Xuegang Liu | Chemical Engineering | Best Researcher Award

Prof. Xuegang Liu | Chemical Engineering | Best Researcher Award

Professor from Tsinghua Univerisity, China

Dr. Xuegang Liu is a highly accomplished research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. His extensive expertise focuses on nuclear chemical engineering, nuclear fuel cycle strategies, radioactive waste management, and nuclear decommissioning technologies. Over the years, Dr. Liu has contributed significantly to advancing nuclear fuel cycle policy and technical applications, making substantial impacts in the nuclear energy and safety sectors. He is also an influential educator, actively teaching graduate-level courses such as “Nuclear Fuel Cycle Strategy” and “Nuclear Chemical Engineering” at Tsinghua University. Dr. Liu balances his academic roles with his responsibilities as a project manager, overseeing major scientific research and engineering initiatives related to nuclear decommissioning. His research not only addresses scientific challenges but also integrates policy-making, aligning technical innovation with sustainable nuclear energy strategies. Dr. Liu’s career reflects a harmonious blend of research, education, and practical applications, positioning him as a leading figure in nuclear science. His commitment to both the development of innovative nuclear technologies and the training of future experts underscores his multi-dimensional contributions to the field.

Professional Profile

Education

Dr. Xuegang Liu earned his doctoral degree, specializing in nuclear-related disciplines, which laid the foundation for his subsequent achievements in nuclear fuel cycle research and nuclear chemical engineering. Though specific details about his undergraduate and postgraduate institutions are not explicitly provided, it is evident that his academic training has been of the highest standard, aligning with his current prestigious role at Tsinghua University. His education has been deeply rooted in nuclear energy systems, chemical processing, and radioactive waste management, enabling him to develop expertise that spans both theoretical knowledge and applied research. Dr. Liu’s educational journey is complemented by his active teaching role at Tsinghua University, where he shares his specialized knowledge with graduate students through courses focusing on nuclear fuel cycle strategies and nuclear chemical engineering. This dual contribution as both a scholar and an educator reflects the solid academic foundation upon which his career is built. His ability to translate complex nuclear science concepts into applicable research and policies demonstrates the strength and depth of his educational background.

Professional Experience

Dr. Xuegang Liu is currently a research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. Throughout his career, he has taken on multiple roles that integrate research, education, and engineering project management. Dr. Liu has been a key figure in managing scientific and technological initiatives, particularly in the area of nuclear decommissioning. His leadership in overseeing complex research projects and engineering applications related to nuclear chemical processing and radioactive waste management highlights his ability to bridge scientific innovation with real-world solutions. Apart from his research responsibilities, Dr. Liu has made significant contributions as an educator by teaching graduate-level courses at Tsinghua University, nurturing the next generation of nuclear scientists and engineers. His role extends to guiding doctoral students and managing interdisciplinary research collaborations within the nuclear energy field. His professional experience showcases a balance between advancing scientific research and contributing to the sustainable management of nuclear energy systems, reinforcing his reputation as an expert in the nuclear sector.

Research Interest

Dr. Xuegang Liu’s research interests are strongly centered around the advancement of nuclear chemical engineering, with a special focus on the nuclear fuel cycle, radioactive waste treatment, nuclear reprocessing, and nuclear decommissioning technologies. His work seeks to provide both innovative scientific solutions and sustainable strategies for the long-term management of nuclear materials. Dr. Liu is particularly engaged in developing fuel cycle strategies and nuclear policy frameworks that contribute to national and international nuclear safety and sustainability. His interest in nuclear waste management is critical to minimizing the environmental impact of nuclear energy, while his focus on decommissioning technologies addresses the safe dismantling of obsolete nuclear facilities. Additionally, Dr. Liu is keenly involved in research concerning the separation of radioactive nuclides, which plays an essential role in both waste reduction and fuel recovery processes. His broad research interests demonstrate a commitment to advancing nuclear technology while ensuring responsible and safe nuclear energy practices.

Research Skills

Dr. Xuegang Liu possesses a diverse set of advanced research skills that make him a highly capable scientist in the nuclear energy field. His expertise includes nuclear chemical process design, radioactive waste treatment technologies, fuel cycle strategy development, and nuclear decommissioning management. He is highly skilled in managing large-scale, interdisciplinary research projects that combine nuclear engineering, chemical engineering, and environmental safety considerations. Dr. Liu’s proficiency extends to radioactive nuclide separation technologies, which are crucial for waste processing and fuel recycling in nuclear reactors. He also demonstrates significant ability in policy-oriented research, enabling him to align his technical solutions with national energy strategies and regulatory frameworks. Additionally, his research skills encompass experimental design, project supervision, and teaching complex nuclear engineering concepts to graduate students. His technical versatility and leadership in both research and practical engineering applications position him as a well-rounded researcher with comprehensive nuclear science capabilities.

Awards and Honors

Although specific awards and honors are not listed, Dr. Xuegang Liu’s position as a research professor at Tsinghua University and his leadership in multiple high-impact nuclear research projects strongly imply recognition within his field. His entrusted responsibility to manage national-level nuclear decommissioning initiatives and advanced research projects indicates significant professional respect and acknowledgment from academic, governmental, and engineering communities. His continuous involvement in both teaching and critical nuclear policy research also suggests he is regarded as a key contributor to the future of China’s nuclear energy strategy. It would be reasonable to infer that his achievements and contributions have likely earned him accolades, commendations, or leadership positions within the nuclear research community. As an educator, his influence on student development and his commitment to advancing nuclear safety and sustainability further highlight his professional stature. Further details regarding specific awards could enrich this section and solidify his recognition at both national and international levels.

Conclusion

Dr. Xuegang Liu is an exemplary nuclear scientist whose contributions to nuclear chemical engineering, radioactive waste management, nuclear fuel cycle strategy, and nuclear decommissioning have had a profound impact on the advancement of nuclear technology and sustainability. His dual commitment to cutting-edge research and higher education has positioned him as a valuable asset in both academic and practical nuclear sectors. His work at Tsinghua University, particularly within the Institute of Nuclear and New Energy Technology, reflects his ability to lead complex research projects, educate future experts, and contribute to national nuclear strategies. Dr. Liu’s career demonstrates a rare blend of scientific depth, technical proficiency, and strategic vision, making him a highly deserving candidate for the Best Researcher Award. With further international collaborations, an expanded global publication presence, and continued leadership in nuclear innovation, Dr. Liu has the potential to elevate his influence to an even greater level. His dedication to improving nuclear safety, sustainability, and education will continue to benefit the global nuclear community.

Publications Top Notes

  1. Micro-oxidation calcination: transforming nuclear graphite into high-performance anode materials for lithium-ion batteries

    • Authors: Naizhe Zhang, Meng Li, Shuaiwei Wang, Zhen Shang, Xuegang Liu

    • Year: 2025

  2. 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements

    • Authors: Shangzhen Zhu, Jianzhu Cao, Sheng Fang, Xinwen Dong, Wenqian Li, Xuegang Liu, Qiange He, Xinghai Wang

    • Year: 2022

  3. Summary of Tritium Source Term Study in 10 MW High Temperature Gas-Cooled Test Reactor

    • Authors: Xuegang Liu

    • Year: 2020

  4. A Comprehensive Study of the 14C Source Term in the 10 MW High-Temperature Gas-Cooled Reactor

    • Authors: Xuegang Liu

    • Year: 2019

  5. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction

    • Authors: Xuegang Liu

    • Year: 2019

  6. Measurement of oxygen reduction/evolution kinetics enhanced (La,Sr)CoO3/(La,Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs

    • Authors: Xuegang Liu

    • Year: 2019

  7. A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant

    • Authors: Xuegang Liu

    • Year: 2019

  8. Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

    • Authors: Xuegang Liu

    • Year: 2019

  9. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3

    • Authors: Xuegang Liu

    • Year: 2019

  10. A comprehensive study on source terms in irradiated graphite spheres of HTR-10

  • Authors: Xuegang Liu

  • Year: 2018

Kafi Mohamed Hamed | Chemical Engineering | Best Researcher Award

Mr. Kafi Mohamed Hamed | Chemical Engineering | Best Researcher Award

University lecturer from Bule Hora University, Ethiopia

Kafi Mohamed Hamed is a dedicated academic and researcher based in Bule Hora, Ethiopia, currently serving as an instructor in the Department of Chemical Engineering at Bule Hora University. With over five years of professional experience in higher education, he has been actively engaged in teaching, supervising undergraduate student projects, conducting research, and providing community service. His commitment to academic excellence is reflected in his efforts to bridge theoretical knowledge with practical application, particularly in areas such as process engineering, nanotechnology, and environmental protection. Kafi has a strong foundation in chemical engineering, having earned both his BSc and MSc in the discipline with commendable academic records. His technical proficiency spans a wide range of simulation and analytical software, which he employs in research and teaching activities. In addition to his teaching responsibilities, Kafi is involved in awareness programs and community engagement initiatives aimed at addressing local engineering challenges. His active participation in professional associations, such as the Ethiopian Society of Chemical Engineering, further illustrates his commitment to professional development and contribution to the field. Despite the need for further research publications and international exposure, Kafi is steadily building a profile as a promising researcher with potential to make significant contributions in his field.

Professional Profile

Education

Kafi Mohamed Hamed has pursued a robust academic path in the field of chemical engineering. He began his higher education journey at Adigrat University in Ethiopia, where he earned his Bachelor of Science (BSc) in Chemical Engineering. Graduating with a CGPA of 3.60/4, he developed a strong foundation in core chemical engineering principles, including thermodynamics, process control, transport phenomena, and unit operations. Following his undergraduate studies, Kafi enrolled in the MSc program in Process Engineering at Jimma University’s Institute of Technology. He completed his postgraduate studies with a CGPA of 3.64/4, focusing on advanced process design, optimization, and chemical process simulations. His graduate education allowed him to gain deeper insights into industrial processes, environmental considerations, and research methodologies in chemical engineering. To enhance his teaching and pedagogical skills, he also completed formal pedagogical training and a Higher Diploma Programme (HDP) at Bule Hora University. These additional qualifications prepared him for an academic career by improving his instructional techniques and understanding of curriculum development. His educational background not only reflects academic rigor but also his continuous pursuit of excellence in teaching and applied research within chemical engineering.

Professional Experience

Kafi Mohamed Hamed has over five years of professional experience in academia, having joined Bule Hora University on September 27, 2018. Since his appointment, he has held the position of Instructor in the Department of Chemical Engineering under the College of Engineering and Technology. His responsibilities include delivering core and elective courses across the undergraduate chemical engineering curriculum, supervising final-year student research projects, and actively participating in both institutional research and community service programs. His involvement extends beyond the classroom, as he has also taken on administrative and leadership roles, such as serving as department head by delegation and participating in departmental committees. These roles have helped him develop strong managerial and organizational skills. Kafi is deeply engaged in bridging education and community development, evident from his participation in community service teams that work on raising awareness and providing technical solutions to local industrial and environmental problems. His work experience also includes mentoring students, curriculum design, and contributing to the operational effectiveness of the department. He is a member of the Ethiopian Society of Chemical Engineering and has participated in an industrial internship at Gulelle Soap and Detergent Factory, providing him exposure to real-world applications of chemical engineering processes.

Research Interest

Kafi Mohamed Hamed has cultivated a wide-ranging set of research interests that span both traditional and emerging areas in chemical engineering. His primary areas of interest include composite materials, nanotechnology, polymer science, and process optimization. He is particularly drawn to solving engineering problems that intersect with environmental and energy concerns, such as wastewater treatment and sustainable energy engineering. These research interests reflect a clear alignment with global scientific priorities aimed at environmental protection and sustainability. Kafi’s multidisciplinary approach allows him to explore innovative materials and processes that can improve the efficiency and environmental impact of industrial operations. His interest in process optimization is evident in his use of simulation tools and modeling software to enhance chemical processes and resource utilization. Additionally, his focus on nanotechnology and polymer science opens opportunities for developing advanced functional materials with applications in various sectors, including energy storage, environmental remediation, and biomedical engineering. Through his teaching and final-year project supervision, he continuously integrates these research themes into student-led investigations. Kafi’s interest in community-relevant research also aligns his academic work with local developmental goals, further underscoring his commitment to both scientific advancement and societal benefit.

Research Skills

Kafi Mohamed Hamed possesses a diverse and practical set of research skills that support his academic and investigative work in chemical engineering. His technical expertise spans a range of analytical, simulation, and process design tools essential for research and teaching. He is proficient in MATLAB and Simulink for system modeling and analysis, as well as Aspen HYSYS and Aspen Plus for chemical process simulation and design. His familiarity with ANSYS and CFD software indicates capability in computational fluid dynamics and mechanical modeling. In the area of data analysis and experimental design, Kafi utilizes tools such as Design Expert, Origin Pro, and Chemdraw. His proficiency in process integration software like HINT reflects an understanding of energy efficiency and pinch analysis techniques. He also employs visualization and documentation tools like Edraw Max and Photoshop to enhance research communication. Kafi demonstrates an ability to bridge theoretical concepts with practical experimentation and simulation, a skill particularly important in process and environmental engineering. Furthermore, his background includes hands-on experience in industrial settings during his internship, and his supervision of undergraduate projects shows his skill in guiding research methodology. These competencies equip him to tackle multidisciplinary challenges and pursue advanced research in material and process innovation.

Awards and Honors

Although Kafi Mohamed Hamed’s CV does not list specific individual awards or honors, his academic and professional journey includes several noteworthy achievements and recognitions. He graduated with distinction at both undergraduate and postgraduate levels, securing CGPAs of 3.60 and 3.64 respectively. His admission into a competitive MSc program in Process Engineering at Jimma University and his successful completion of the program reflect academic merit and dedication. Kafi has also been entrusted with significant institutional responsibilities, such as serving as department head by delegation and contributing to curriculum development and quality assurance activities. These appointments suggest recognition by his peers and institutional leadership for his competence, reliability, and leadership potential. Additionally, his participation in Ethiopia’s national professional body, the Ethiopian Society of Chemical Engineering (ESCHE), illustrates his commitment to professional growth and recognition within the engineering community. His selection for internship training at Gulelle Soap and Detergent Factory demonstrates early professional promise and exposure to applied chemical engineering practices. While he may not yet have received high-profile research awards, Kafi’s consistent academic performance, institutional trust, and active involvement in community and professional activities serve as significant indicators of his potential for future honors and research accolades.

Conclusion

Kafi Mohamed Hamed is a promising early-career academic with a strong foundation in chemical engineering and a commitment to research, teaching, and community service. His educational qualifications, combined with over five years of experience at Bule Hora University, have positioned him as a capable instructor and an emerging researcher. His areas of research interest—ranging from composite materials and nanotechnology to wastewater treatment and energy engineering—demonstrate an alignment with contemporary global challenges and sustainable development goals. He possesses a broad range of research skills, particularly in simulation, modeling, and process design, which are valuable for conducting meaningful and applied research. However, to enhance his competitiveness for prestigious awards like the Best Researcher Award, he would benefit from increasing his scholarly output through peer-reviewed publications, conference participation, and research collaborations. Moreover, gaining international exposure and securing research funding will further elevate his academic profile. Despite these areas for improvement, Kafi has already laid a solid foundation for a successful research career. His dedication to both academic excellence and community service underscores his potential to become a key contributor to the advancement of chemical engineering in Ethiopia and beyond.

Publications Top Notes

  1. Title: Optimizing of Nanocellulose Extraction From Highland Bamboo Arundinaria alpina for Sustainable Bio‐Nanomaterials via Response Surface Methodology
    Journal: Advances in Polymer Technology
    Type: Journal article
    Publication Date: January 2025

Annu Thomas | Chemistry | Best Researcher Award

Assist. Prof. Dr Annu Thomas | Chemistry | Best Researcher Award

Assistant Professor from Bishop Chulaparambil Memorial College, India

Dr. Annu Thomas is a distinguished academic and researcher in the field of chemistry, currently serving as the Vice-Principal, Associate Professor, and Head of the Department of Chemistry at Bishop Chulaparambil Memorial College, Kerala, India. With a Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, her expertise spans biomimetic growth, nanomaterials, and environmental chemistry. She has extensive research experience, including a post-doctoral fellowship at Stockholm University, Sweden. Dr. Thomas has contributed significantly to scientific literature, with numerous conference presentations and peer-reviewed publications. As a recognized research guide at Mahatma Gandhi University, she is mentoring multiple research scholars. Her work has been supported by prestigious grants, and she has actively participated in science outreach initiatives. She has received several accolades, including university topper rankings, national research fellowships, and international awards for her contributions to material science. An active member of professional organizations, Dr. Thomas plays a key role in promoting scientific advancements. Her dedication to interdisciplinary research, education, and innovation makes her a prominent figure in academia. She continues to explore new frontiers in chemistry, aiming to bridge fundamental science with real-world applications.

Professional Profile

Education

Dr. Annu Thomas has an impressive academic background in chemistry. She earned her Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, under the Faculty of Natural Sciences at Technical University Dresden. Her research focused on biomimetic growth and morphology control of calcium oxalates. She previously obtained an M.Sc. in Physical Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, where she secured the first rank in her university. Prior to that, she completed her B.Sc. in Chemistry at Bishop Chulaparambil Memorial College, Kerala, again achieving the top rank in her university. In addition to her formal education, Dr. Thomas has engaged in research training at various prestigious institutions, including Stockholm University, Sweden, and the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Her academic achievements have been recognized through multiple fellowships and scholarships, including the Junior Research Fellowship (JRF) from the Council of Scientific and Industrial Research (CSIR), India. Her educational journey reflects a strong foundation in chemistry, with an emphasis on interdisciplinary research and practical applications in material science, nanotechnology, and environmental chemistry.

Professional Experience

Dr. Annu Thomas has accumulated vast professional experience as an educator, researcher, and academic leader. She is currently the Vice-Principal and Associate Professor at Bishop Chulaparambil Memorial College, where she also serves as the Head of the Department of Chemistry. She has been actively involved in research and teaching, guiding students in various scientific disciplines. Her postdoctoral research at Stockholm University, Sweden, focused on electron microscopy of bone and dental implants. Additionally, she worked as a Research and Development Assistant at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, on mesoporous material synthesis. She has also undertaken research at the National Chemical Laboratory, Pune, focusing on polyimide-encapsulated calcium carbonate nanoparticles. Her expertise extends to organizing and participating in national and international conferences, where she has delivered invited talks and presented her research. Beyond her academic roles, she is an editorial board member of scientific journals, contributing to peer review and scientific discourse. Dr. Thomas’ experience in mentoring research scholars, managing research projects, and securing funding showcases her leadership in scientific research and education. Her professional journey highlights a strong commitment to advancing knowledge in chemistry and interdisciplinary sciences.

Research Interest

Dr. Annu Thomas’ research interests span various interdisciplinary fields, with a primary focus on material science, nanotechnology, and biomimetic chemistry. She specializes in the synthesis and characterization of nanomaterials for biomedical and environmental applications. Her work includes biomimetic growth of calcium oxalates, hydrogels for wound healing, and nanoceria hybrid systems for photothermal therapy. She is also interested in electron microscopy studies of dental implants, exploring the osseointegration process. Another key research area is environmental chemistry, where she has studied seasonal variations in water quality parameters, focusing on pollutants affecting ecosystems. Dr. Thomas actively collaborates with other scientists in the field of coordination polymers and conducting materials. Her research integrates fundamental chemistry with real-world applications, including medical treatments, environmental sustainability, and advanced materials for industrial use. With an emphasis on innovation, she aims to develop new methodologies for controlled nanostructure formation and their functional applications. Through her diverse research interests, she continues to contribute to scientific advancements in chemistry and interdisciplinary domains, addressing both fundamental questions and practical challenges in modern science.

Research Skills

Dr. Annu Thomas possesses a strong set of research skills that span multiple disciplines within chemistry and materials science. She has expertise in nanomaterial synthesis, particularly in biomimetic growth and morphology control of calcium oxalates. Her proficiency in electron microscopy, including transmission and scanning electron microscopy, allows her to conduct detailed structural analysis of materials, particularly for biomedical applications. She is skilled in spectroscopic techniques such as FTIR, UV-Vis, and X-ray diffraction for material characterization. Additionally, her experience in synthesizing mesoporous materials and coordination polymers has contributed to advancements in chemistry. Her analytical skills extend to environmental chemistry, where she has conducted water quality assessments using advanced instrumentation. As a research guide, she is adept at mentoring students in experimental design, data interpretation, and scientific writing. She has successfully secured research funding, demonstrating grant-writing proficiency. Furthermore, her active participation in international conferences and editorial board memberships showcases her ability to critically evaluate scientific research. With a strong background in interdisciplinary research, Dr. Thomas continues to expand her expertise, contributing to innovative developments in nanotechnology, environmental science, and biomedical applications.

Awards and Honors

Dr. Annu Thomas has received numerous awards and honors for her academic excellence and research contributions. She was the university topper during both her B.Sc. and M.Sc. in Chemistry at Mahatma Gandhi University, Kerala. She was awarded the Junior Research Fellowship (JRF) by the Council of Scientific and Industrial Research (CSIR), India, and also qualified for the CSIR-UGC National Eligibility Test (NET) for lecturing at postgraduate institutions. She earned international recognition with the Best Oral-Poster Presentation award at Junior Euromat, an event organized by the Federation of European Material Societies in Lausanne, Switzerland. Her Ph.D. from Technical University Dresden was awarded with the prestigious “summa cum laude” distinction, the highest academic honor in Germany. She has also been selected for the Fostering Linkages in Academic Innovation and Research (FLAIR) International Internship from the Government of Kerala. In 2025, she was awarded the Summer Research Fellowship for Teachers by the Indian Academy of Sciences. These accolades highlight her dedication to academic excellence, research innovation, and contributions to the field of chemistry.

Conclusion

Dr. Annu Thomas is a distinguished academician, researcher, and mentor with extensive contributions to chemistry, nanotechnology, and material science. Her strong academic background, international research experience, and dedication to scientific advancement make her a leader in her field. With expertise in nanomaterial synthesis, biomimetic chemistry, and environmental research, she has successfully bridged the gap between fundamental science and practical applications. Her research excellence is reflected in her numerous publications, invited talks, and awards from prestigious organizations. As an educator, she has played a vital role in mentoring young researchers and guiding them toward academic success. Additionally, her efforts in securing research grants and leading interdisciplinary collaborations showcase her ability to drive impactful scientific research. Dr. Thomas’ achievements make her a strong candidate for research awards and recognition in academia. Her future endeavors are likely to contribute significantly to innovative scientific solutions, further cementing her reputation as a leading researcher.

Publications Top Notes

  1. Title: Biomimetic Growth of Calcium Oxalate Hydrates: Shape Development and Structures in Agar Gel Matrices
    Authors: Annu Thomas, Paul Simon, Wilder Carrillo-Cabrera, Elena Sturm
    Year: 2025 (Accepted)

  2. Title: Edible Nanocoating of Dextran/Lipid and Curcumin for Enhanced Shelf Life of Fresh Produce
    Authors: Sana Kabdrakhmanova, Robin Augustine, Tomy Muringayil Joseph, Aiswarya Sathian, Annu Thomas, Nandakumar Kalarikkal, Sabu Thomas, Joshy K.S, Anwarul Hasan
    Year: 2025

  3. Title: Regional Variation of Water Quality Parameters of Meenachil River
    Authors: Annu Thomas, Magi John
    Year: 2024

  4. Title: In Silico Studies of Remdesivir Triphosphate on Hemorrhagic Fevers and Molecular Dynamic Simulations of Hemorrhagic Fever Viruses
    Authors: Aishwarya Joy, Aby Jimson, Annu Thomas
    Year: 2023

  5. Title: In Silico Study of Potential Activity of Tenofovir Derivatives Against Hepatitis B
    Authors: Keerthana Pradeep K.V, Aby Jimson, Annu Thomas
    Year: 2023

  6. Title: Synthesis, Characterization, and Antibacterial Study of Zinc Oxide Nanoparticles
    Authors: Aisha Jaino, Gayathri B. Raj, Sandra A., Aby Jimson, Annu Thomas
    Year: 2023

  7. Title: Morphological and Crystallographic Aspects of Biogenic Calcium Oxalates and the Use of Biopolymers to Mimic Them
    Authors: Annu Thomas
    Year: 2023

  8. Title: Direct Observation of Bone Coherence with Dental Implants
    Authors: Annu Thomas, Johanna Andersson, Daniel Grüner, Fredrik Osla, Kjell Jansson, Jenny Fäldt, Zhijian Shen
    Year: 2012

  9. Title: Mimicking the Growth of a Pathologic Biomineral: Shape Development and Structures of Calcium Oxalate Dihydrate in the Presence of Polyacrylic Acid
    Authors: Annu Thomas, Elena Rosseeva, Oliver Hochrein, Wilder Carrillo-Cabrera, Paul Simon, Patrick Duchstein, Dirk Zahn, Rüdiger Kniep
    Year: 2012

  10. Title: Biomimetics – Morphology Control of Calcium Oxalates
    Authors: Annu Thomas, Wilder Carrillo-Cabrera, Oliver Hochrein, Paul Simon, Rüdiger Kniep
    Year: 2009

  11. Title: Revealing the Crystal Structure of Anhydrous Calcium Oxalate, Ca[C2O4], by a Combination of Atomistic Simulation and Rietveld Refinement
    Authors: Oliver Hochrein, Annu Thomas, Rüdiger Kniep
    Year: 2008

  12. Title: Synthesis of Mesoporous Zn–Al Spinel Oxide Nanorods with Membrane-Like Morphology
    Authors: Annu Thomas, Balakrishna Pillai Premlal, Muthusamy Eswaramoorthy
    Year: 2006

Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Prof. Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Associate Professor at Sungkyunkwan University, South Korea

Dr. Oh Seok Kwon is an accomplished researcher and Associate Professor at the SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, SungKyunKwan University, South Korea. Born on April 13, 1979, Dr. Kwon has made significant contributions to the fields of nanotechnology, biosensors, and chemical engineering. With an impressive academic background and a career marked by prestigious positions, including postdoctoral roles at Yale University and MIT, Dr. Kwon has focused his research on graphene-based materials and their applications in flexible sensors, bioengineering, and environmental monitoring. His work has garnered wide recognition, reflected in over 5,000 citations and numerous high-impact publications in top-tier journals. Dr. Kwon also serves as a guest editor for Sensors and Polymers and holds a leadership role in advancing nanotechnology research globally. He is committed to advancing scientific knowledge while contributing to technological innovations with practical applications in health, environmental, and industrial sectors.

Professional Profile

Education:

Dr. Oh Seok Kwon earned his Doctor of Philosophy (Ph.D.) in Chemical and Biological Engineering from Seoul National University in 2013, where he conducted groundbreaking research on graphene materials and their applications in flexible sensors. Prior to his Ph.D., he obtained a Master of Science in Chemical Engineering from the same institution in 2010, where he focused on biosensor applications using polypyrrole nanotubes. His academic journey began with a Bachelor of Science in Chemistry from Yeungnam University in South Korea in 2007. His educational path is marked by strong mentorship, including guidance from renowned professors like Jyongsik Jang and Prof. Jaehong Kim. Dr. Kwon’s extensive academic experience laid the foundation for his subsequent research, making him an expert in the synthesis of advanced materials and the development of next-generation sensors.

Professional Experience:

Dr. Oh Seok Kwon currently serves as an Associate Professor at the SKKU Advanced Institute of Nanotechnology and the Department of Nano Engineering at SungKyunKwan University. Before joining SKKU, Dr. Kwon was an Associate Professor at the University of Science and Technology (UST), South Korea, where he contributed significantly to research on nanomaterials and biosensors. He has also worked as a Senior Researcher at the Infectious Research Center at the Korea Research Institute of Bioscience and Biotechnology. In his earlier career, Dr. Kwon held postdoctoral research positions at prestigious institutions such as Yale University and the Massachusetts Institute of Technology, where he advanced his expertise in environmental engineering and material science. His leadership roles in various academic and research initiatives highlight his influence in the field of nanotechnology and his commitment to advancing scientific research.

Research Interests:

Dr. Oh Seok Kwon’s research interests are primarily focused on nanotechnology, graphene materials, and biosensor development. He has pioneered the use of chemical vapor deposition (CVD) to create graphene and its integration into flexible sensor technologies, contributing to advancements in wearable electronics and environmental monitoring. His research also delves into biosensors, specifically those employing polypyrrole nanotubes and graphene for chemical and biological detection. Additionally, Dr. Kwon is exploring the applications of nanomaterials in tissue regeneration, drug delivery, and drug evaluation through 3D bioprinting technologies. He is particularly interested in ultra-sensitive detection methods using energy transfer strategies between nanomaterials, such as graphene and gold nanorods, to improve the performance of sensors. His interdisciplinary work bridges chemistry, biology, and nanotechnology to develop practical solutions for health, environmental, and industrial challenges.

Research Skills:

Dr. Kwon possesses extensive expertise in material science, particularly in the fabrication and application of nanomaterials such as graphene and polypyrrole nanotubes. He is highly skilled in chemical vapor deposition (CVD), a technique critical for growing high-quality graphene. Additionally, Dr. Kwon’s proficiency in sensor design and fabrication is evident in his work on flexible and ultra-sensitive biosensors for environmental and medical applications. His skills extend to the integration of nanomaterials in bioengineering, including tissue regeneration and drug delivery systems. Dr. Kwon is also proficient in various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopy methods. His multidisciplinary skills in nanomaterials, sensor technology, and bioengineering enable him to lead cutting-edge research projects across diverse scientific fields.

Awards and Honors:

Dr. Oh Seok Kwon’s exceptional research contributions have earned him numerous accolades. He has been widely recognized for his pioneering work in nanotechnology and sensor development. His research publications have received substantial citation recognition, and his h-index of 42 demonstrates the long-lasting impact of his scholarly work. Additionally, Dr. Kwon has served in prestigious roles such as Guest Editor for special issues of MDPI journals Sensors and Polymers, indicating his leadership within the academic community. Although specific awards and honors are not explicitly listed, his role in top-tier research institutes and the editorial board of high-impact journals showcases his standing as a respected figure in the scientific community. His ongoing work continues to shape the future of biosensors and nanotechnology, positioning him for further honors.

Conclusion:

Dr. Oh Seok Kwon is a distinguished researcher with a strong academic background and a proven track record in nanotechnology, biosensors, and chemical engineering. His impressive body of work, particularly in the development of graphene-based materials for flexible sensors, has made significant contributions to various scientific disciplines. With an outstanding citation record and leadership roles in prominent scientific journals, Dr. Kwon is highly regarded in his field. His research has practical implications in health, environmental, and industrial applications, underscoring the societal impact of his work. Dr. Kwon’s multidisciplinary expertise and ongoing commitment to scientific innovation place him among the leading researchers in his field. His career continues to inspire advancements in nanotechnology and biosensor technologies, contributing to global scientific progress.

Publication Top Notes

  • Ultrasensitive flexible graphene-based field-effect transistor (FET)-type bioelectronic nose
    • Authors: SJ Park, OS Kwon, SH Lee, HS Song, TH Park, J Jang
    • Year: 2012
    • Citations: 386
  • Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer
    • Authors: OS Kwon, SJ Park, JY Hong, AR Han, JS Lee, JS Lee, JH Oh, J Jang
    • Year: 2012
    • Citations: 291
  • Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses
    • Authors: H Yoon, SH Lee, OS Kwon, HS Song, EH Oh, TH Park, J Jang
    • Year: 2009
    • Citations: 257
  • Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
    • Authors: JS Lee, OS Kwon, SJ Park, EY Park, SA You, H Yoon, J Jang
    • Year: 2011
    • Citations: 242
  • Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing
    • Authors: OS Kwon, SJ Park, JS Lee, E Park, T Kim, HW Park, SA You, H Yoon, …
    • Year: 2012
    • Citations: 235
  • High-performance flexible graphene aptasensor for mercury detection in mussels
    • Authors: JH An, SJ Park, OS Kwon, J Bae, J Jang
    • Year: 2013
    • Citations: 229
  • Conducting nanomaterial sensor using natural receptors
    • Authors: OS Kwon, HS Song, TH Park, J Jang
    • Year: 2018
    • Citations: 201
  • Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo
    • Authors: OS Kwon, HS Song, J Conde, H Kim, N Artzi, JH Kim
    • Year: 2016
    • Citations: 199
  • Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts
    • Authors: H Kim, OS Kwon, S Kim, W Choi, JH Kim
    • Year: 2016
    • Citations: 188
  • A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor
    • Authors: OS Kwon, SJ Park, J Jang
    • Year: 2010
    • Citations: 166

 

Chithra K | Chemical Engineering | Best Researcher Award

Dr. Chithra K | Chemical Engineering | Best Researcher Award

Professor at Anna University, India

Dr. K. Chithra is a distinguished professor in the Department of Chemical Engineering at Anna University, Chennai, with a robust background in both academia and industry. With over 25 years of experience, her career spans across teaching, research, and consultancy, contributing to several high-impact projects in the field of environmental engineering. Her research focuses primarily on wastewater treatment, nanotechnology, environmental sustainability, and pollution control. She has authored numerous publications in leading journals and co-investigated projects with prominent institutions like ISRO. Dr. Chithra is also involved in industry collaborations for pollution studies and process optimization, making her work relevant to both scientific and industrial communities. She exemplifies a commitment to blending academic knowledge with practical applications to address pressing environmental challenges.

Professional Profile

Education:

Dr. K. Chithra completed her B.Tech, M.Tech, and Ph.D. in Chemical Engineering from A.C. Tech Campus, Anna University, Chennai. Her strong educational background has been the foundation of her career, equipping her with the technical skills and knowledge to excel in both academia and industry. Her education at a renowned institution provided a comprehensive understanding of chemical processes, environmental engineering, and research methodologies. This academic training has enabled her to take on significant research challenges, produce impactful publications, and contribute to the scientific community with notable expertise.

Professional Experience:

Dr. K. Chithra’s professional experience is marked by roles that reflect both leadership and technical expertise. She is currently a professor at Anna University, Chennai, where she has taught and mentored numerous students. Her earlier positions as an associate professor and assistant professor at SRMIST also contributed significantly to her teaching and research profile. In addition to her academic roles, Dr. Chithra served as an Assistant Engineer at the Tamil Nadu Pollution Control Board (TNPCB), where she gained valuable practical experience in environmental management and pollution control. Her professional journey showcases her ability to lead, collaborate, and innovate within both educational and industrial sectors.

Research Interest:

Dr. Chithra’s research interests span a wide range of topics within the chemical engineering and environmental sustainability fields. She is particularly focused on wastewater treatment processes, the application of nanotechnology for environmental remediation, and the development of sustainable materials for pollution control. Her research also explores the use of bio-based materials for heavy metal removal and the design of efficient waste management systems. She has a keen interest in investigating the mechanisms behind chemical reactions, as evidenced by her co-investigation on dielectric spectroscopy with ISRO. Dr. Chithra’s interdisciplinary approach to research has led to innovative solutions for contemporary environmental issues, making her work both relevant and impactful.

Research Skills:

Dr. Chithra possesses a diverse set of research skills that encompass both theoretical and applied aspects of chemical engineering. Her expertise includes experimental design, reaction kinetics, nanomaterials synthesis, environmental modeling, and simulation. She is skilled in advanced analytical techniques, such as dielectric spectroscopy and simulation tools like ANSYS Fluent and Aspen Plus, which she uses for process optimization and environmental impact assessments. Dr. Chithra’s ability to integrate practical problem-solving with cutting-edge scientific techniques has resulted in numerous successful projects and publications. Her strong data analysis, problem-solving, and critical thinking abilities ensure that her research continues to push the boundaries of environmental engineering.

Awards and Honors:

Dr. K. Chithra’s career is marked by several awards and honors for her contributions to chemical engineering and environmental sustainability. Her work in pollution control, wastewater treatment, and the application of nanotechnology in environmental science has been widely recognized in academic circles. Although specific awards are not detailed in the provided information, her consistent publication in high-impact journals and successful industry collaborations stand as a testament to her excellence. Further, her involvement in significant research projects, including those funded by prominent agencies like ISRO, highlights the recognition she has earned within both academic and industrial communities.

Conclusion:

Dr. K. Chithra is a highly accomplished academic and researcher, whose expertise in chemical engineering and environmental sustainability makes her an ideal candidate for the Best Researcher Award. Her strong academic foundation, extensive research experience, and active involvement in both industry and academia have led to impactful contributions to the field. Dr. Chithra’s research on pollution control, wastewater treatment, and nanotechnology has provided innovative solutions to pressing environmental challenges. While she has an impressive body of work, further expansion of international collaborations and patentable innovations would further strengthen her profile. Overall, Dr. Chithra exemplifies the qualities of a leader in research and continues to push the boundaries of her field with a commitment to sustainability and environmental impact.

Saeid Maghami | Chemical Engineering | Best Researcher Award

Dr. Saeid Maghami | Chemical Engineering | Best Researcher Award

Assistant Professor at Yazd University, Iran

Dr. Saeid Maghami is an accomplished researcher and educator specializing in chemical and polymer engineering. Currently serving as a faculty member at Yazd University, Iran, he has built an impressive career in both academia and industry. Dr. Maghami’s research focuses on innovative areas such as membrane gas separation, polymeric and mixed matrix membranes, and water treatment. With a robust educational background, international research exposure, patents, and numerous high-impact publications, he has contributed significantly to advancing his field. His career reflects a commitment to combining theoretical research with practical applications, addressing industrial and societal challenges through engineering innovation.

Professional Profile

Education

Dr. Maghami holds a PhD in Chemical Engineering from Isfahan University of Technology, Iran (2013-2019), where he focused on modeling operational temperature and pressure effects on gas separation properties of membranes. He earned his MSc in Chemical Engineering from Shiraz University, Iran (2010-2012), where he explored CO2 removal via microalgae. His undergraduate studies in chemical engineering at Sahand University of Technology, Iran (2006-2010), laid the foundation for his research, focusing on environmental pollutants. His educational journey reflects a strong emphasis on tackling real-world engineering problems through innovative approaches.

Professional Experience

Dr. Maghami has a diverse professional background encompassing both academia and industry. He currently serves as a faculty member in the Department of Chemical and Polymer Engineering at Yazd University. He previously worked as an engineering manager at Shirin Salamat Partikan Company, focusing on industrial-scale isomalt production from sucrose. His teaching experience spans over a decade, during which he has taught courses like Process Control, Heat Transfer, and Industrial Chemistry. Additionally, his eight-month research visit to the University of Zaragoza, Spain, highlights his commitment to global academic collaboration and advanced research.

Research Interests

Dr. Maghami’s research interests lie in cutting-edge areas of chemical and polymer engineering. He focuses on membrane gas separation, modeling the performance of polymeric and mixed matrix membranes, and characterizing interfacial regions in polymer-particle composites. His work also includes water treatment processes and the production and purification of sugar alcohols, reflecting a balance between theoretical exploration and industrial application. Dr. Maghami’s interdisciplinary approach addresses critical challenges in sustainability and innovation.

Research Skills

Dr. Maghami possesses advanced skills in research methodologies and engineering tools. His expertise includes mathematical modeling, membrane performance optimization, and interfacial morphology characterization. He is proficient in using software like MATLAB, HYSIS, and ASPEN for process simulation and data analysis. These skills, combined with his deep understanding of polymer science and engineering principles, enable him to conduct impactful research and develop practical solutions to complex problems.

Awards and Honors

Dr. Maghami’s contributions to chemical and polymer engineering have been recognized through various awards and honors. Notably, he holds a patent on characterizing polymer-particle interfaces in composite materials. His research papers have been published in top-tier journals, and he has actively participated in international conferences. These achievements underscore his innovation and dedication to advancing his field.

Conclusion

Dr. Saeid Maghami is a distinguished researcher whose career epitomizes the integration of academic excellence, industrial innovation, and practical application. His extensive research contributions, combined with his teaching and leadership roles, demonstrate his commitment to advancing chemical and polymer engineering. With a strong foundation in education, exceptional research skills, and global collaborations, Dr. Maghami is well-positioned to make continued significant contributions to his field.

Publication Top Notes

  1. A comprehensive modeling approach for determining the role and nature of interfacial morphology in mixed matrix membranes
    Authors: Zarabadipoor, M., Maghami, S., Mehrabani-Zeinabad, A., Sadeghi, M.
    Year: 2021
    Journal: Computational Materials Science
    Citations: 5
  2. Influence of solvent, Lewis acid–base complex, and nanoparticles on the morphology and gas separation properties of polysulfone membranes
    Authors: Maghami, S., Sadeghi, M., Baghersad, S., Zornoza, B.
    Year: 2021
    Journal: Polymer Engineering and Science
    Citations: 6
  3. Gas separation through polyurethane–ZnO mixed matrix membranes and mathematical modeling of the interfacial morphology
    Authors: Fakhar, A., Maghami, S., Sameti, E., Shekari, M., Sadeghi, M.
    Year: 2020
    Journal: SPE Polymers
    Citations: 11
  4. Determination of maximum possible contribution of porous particles in gas transport properties of their corresponding mixed matrix membranes
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A., Simiari, M.
    Year: 2020
    Journal: SPE Polymers
    Citations: 3
  5. Influence of solvent and nanoparticles on the morphology and gas separation properties of copolyimide membranes
    Authors: Maghami, S., Sadeghi, M., Khoshkam, M., Chenar, M.P.
    Year: 2020
    Journal: Journal of Applied Polymer Science
    Citations: 6
  6. Characterization of the polymer/particle interphase in composite materials by molecular probing
    Authors: Maghami, S., Shahrooz, M., Mehrabani-Zeinabad, A., Zornoza, B., Sadeghi, M.
    Year: 2020
    Journal: Polymer
    Citations: 21
  7. Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes
    Authors: Maghami, S., Mehrabani-Zeinabad, A., Sadeghi, M., Téllez, C., Coronas, J.
    Year: 2019
    Journal: Chemical Engineering Science
    Citations: 34
  8. Influence of blend composition and silica nanoparticles on the morphology and gas separation performance of PU/PVA blend membranes
    Authors: Shirvani, H., Maghami, S., Isfahani, A.P., Sadeghi, M.
    Year: 2019
    Journal: Membranes
    Citations: 19
  9. The Role of Interfacial Morphology in the Gas Transport Behavior of Nanocomposite Membranes: A Mathematical Modeling Approach
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A., Zarabadi, M., Ghalei, B.
    Year: 2019
    Journal: Industrial and Engineering Chemistry Research
    Citations: 14
  10. Recognition of polymer-particle interfacial morphology in mixed matrix membranes through ideal permeation predictive models
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A.
    Year: 2017
    Journal: Polymer Testing
    Citations: 16

 

Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Associate Professor at Abai University, Kazakhstan

Yerbol Tileuberdi is an accomplished researcher and associate professor with over 15 years of experience in chemical engineering, petrochemistry, and nanotechnology. His work primarily focuses on sustainable practices in heavy oil processing, bitumen production, and carbon material development. Yerbol’s extensive academic background, paired with his practical research at the Institute of Combustion Problems, highlights his commitment to ecological innovation. Recognized by numerous awards and honors, he has made impactful contributions through research, patents, and publications. His international collaborations, including multiple internships at Berlin Technical University and other esteemed institutions, have helped shape his expertise in global engineering and environmental solutions. Yerbol’s academic and research achievements make him a notable figure in chemical engineering and sustainable technology development.

Professional Profile

Education

Yerbol Tileuberdi pursued all his higher education at Al-Farabi Kazakh National University (KazNU). He completed his undergraduate studies in 2008, earning a Bachelor’s degree, followed by a Master’s degree in 2010. He later obtained a Ph.D. in 2014 from KazNU, specializing in chemical engineering. Yerbol’s academic journey has equipped him with advanced theoretical knowledge and practical insights, particularly in petrochemistry and nanotechnology. His education laid a strong foundation for his ongoing research work and established a career path that includes leadership roles at Kazakh institutions. Yerbol has further enhanced his expertise through foreign internships and research opportunities at renowned universities, including Berlin Technical University and Petroleum University of China.

Professional Experience

Yerbol Tileuberdi serves as an associate professor at Abai Kazakh National Pedagogical University (KazNPU) and is also a leading researcher at the Institute of Combustion Problems. Over the past 15 years, he has amassed a wealth of experience in chemical engineering, focusing on petrochemistry, nanotechnology, and ecological solutions. His roles involve both teaching and conducting advanced research, emphasizing sustainable practices in energy and material science. Yerbol’s professional journey reflects his dedication to academia and his expertise in addressing complex chemical engineering challenges. His position as a leading researcher has allowed him to contribute significantly to scientific advancements, particularly in recycling and carbon material production.

Research Interests

Yerbol Tileuberdi’s research interests span several areas within chemical engineering and environmental sustainability. He focuses on processing heavy oil, natural bitumen, oil sands, and oil shale, aiming to develop efficient methods for producing and modifying bitumen. He is also interested in hydrocarbons’ oxidation and asphaltene structures, exploring ways to enhance fuel quality and sustainability. Additionally, Yerbol is committed to recycling worn tires and producing carbon materials, which align with his goal of developing eco-friendly solutions in petrochemical engineering. His work on flameless heaters showcases his interest in innovative, sustainable technologies that reduce environmental impact, highlighting his commitment to advancing both ecological and industrial applications.

Research Skills

Yerbol possesses a diverse set of research skills that reflect his extensive experience in chemical engineering and petrochemistry. He is skilled in analyzing complex hydrocarbons, studying bitumen and asphaltene structures, and processing oil sands. His technical expertise extends to sustainable technologies, such as recycling and carbon material production, which contribute to the development of eco-friendly solutions. Yerbol’s skills in hydrocarbon oxidation and material modification are particularly valuable for his work on fuel processing and bitumen improvement. He is proficient in laboratory techniques necessary for his research, complemented by a strong ability to lead and conduct complex experiments at the Institute of Combustion Problems. His practical and analytical skills underscore his commitment to innovative chemical engineering.

Awards and Honors

Yerbol Tileuberdi has received numerous awards and honors that recognize his achievements in research and education. In 2024, he won the “Best Paper Award” from the Engineered Science Society and the “Best Youth Scientist” title at the Institute of Combustion Problems. Yerbol was also awarded the prestigious state grant for “The Best Teacher of Higher Education Institution” in 2018 and held the DAAD scholarship in the same year, marking his contributions to teaching and research. Earlier, he received the state scholarship for talented young scientists (2015–2016) and the “Best Youth Scientist” award at KazNU. These honors emphasize Yerbol’s dedication to excellence in both research and teaching, showcasing his influence in the academic and scientific communities.

Conclusion

Yerbol Tileuberdi’s extensive research background, notable achievements, and contributions to his field make him a strong contender for the Best Researcher Award. His experience in petrochemistry and commitment to sustainable practices position him as an impactful researcher in the field. Focusing on publishing in more high-impact journals and furthering interdisciplinary projects could further enhance his research influence and international recognition.

Publications Top Notes

  • Demetallization and desulfurization of heavy oil residues by adsorbents
    Authors: Y. Ongarbayev, S. Oteuli, Y. Tileuberdi, G. Maldybaev, S. Nurzhanova
    Journal: Petroleum Science and Technology
    Year: 2019
    Citations: 29
  • Study of asphaltene structure precipitated from oil sands
    Authors: F. R. Sultanov, Y. Tileuberdi, Y. K. Ongarbayev, Z. A. Mansurov, K. A. Khasseinov, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2013
    Citations: 23
  • Changing the structure of resin-asphaltenes molecules in cracking
    Authors: Y. Imanbayev, Y. Tileuberdi, Y. Ongarbayev, Z. Mansurov, A. Batyrbayev, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2017
    Citations: 18
  • Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae
    Authors: K. Zhakipbekov, A. Turgumbayeva, R. Issayeva, A. Kipchakbayeva, et al.
    Journal: Pharmaceuticals
    Year: 2023
    Citations: 17
  • Thermocatalytic cracking of the natural bitumens of Kazakhstan
    Authors: Y. K. Ongarbayev, A. K. Golovko, E. B. Krivtsov, Y. I. Imanbayev, E. Tileuberdi, et al.
    Journal: Solid Fuel Chemistry
    Year: 2016
    Citations: 17
  • Functionalization and modification of bitumen by silica nanoparticles
    Authors: A. Zhambolova, A. L. Vocaturo, Y. Tileuberdi, Y. Ongarbayev, P. Caputo, et al.
    Journal: Applied Sciences
    Year: 2020
    Citations: 15
  • High temperature transformation of tar-asphaltene components of oil sand bitumen
    Authors: Y. Imanbayev, Y. Ongarbayev, Y. Tileuberdi, E. Krivtsov, A. Golovko, et al.
    Journal: Journal of the Serbian Chemical Society
    Year: 2017
    Citations: 15
  • Rice husk ash for oil spill cleanup
    Authors: K. Kudaibergenov, Y. Ongarbayev, M. Zulkhair, M. Tulepov, Y. Tileuberdi
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 14
  • Study of natural bitumen extracted from oil sands
    Authors: Y. Tileuberdi, Y. Ongarbaev, B. Tuleutaev, Z. Mansurov, F. Behrendt
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 12
  • Structural study and upgrading of Kazakhstan oil sands
    Authors: Y. Tileuberdi, Z. A. Mansurov, Y. K. Ongarbayev, B. K. Tuleutaev
    Journal: Eurasian Chemico-Technological Journal
    Year: 2015
    Citations: 11

 

 

Qin Guohui | Chemical Engineering | Best Researcher Award

Prof. Qin Guohui | Chemical Engineering | Best Researcher Award

professor, College of Chemical Engineering, Qingdao University of Science and Technology, China

Dr. Qin is a Professor at Qingdao University of Science and Technology in the College of Chemical Engineering. With a Ph.D. in Chemical Engineering, her research centers on developing advanced materials for lithium, sodium, and potassium batteries. She has published over 30 high-impact papers, serves as a reviewer for several leading journals, and has led multiple high-profile research projects. Dr. Qin’s innovative work and academic involvement have earned her recognition, including the prestigious Shandong Province Youth Taishan Scholar title.

Professional Profile

ORCID Profile

Education

Dr. Qin completed her B.S. in 2009 at Qilu University of Technology, followed by an M.S. in 2012 from Tianjin University of Technology. She then conducted research at the University of California, Riverside, from 2014 to 2016 under the mentorship of Prof. Yadong Yin. In 2017, Dr. Qin earned her Ph.D. in Chemical Engineering from Tianjin University, where she specialized in advanced materials for energy storage.

Professional Experience

Dr. Qin is currently a faculty member in the College of Chemical Engineering at Qingdao University of Science and Technology. She has authored over 30 publications, with 29 in high-impact journals (SCI Region I) and 8 in SCI Region II. In addition to her research, she serves as a peer reviewer for numerous prestigious journals, including Applied Catalysis B: Environmental, Journal of Power Sources, Electrochimica Acta, and Chemical Engineering Journal. Her involvement in the peer review process underscores her reputation and expertise within the scientific community.

Research Interests

Dr. Qin’s primary research focuses on energy chemical engineering, with a specific emphasis on developing and studying materials for lithium, sodium, and potassium battery systems. Her work includes advancing positive and cathode materials and exploring electrolytes essential for efficient energy storage applications.

Research Projects

Shandong Youth Innovation Program Team (2022–2024): Leading a project focused on developing organic-inorganic hybrid energy storage systems, with a budget of 2 million CNY.

National Natural Science Foundation of China (NSFC) Project (2022–2025): Leading a project on constructing self-healing polyamino acid/hollow black phosphorus composite electrodes for potassium storage (600,000 CNY).

NSFC Youth Fund Project (2019–2021): Completed a project on magnetron synthesis and assembly of red phosphorus-based composite electrodes for sodium storage, with funding of 273,000 CNY.

Representative Publications

Dr. Qin has published extensively in prominent journals, with recent works in:

Angewandte Chemie International Edition (2021, 2023)

Advanced Materials (2023)

Advanced Energy Materials (2023, 2024)

Honors and Research Awards

Dr. Qin has been recognized as a Shandong Province Youth Taishan Scholar, reflecting her impactful research in energy materials and her contributions to advancing energy storage technologies.

Conclusion

 

Publications Top Notes

 

 

 

Sun Chenyu | Chemical Engineering | Best Researcher Award

Mr. Sun Chenyu | Chemical Engineering | Best Researcher Award

PhD candidate at Shandong University, China

Sun Chenyi is a dedicated researcher in the field of materials science, currently pursuing a combined Master’s and Ph.D. degree at Shandong University. His work primarily focuses on the development of advanced energy storage systems, particularly lithium-sulfur batteries, where he has made significant contributions through innovative research and publications. Sun has demonstrated a strong commitment to academic excellence, leading to several accolades and recognition for his research achievements. With a solid foundation in materials science and engineering, Sun possesses a unique blend of theoretical knowledge and practical skills, making him a valuable asset to the scientific community. His leadership experience as a student council president further highlights his ability to manage projects and collaborate effectively with peers. As he continues to advance his research, Sun is well-positioned to make meaningful contributions to the field, focusing on enhancing battery technologies and exploring new materials for energy applications.

Professional Profile

Education

Sun Chenyi’s educational journey began with a Bachelor’s degree in Materials Science and Engineering from Shandong University of Science and Technology, where he graduated in July 2020. His coursework included fundamental subjects such as analytical chemistry, physical chemistry, and solid-state physics, laying a strong groundwork for his future studies. Since September 2020, he has been enrolled in a dual Master’s and Ph.D. program at Shandong University, specializing in materials and chemical engineering. His advanced studies encompass modern research methodologies in materials, thermodynamics, and electrochemical kinetics, equipping him with essential theoretical and practical skills. Sun’s academic endeavors have not only deepened his understanding of materials science but also fostered his interest in the electrochemical behavior of materials, particularly in energy storage applications. This rigorous education has shaped him into a competent researcher, ready to tackle complex challenges in the field.

Professional Experience

Sun Chenyi has accumulated valuable professional experience through his ongoing research at Shandong University. He has been actively involved in projects focusing on lithium metal anodes and lithium-sulfur batteries since 2020. His work addresses critical challenges in the commercialization of lithium batteries, such as dendrite growth and volume expansion of lithium metal anodes. Sun has successfully designed and modified current collectors to enhance the stability of lithium metal batteries, resulting in multiple high-impact publications. Additionally, he is engaged in research measuring diffusion coefficients of metallic melts under strong magnetic fields, aiming to improve the understanding of liquid-solid phase transitions. His hands-on experience with cutting-edge research techniques, combined with his leadership as a student council president at his previous university, reflects his capability to lead and collaborate effectively in diverse research settings. Sun’s professional background demonstrates his commitment to advancing materials science and energy technologies.

Research Interests

Sun Chenyi’s research interests primarily focus on the development of advanced materials for energy storage applications, specifically lithium-sulfur (Li-S) batteries and lithium metal anodes. He is particularly interested in addressing the challenges associated with lithium metal batteries, including dendrite formation and polysulfide shuttle effects, which hinder their commercial viability. Sun’s research aims to enhance the electrochemical performance and stability of these batteries through innovative material design and modification techniques. He explores the use of functional materials and structural engineering to optimize electrode configurations, thereby improving charge/discharge efficiency and battery lifespan. Additionally, his work encompasses theoretical calculations related to adsorption energy and electronic properties, utilizing advanced computational tools like VASP and Materials Studio. Sun is keen on expanding his research scope to include other areas of materials science and engineering, aiming to contribute to the development of sustainable energy solutions.

Research Skills

Sun Chenyi possesses a robust set of research skills that make him proficient in the field of materials science. He is well-versed in first-principles calculations and computational modeling, utilizing software tools such as VASP and Materials Studio for electrochemical analyses. His ability to perform independent theoretical calculations allows him to analyze adsorption energies and electronic properties effectively. In addition to his computational expertise, Sun has hands-on experience in experimental techniques related to battery fabrication and characterization. He is skilled in synthesizing novel materials and modifying existing structures to enhance electrochemical performance. Sun’s research also includes a strong understanding of thermodynamic principles and kinetics, which are critical for exploring new battery technologies. Furthermore, his leadership and organizational skills, demonstrated through his experience as a student council president, enhance his ability to collaborate with colleagues and manage research projects efficiently. Together, these skills position Sun as a competent and innovative researcher in the field.

Awards and Honors

Sun Chenyi has received numerous awards and honors throughout his academic career, recognizing his dedication and excellence in research. In 2024, he was awarded the Excellent Academic Achievement Award for his outstanding contributions to the field of materials science, particularly in the area of lithium-sulfur batteries. Additionally, he has earned several academic scholarships from Shandong University, including the First-Class Academic Scholarship in 2021 and the Second-Class Academic Scholarship in 2023, which reflect his consistent academic performance. His commitment to academic excellence was also recognized with the Freshman Scholarship during his initial years at the university in 2020 and 2022. These accolades underscore Sun’s dedication to his research endeavors and his potential for future contributions to the scientific community. As he continues his academic journey, these honors serve as a testament to his capabilities and commitment to advancing materials science.

Publications Top Notes

  1. Publication: 3D lithiophilic collector coated by amorphous g-C3N4 enabling Ultra-Stable cycling Li metal batteries
    Authors: Gao, L., Sun, C., Li, X., Bai, Y., Bian, X.
    Year: 2024
  2. Publication: Enhanced Al-Storage Performance by Electronic Properties Optimization and Structural Customization in MOF-Derived Heterostructure
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  3. Publication: Configurational Entropy Strategy Enhanced Structure Stability Achieves Robust Cathode for Aluminum Batteries
    Authors: Kang, R., Zhang, D., Du, Y., Chen, G., Zhang, J.
    Year: 2024
    Citations: 4
  4. Publication: Enhanced d-p Orbital Hybridization for Lithium Polysulfide Capturing and Lithium Deposition Inducing of AgVO3 Skeleton Enabling High-Performance Li-Sulfur Batteries
    Authors: Sun, C., Gao, L., Rong, W., Bai, Y., Bian, X.
    Year: 2024
  5. Publication: Functional lithiophilic skeleton/evolving lithium sulfide artificial protective layer for dendrite-free Li metal anode
    Authors: Sun, C., Gao, L., Rong, W., Tian, X., Bian, X.
    Year: 2024
    Citations: 3
  6. Publication: Modification of 2D materials using MoS2 as a model for investigating the Al-storage properties of diverse crystal facets
    Authors: Kang, R., Du, Y., Zhang, D., Chen, G., Zhang, J.
    Year: 2023
    Citations: 6
  7. Publication: Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework
    Authors: Kang, R., Du, Y., Zhou, W., Chen, G., Zhang, J.
    Year: 2023
    Citations: 9
  8. Publication: Ultrafast microwave-induced synthesis of lithiophilic oxides modified 3D porous mesh skeleton for high-stability Li-metal anode
    Authors: Sun, C., Gao, L., Yang, Y., Zhang, D., Bian, X.
    Year: 2023
    Citations: 11
  9. Publication: Amorphous TiO2-x modified Sb nanowires as a high-performance sodium-ion battery anode
    Authors: Gao, L., Lu, D., Yang, Y., Liu, S., Bian, X.
    Year: 2022
    Citations: 8
  10. Publication: Morphology-tunable synthesis of CuO modified with Cu-Zn/Cu-Sn intermetallic compounds as high-performance anode for lithium-ion batteries
    Authors: Zhang, D., Wang, C., Yang, Y., Sun, C., Bian, X.
    Year: 2022
    Citations: 11

 

 

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Assistant Professor at Jazan University, Saudi Arabia.

Dr. Mohammad Ehtisham Khan is an Assistant Professor in the Department of Chemical Engineering at Jazan University, Saudi Arabia. With a robust academic and research background, he specializes in nanotechnology, wastewater treatment, and environmental remediation. Dr. Khan has published numerous high-impact research articles in leading journals and has played a key role in advancing chemical engineering technologies, particularly in sustainable practices for water purification. His work spans diverse fields including nanocomposites, biosensors, and renewable energy applications, showcasing his commitment to addressing environmental challenges. Dr. Khan’s international exposure through postdoctoral research in South Korea and extensive experience in academia highlights his dedication to fostering scientific innovation. He has earned multiple prestigious awards and consistently contributes to scientific literature, editorial responsibilities, and advanced research projects, further solidifying his reputation as a leading researcher in his field.

Profile👤

Google Scholar

Education📝

Dr. Khan holds a Ph.D. in Chemical Engineering from Yeungnam University, South Korea, where he completed a dissertation on graphene-based nanocomposites for photocatalytic and photoelectrochemical applications. His doctoral research encompassed advanced coursework and experimental work, achieving an A+ in all subjects. Prior to his Ph.D., he earned a Master’s in Technology (M. Tech) in a related engineering discipline. He also undertook a postdoctoral research position at the same university, contributing to cutting-edge studies in chemical engineering. His academic journey is marked by a strong focus on nanotechnology and environmental sciences, equipping him with the expertise to address complex challenges in water purification and renewable energy systems. His education, combined with his global exposure, positions him as an expert in chemical engineering technology.

Experience👨‍🏫

Dr. Khan has accumulated a wealth of academic and research experience. He is currently an Assistant Professor in the Department of Chemical Engineering at Jazan University, where he has been since 2018. Prior to this, he held a postdoctoral research associate position at Yeungnam University, South Korea, working on advanced chemical engineering projects. Dr. Khan also served as a researcher at the Institute of Clean Technology and the School of Chemical Engineering at Yeungnam University, focusing on sustainable technologies for environmental applications. Additionally, he has taken on administrative responsibilities as the head of the Chemical Engineering Technology Department at Jazan University, overseeing academic programs and student projects. His experience also includes supervising final-year projects, mentoring undergraduate students, and managing multiple funded research projects.

Research Interest🔬 

Dr. Khan’s primary research interests lie in the development of nanotechnology-based solutions for environmental and industrial applications. His work focuses on the synthesis of nanocomposites and their use in photocatalytic and photoelectrochemical processes, particularly for water treatment and energy applications. He is also deeply involved in the fabrication of biosensors for environmental monitoring and medical diagnostics. Dr. Khan is interested in the intersection of chemical engineering with sustainability, exploring carbon-based nanomaterials for wastewater purification and renewable energy storage. His ongoing research includes projects on smart nanostructured catalysts, recycling of wastewater, and the development of affordable, environmentally-friendly materials for energy and environmental applications. His expertise positions him at the forefront of efforts to address global environmental challenges through innovative chemical engineering technologies.

Awards and Honors🏆

Dr. Khan has been recognized for his significant contributions to chemical engineering and environmental science. He was listed among the top 2% of scientists in the world based on a 2023 analysis by Stanford University. He has also received the prestigious “Best Young Scientist Award (Male)” at the International Academic and Research Excellence Awards (IARE) in 2019. Additionally, he has been appointed as the “Bentham Brand Ambassador” by the Editor-in-Chief of the journal Current Medicinal Chemistry, a reflection of his influence in the scientific community. He is also a member of several editorial boards of international journals, further acknowledging his role in shaping the field through peer review and scientific discourse. His achievements underscore his dedication to advancing research in chemical engineering and environmental sustainability.

Skills🛠️

Dr. Khan possesses a comprehensive skill set that spans across chemical engineering, nanotechnology, and environmental sciences. He has expertise in the synthesis and characterization of nanocomposites, specifically for use in photocatalytic, photoelectrochemical, and biosensor applications. His technical skills also include advanced laboratory techniques, project management, and the use of analytical tools for environmental monitoring. As an academic, he has strong teaching and mentoring skills, having supervised numerous final-year student projects and managed research teams. Dr. Khan is also proficient in coordinating interdisciplinary research projects, as demonstrated by his leadership roles in various funded initiatives. His skills in scientific writing, peer review, and editorial responsibilities are further enhanced by his contributions to high-impact journals and international conferences.

Conclusion 🔍 

Dr. Mohammad Ehtisham Khan is a distinguished academic and researcher whose contributions to chemical engineering and environmental sustainability have earned him international recognition. His extensive research in nanotechnology, particularly in the development of materials for water purification and renewable energy, aligns with global efforts to combat environmental degradation. Dr. Khan’s expertise, coupled with his leadership roles in academia, make him a strong candidate for research-focused awards. His accolades, including being listed among the top 2% of scientists, highlight his impact on the field. Overall, his dedication to advancing chemical engineering technologies, mentoring students, and contributing to scientific discourse solidifies his position as a leading figure in his field.

Publication Top Notes

A focused review on organic electrochemical transistors: A potential futuristic technological application in microelectronics
Authors: A Raza, U Farooq, K Naseem, S Alam, ME Khan, A Mohammad, W Zakri, et al.
Year: 2024
Journal: Microchemical Journal, Article 111737

Comparative analysis of dye degradation methods: Unveiling the most effective and environmentally sustainable approaches, a critical review
Authors: FU Nisa, K Naseem, A Aziz, W Hassan, N Fatima, J Najeeb, SU Rehman, et al.
Year: 2024
Journal: Review in Inorganic Chemistry, Vol. 1, pp. 1-27

Advancement in optical and dielectric properties of unsaturated polyester resin/zinc oxide nanocomposite: Synthesis to application in electronics
Authors: H Noor, A Zafar, A Raza, A Baqi, U Farooq, ME Khan, W Ali, SK Ali, et al.
Year: 2024
Journal: Journal of Materials Science: Materials in Electronics, Vol. 35(23), pp. 1598
Citations: 1

Excellent electrochemical performance of N and Mn doped NiCo2O4 functional nanostructures: An effective approach for symmetric supercapacitor application
Authors: A Sasmal, AK Nayak, ME Khan, W Ali, SK Ali, AH Bashiri
Year: 2024
Journal: Physica Scripta, Vol. 99(8), Article 085919

Fabrication and characterization of binary composite MgO/CuO nanostructures for the efficient photocatalytic ability to eliminate organic contaminants: A detailed spectroscopic analysis
Authors: U Farooq, M Raza, SA Khan, S Alam, ME Khan, W Ali, W Al Zoubi, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 315, Article 124264
Citations: 9

Insight into mechanism of excellent visible-light photocatalytic activity of CuO/MgO/ZnO nanocomposite for advanced solution of environmental remediation
Authors: M Imran, M Raza, H Noor, SM Faraz, A Raza, U Farooq, ME Khan, SK Ali, et al.
Year: 2024
Journal: Chemosphere, Vol. 359, Article 142224
Citations: 5

An affordable label-free ultrasensitive immunosensor based on gold nanoparticles deposited on glassy carbon electrode for the transferrin receptor detection
Authors: A Ahmad, G Rabbani, MA Zamzami, S Hosawi, OA Baothman, H Altayeb, ME Khan, et al.
Year: 2024
Journal: International Journal of Biological Macromolecules, Vol. 273(2), Article 133083
Citations: 3

Computational Drug Discovery of Medicinal Compounds for Cancer Management -Volume II
Authors: K Ahmad, S Shaikh, FI Khan, ME Khan
Year: 2024
Journal: Frontiers in Chemistry, Vol. 1, Article 1446510

Temperature and pressure dependent tunable GaAsSb/InGaAs QW heterostructure for application in IR-photodetector
Authors: W Ali, AM Quraishi, K Kumawat, ME Khan, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Physica E: Low-dimensional Systems and Nanostructures, Vol. 160, Article 115939

Solving the fouling mechanisms in composite membranes for water purification: An advanced approach
Authors: Y Ezaier, A Hader, A Latif, ME Khan, W Ali, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Environmental Research, Vol. 250, Article 118487
Citations: 4

Synthesis and characterization of X (X= Ni or Fe) modified BaTiO3 for effective degradation of Reactive Red 120 dye under UV-A light and its biological activity
Authors: K Balu, T Abisheik, T Niyitanga, S Kumaravel, W Ali, ME Khan, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124556
Citations: 1

Applications of nanomedicine-integrated phototherapeutic agents in cancer theranostics: A comprehensive review of the current state of research
Authors: A Shoaib, S Javed, M Tabish, ME Khan, M Zaki, SS Alqahtani, MH Sultan, et al.
Year: 2024
Journal: Nanotechnology Reviews, Vol. 13, Article 20240023

Preparation and Spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen production: Reaction kinetics and mechanisms
Authors: M Raza, U Farooq, SA Khan, Z Ullah, ME Khan, SK Ali, OY Bakather, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124513
Citations: 6

Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
Authors: N Sobahi, MM Alam, M Imran, ME Khan, A Mohammad, T Yoon, et al.
Year: 2024
Journal: Molecules, Vol. 29(11), Article 2439