Qin Guohui | Chemical Engineering | Best Researcher Award

Prof. Qin Guohui | Chemical Engineering | Best Researcher Award

professor, College of Chemical Engineering, Qingdao University of Science and Technology, China

Dr. Qin is a Professor at Qingdao University of Science and Technology in the College of Chemical Engineering. With a Ph.D. in Chemical Engineering, her research centers on developing advanced materials for lithium, sodium, and potassium batteries. She has published over 30 high-impact papers, serves as a reviewer for several leading journals, and has led multiple high-profile research projects. Dr. Qin’s innovative work and academic involvement have earned her recognition, including the prestigious Shandong Province Youth Taishan Scholar title.

Professional Profile

ORCID Profile

Education

Dr. Qin completed her B.S. in 2009 at Qilu University of Technology, followed by an M.S. in 2012 from Tianjin University of Technology. She then conducted research at the University of California, Riverside, from 2014 to 2016 under the mentorship of Prof. Yadong Yin. In 2017, Dr. Qin earned her Ph.D. in Chemical Engineering from Tianjin University, where she specialized in advanced materials for energy storage.

Professional Experience

Dr. Qin is currently a faculty member in the College of Chemical Engineering at Qingdao University of Science and Technology. She has authored over 30 publications, with 29 in high-impact journals (SCI Region I) and 8 in SCI Region II. In addition to her research, she serves as a peer reviewer for numerous prestigious journals, including Applied Catalysis B: Environmental, Journal of Power Sources, Electrochimica Acta, and Chemical Engineering Journal. Her involvement in the peer review process underscores her reputation and expertise within the scientific community.

Research Interests

Dr. Qin’s primary research focuses on energy chemical engineering, with a specific emphasis on developing and studying materials for lithium, sodium, and potassium battery systems. Her work includes advancing positive and cathode materials and exploring electrolytes essential for efficient energy storage applications.

Research Projects

Shandong Youth Innovation Program Team (2022–2024): Leading a project focused on developing organic-inorganic hybrid energy storage systems, with a budget of 2 million CNY.

National Natural Science Foundation of China (NSFC) Project (2022–2025): Leading a project on constructing self-healing polyamino acid/hollow black phosphorus composite electrodes for potassium storage (600,000 CNY).

NSFC Youth Fund Project (2019–2021): Completed a project on magnetron synthesis and assembly of red phosphorus-based composite electrodes for sodium storage, with funding of 273,000 CNY.

Representative Publications

Dr. Qin has published extensively in prominent journals, with recent works in:

Angewandte Chemie International Edition (2021, 2023)

Advanced Materials (2023)

Advanced Energy Materials (2023, 2024)

Honors and Research Awards

Dr. Qin has been recognized as a Shandong Province Youth Taishan Scholar, reflecting her impactful research in energy materials and her contributions to advancing energy storage technologies.

Conclusion

 

Publications Top Notes

 

 

 

Sun Chenyu | Chemical Engineering | Best Researcher Award

Mr. Sun Chenyu | Chemical Engineering | Best Researcher Award

PhD candidate at Shandong University, China

Sun Chenyi is a dedicated researcher in the field of materials science, currently pursuing a combined Master’s and Ph.D. degree at Shandong University. His work primarily focuses on the development of advanced energy storage systems, particularly lithium-sulfur batteries, where he has made significant contributions through innovative research and publications. Sun has demonstrated a strong commitment to academic excellence, leading to several accolades and recognition for his research achievements. With a solid foundation in materials science and engineering, Sun possesses a unique blend of theoretical knowledge and practical skills, making him a valuable asset to the scientific community. His leadership experience as a student council president further highlights his ability to manage projects and collaborate effectively with peers. As he continues to advance his research, Sun is well-positioned to make meaningful contributions to the field, focusing on enhancing battery technologies and exploring new materials for energy applications.

Professional Profile

Education

Sun Chenyi’s educational journey began with a Bachelor’s degree in Materials Science and Engineering from Shandong University of Science and Technology, where he graduated in July 2020. His coursework included fundamental subjects such as analytical chemistry, physical chemistry, and solid-state physics, laying a strong groundwork for his future studies. Since September 2020, he has been enrolled in a dual Master’s and Ph.D. program at Shandong University, specializing in materials and chemical engineering. His advanced studies encompass modern research methodologies in materials, thermodynamics, and electrochemical kinetics, equipping him with essential theoretical and practical skills. Sun’s academic endeavors have not only deepened his understanding of materials science but also fostered his interest in the electrochemical behavior of materials, particularly in energy storage applications. This rigorous education has shaped him into a competent researcher, ready to tackle complex challenges in the field.

Professional Experience

Sun Chenyi has accumulated valuable professional experience through his ongoing research at Shandong University. He has been actively involved in projects focusing on lithium metal anodes and lithium-sulfur batteries since 2020. His work addresses critical challenges in the commercialization of lithium batteries, such as dendrite growth and volume expansion of lithium metal anodes. Sun has successfully designed and modified current collectors to enhance the stability of lithium metal batteries, resulting in multiple high-impact publications. Additionally, he is engaged in research measuring diffusion coefficients of metallic melts under strong magnetic fields, aiming to improve the understanding of liquid-solid phase transitions. His hands-on experience with cutting-edge research techniques, combined with his leadership as a student council president at his previous university, reflects his capability to lead and collaborate effectively in diverse research settings. Sun’s professional background demonstrates his commitment to advancing materials science and energy technologies.

Research Interests

Sun Chenyi’s research interests primarily focus on the development of advanced materials for energy storage applications, specifically lithium-sulfur (Li-S) batteries and lithium metal anodes. He is particularly interested in addressing the challenges associated with lithium metal batteries, including dendrite formation and polysulfide shuttle effects, which hinder their commercial viability. Sun’s research aims to enhance the electrochemical performance and stability of these batteries through innovative material design and modification techniques. He explores the use of functional materials and structural engineering to optimize electrode configurations, thereby improving charge/discharge efficiency and battery lifespan. Additionally, his work encompasses theoretical calculations related to adsorption energy and electronic properties, utilizing advanced computational tools like VASP and Materials Studio. Sun is keen on expanding his research scope to include other areas of materials science and engineering, aiming to contribute to the development of sustainable energy solutions.

Research Skills

Sun Chenyi possesses a robust set of research skills that make him proficient in the field of materials science. He is well-versed in first-principles calculations and computational modeling, utilizing software tools such as VASP and Materials Studio for electrochemical analyses. His ability to perform independent theoretical calculations allows him to analyze adsorption energies and electronic properties effectively. In addition to his computational expertise, Sun has hands-on experience in experimental techniques related to battery fabrication and characterization. He is skilled in synthesizing novel materials and modifying existing structures to enhance electrochemical performance. Sun’s research also includes a strong understanding of thermodynamic principles and kinetics, which are critical for exploring new battery technologies. Furthermore, his leadership and organizational skills, demonstrated through his experience as a student council president, enhance his ability to collaborate with colleagues and manage research projects efficiently. Together, these skills position Sun as a competent and innovative researcher in the field.

Awards and Honors

Sun Chenyi has received numerous awards and honors throughout his academic career, recognizing his dedication and excellence in research. In 2024, he was awarded the Excellent Academic Achievement Award for his outstanding contributions to the field of materials science, particularly in the area of lithium-sulfur batteries. Additionally, he has earned several academic scholarships from Shandong University, including the First-Class Academic Scholarship in 2021 and the Second-Class Academic Scholarship in 2023, which reflect his consistent academic performance. His commitment to academic excellence was also recognized with the Freshman Scholarship during his initial years at the university in 2020 and 2022. These accolades underscore Sun’s dedication to his research endeavors and his potential for future contributions to the scientific community. As he continues his academic journey, these honors serve as a testament to his capabilities and commitment to advancing materials science.

Publications Top Notes

  1. Publication: 3D lithiophilic collector coated by amorphous g-C3N4 enabling Ultra-Stable cycling Li metal batteries
    Authors: Gao, L., Sun, C., Li, X., Bai, Y., Bian, X.
    Year: 2024
  2. Publication: Enhanced Al-Storage Performance by Electronic Properties Optimization and Structural Customization in MOF-Derived Heterostructure
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  3. Publication: Configurational Entropy Strategy Enhanced Structure Stability Achieves Robust Cathode for Aluminum Batteries
    Authors: Kang, R., Zhang, D., Du, Y., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  4. Publication: Enhanced d-p Orbital Hybridization for Lithium Polysulfide Capturing and Lithium Deposition Inducing of AgVO3 Skeleton Enabling High-Performance Li-Sulfur Batteries
    Authors: Sun, C., Gao, L., Rong, W., Bai, Y., Bian, X.
    Year: 2024
  5. Publication: Functional lithiophilic skeleton/evolving lithium sulfide artificial protective layer for dendrite-free Li metal anode
    Authors: Sun, C., Gao, L., Rong, W., Tian, X., Bian, X.
    Year: 2024
    Citations: 3
  6. Publication: Modification of 2D materials using MoS2 as a model for investigating the Al-storage properties of diverse crystal facets
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2023
    Citations: 6
  7. Publication: Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework
    Authors: Kang, R., Du, Y., Zhou, W., Chen, G., Zhang, J.
    Year: 2023
    Citations: 9
  8. Publication: Ultrafast microwave-induced synthesis of lithiophilic oxides modified 3D porous mesh skeleton for high-stability Li-metal anode
    Authors: Sun, C., Gao, L., Yang, Y., Zhang, D., Bian, X.
    Year: 2023
    Citations: 11
  9. Publication: Amorphous TiO2-x modified Sb nanowires as a high-performance sodium-ion battery anode
    Authors: Gao, L., Lu, D., Yang, Y., Liu, S., Bian, X.
    Year: 2022
    Citations: 8
  10. Publication: Morphology-tunable synthesis of CuO modified with Cu-Zn/Cu-Sn intermetallic compounds as high-performance anode for lithium-ion batteries
    Authors: Zhang, D., Wang, C., Yang, Y., Sun, C., Bian, X.
    Year: 2022
    Citations: 11