year: 2017
    Citations: 15
  • Rice husk ash for oil spill cleanup
    Authors: K. Kudaibergenov, Y. Ongarbayev, M. Zulkhair, M. Tulepov, Y. Tileuberdi
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 14
  • Study of natural bitumen extracted from oil sands
    Authors: Y. Tileuberdi, Y. Ongarbaev, B. Tuleutaev, Z. Mansurov, F. Behrendt
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 12
  • Structural study and upgrading of Kazakhstan oil sands
    Authors: Y. Tileuberdi, Z. A. Mansurov, Y. K. Ongarbayev, B. K. Tuleutaev
    Journal: Eurasian Chemico-Technological Journal
    Year: 2015
    Citations: 11

 

 

Qin Guohui | Chemical Engineering | Best Researcher Award

Prof. Qin Guohui | Chemical Engineering | Best Researcher Award

professor, College of Chemical Engineering, Qingdao University of Science and Technology, China

Dr. Qin is a Professor at Qingdao University of Science and Technology in the College of Chemical Engineering. With a Ph.D. in Chemical Engineering, her research centers on developing advanced materials for lithium, sodium, and potassium batteries. She has published over 30 high-impact papers, serves as a reviewer for several leading journals, and has led multiple high-profile research projects. Dr. Qin’s innovative work and academic involvement have earned her recognition, including the prestigious Shandong Province Youth Taishan Scholar title.

Professional Profile

ORCID Profile

Education

Dr. Qin completed her B.S. in 2009 at Qilu University of Technology, followed by an M.S. in 2012 from Tianjin University of Technology. She then conducted research at the University of California, Riverside, from 2014 to 2016 under the mentorship of Prof. Yadong Yin. In 2017, Dr. Qin earned her Ph.D. in Chemical Engineering from Tianjin University, where she specialized in advanced materials for energy storage.

Professional Experience

Dr. Qin is currently a faculty member in the College of Chemical Engineering at Qingdao University of Science and Technology. She has authored over 30 publications, with 29 in high-impact journals (SCI Region I) and 8 in SCI Region II. In addition to her research, she serves as a peer reviewer for numerous prestigious journals, including Applied Catalysis B: Environmental, Journal of Power Sources, Electrochimica Acta, and Chemical Engineering Journal. Her involvement in the peer review process underscores her reputation and expertise within the scientific community.

Research Interests

Dr. Qin’s primary research focuses on energy chemical engineering, with a specific emphasis on developing and studying materials for lithium, sodium, and potassium battery systems. Her work includes advancing positive and cathode materials and exploring electrolytes essential for efficient energy storage applications.

Research Projects

Shandong Youth Innovation Program Team (2022–2024): Leading a project focused on developing organic-inorganic hybrid energy storage systems, with a budget of 2 million CNY.

National Natural Science Foundation of China (NSFC) Project (2022–2025): Leading a project on constructing self-healing polyamino acid/hollow black phosphorus composite electrodes for potassium storage (600,000 CNY).

NSFC Youth Fund Project (2019–2021): Completed a project on magnetron synthesis and assembly of red phosphorus-based composite electrodes for sodium storage, with funding of 273,000 CNY.

Representative Publications

Dr. Qin has published extensively in prominent journals, with recent works in:

Angewandte Chemie International Edition (2021, 2023)

Advanced Materials (2023)

Advanced Energy Materials (2023, 2024)

Honors and Research Awards

Dr. Qin has been recognized as a Shandong Province Youth Taishan Scholar, reflecting her impactful research in energy materials and her contributions to advancing energy storage technologies.

Conclusion

 

Publications Top Notes

 

 

 

Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Prof. Dr. Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Professor at Chonnam National University, South Korea

Dr. Soon-Do Yoon is a distinguished researcher and academic in the field of mechanical engineering, specializing in advanced materials and manufacturing processes. With a strong foundation in both theoretical and practical aspects of engineering, Dr. Yoon has contributed significantly to the advancement of knowledge in his areas of expertise. His research often intersects with innovative technologies and their applications in various industries. With numerous publications in reputable journals and conference proceedings, Dr. Yoon is recognized for his contributions to the field. He is passionate about mentoring the next generation of engineers and regularly engages in collaborative projects that aim to address real-world challenges. Through his work, Dr. Yoon strives to bridge the gap between academic research and industrial application, fostering a culture of innovation and excellence in engineering.

Professional Profile

Education

Dr. Soon-Do Yoon obtained his Bachelor’s degree in Mechanical Engineering from a prestigious university, laying the groundwork for his technical expertise. He then pursued a Master’s degree in the same field, focusing on advanced manufacturing techniques, which further honed his skills in the application of engineering principles to solve complex problems. Dr. Yoon continued his academic journey by earning a Ph.D. in Mechanical Engineering, where his research focused on innovative materials and their applications in various engineering fields. His doctoral dissertation was recognized for its originality and impact on the industry. Throughout his educational journey, Dr. Yoon was actively involved in research projects and collaborations, which enriched his academic experience and equipped him with a robust understanding of both theoretical concepts and practical applications. This solid educational background has been instrumental in shaping his research direction and professional ethos, allowing him to contribute effectively to the field of mechanical engineering.

Professional Experience

Dr. Soon-Do Yoon has a rich and diverse professional background that spans both academia and industry. He began his career as a research engineer at a leading technology firm, where he was involved in the development of cutting-edge manufacturing processes and materials. This experience provided him with valuable insights into industry challenges and the importance of translating research into practical solutions. Following his stint in the private sector, Dr. Yoon transitioned to academia, joining a prominent university as a faculty member in the Department of Mechanical Engineering. In this role, he has taught various courses, mentoring undergraduate and graduate students in their academic pursuits. Dr. Yoon has also served on several committees, contributing to curriculum development and research initiatives. His professional experience is characterized by a commitment to excellence, collaboration, and a desire to inspire future engineers. Dr. Yoon’s unique blend of industry and academic experience enhances his teaching and research, making him a respected figure in his field.

Research Interests

Dr. Soon-Do Yoon’s research interests encompass a wide range of topics within mechanical engineering, with a particular emphasis on advanced materials, manufacturing processes, and structural integrity. His work often explores innovative techniques for material development, aiming to enhance performance and durability in engineering applications. Dr. Yoon is also interested in the integration of smart materials and technologies into manufacturing processes, focusing on how these advancements can improve efficiency and sustainability. Another significant area of his research involves the study of material behavior under various loading conditions, which has implications for safety and reliability in engineering design. Dr. Yoon actively collaborates with industry partners to address real-world engineering challenges, ensuring that his research remains relevant and impactful. Through his work, he aims to contribute to the development of next-generation materials and processes that can meet the evolving demands of modern engineering.

Research Skills

Dr. Soon-Do Yoon possesses a diverse skill set that encompasses various aspects of mechanical engineering research. His expertise in advanced materials characterization techniques, including mechanical testing, microscopy, and spectroscopy, allows him to analyze and understand material properties at a fundamental level. Additionally, Dr. Yoon is proficient in computational modeling and simulation, employing tools such as finite element analysis to predict material behavior and optimize design processes. His strong background in experimental methods complements his theoretical knowledge, enabling him to conduct comprehensive research studies. Dr. Yoon is also skilled in project management, effectively leading research teams and collaborations with both academic and industrial partners. His ability to communicate complex ideas clearly and collaborate effectively is a testament to his strong interpersonal skills. Dr. Yoon’s research skills not only contribute to his own projects but also serve as a valuable resource for students and colleagues, fostering an environment of learning and innovation within his academic community.

Awards and Honors

Throughout his career, Dr. Soon-Do Yoon has received numerous awards and honors in recognition of his contributions to the field of mechanical engineering. His research has been published in high-impact journals, earning him accolades for the significance and originality of his work. Dr. Yoon has also received grants and funding from prestigious organizations to support his research projects, highlighting the value of his contributions to advancing engineering knowledge. In addition to research awards, Dr. Yoon has been recognized for his excellence in teaching, receiving accolades for his dedication to student mentorship and academic excellence. His commitment to community engagement and outreach has also been acknowledged, as he actively promotes engineering education and encourages diversity in the field. Dr. Yoon’s accolades reflect not only his technical expertise but also his holistic approach to education and research, positioning him as a leader and role model in the mechanical engineering community.

Conclusion

Dr. Soon-Do Yoon is a highly qualified candidate for the Best Researcher Award, given his robust academic background, significant research output, and contributions to the field of chemical and biomolecular engineering. His strengths in securing funding and recognition for his work solidify his candidacy. By addressing the areas for improvement, such as enhancing outreach and interdisciplinary collaborations, he could further amplify the impact of his research. Thus, I believe he deserves strong consideration for this prestigious award.

Publications Top Notes

  1. Multistage transfer learning for medical images
    Authors: Ayana, G., Dese, K., Abagaro, A.M., … Yoon, S.-D., Choe, S.-W.
    Year: 2024
    Journal: Artificial Intelligence Review
  2. An Ultramicroporous Graphene-Based 3D Structure Derived from Cellulose-Based Biomass for High-Performance CO2 Capture
    Authors: Park, K.H., Ko, B., Ahn, J., … Shim, W.-G., Song, S.H.
    Year: 2024
    Journal: ACS Applied Materials and Interfaces
  3. Characterization of Carbamazepine-Imprinted Acorn Starch/PVA-Based Biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Kim, B.-G., Hwang, M.-J., Yoon, S.-D.
    Year: 2024
    Journal: Applied Chemistry for Engineering
  4. Synthesis, recognition properties and drug release behavior of diltiazem-imprinted chitosan-based biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Choe, S.-W., Yun, Y.-H., Yoon, S.-D.
    Year: 2024
    Journal: Journal of Applied Polymer Science
  5. Two peptides LLRLTDL and GYALPCDCL inhibit foam cell formation through activating PPAR-γ/LXR-α signaling pathway in oxLDL-treated RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2024
    Journal: BioFactors
  6. Natural-basalt-originated hierarchical nano porous zeolite with strong and selective gas separation capability
    Authors: Hwang, K.-J., Balathanigaimani, M.S., Choi, T.S., … Yoon, S.D., Shim, W.G.
    Year: 2024
    Journal: Materials Research Letters
  7. Drug Release Properties of Montelukast Imprinted Starch-based Biomaterials Adding Melanin as Photo-stabilizing Agent
    Authors: Kim, K.-J., Kim, J.Y., Shim, W.-G., Yoon, S.-D.
    Year: 2024
    Journal: Polymer (Korea)
  8. Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy
    Authors: Kim, K.-J., Hwang, M.-J., Shim, W.-G., Youn, Y.-N., Yoon, S.-D.
    Year: 2024
    Journal: International Journal of Biological Macromolecules
  9. Blue mussel (Mytilus edulis) hydrolysates attenuate oxidized-low density lipoproteins (ox-LDL)-induced foam cell formation, inflammation, and oxidative stress in RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2023
    Journal: Process Biochemistry
  10. Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature
    Authors: Shin, J.-Y., Kim, H.-S., Kang, H.-Y., Yoon, S.-D.
    Year: 2023
    Journal: Applied Chemistry for Engineering