Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Prof. Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Associate Professor at Sungkyunkwan University, South Korea

Dr. Oh Seok Kwon is an accomplished researcher and Associate Professor at the SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, SungKyunKwan University, South Korea. Born on April 13, 1979, Dr. Kwon has made significant contributions to the fields of nanotechnology, biosensors, and chemical engineering. With an impressive academic background and a career marked by prestigious positions, including postdoctoral roles at Yale University and MIT, Dr. Kwon has focused his research on graphene-based materials and their applications in flexible sensors, bioengineering, and environmental monitoring. His work has garnered wide recognition, reflected in over 5,000 citations and numerous high-impact publications in top-tier journals. Dr. Kwon also serves as a guest editor for Sensors and Polymers and holds a leadership role in advancing nanotechnology research globally. He is committed to advancing scientific knowledge while contributing to technological innovations with practical applications in health, environmental, and industrial sectors.

Professional Profile

Education:

Dr. Oh Seok Kwon earned his Doctor of Philosophy (Ph.D.) in Chemical and Biological Engineering from Seoul National University in 2013, where he conducted groundbreaking research on graphene materials and their applications in flexible sensors. Prior to his Ph.D., he obtained a Master of Science in Chemical Engineering from the same institution in 2010, where he focused on biosensor applications using polypyrrole nanotubes. His academic journey began with a Bachelor of Science in Chemistry from Yeungnam University in South Korea in 2007. His educational path is marked by strong mentorship, including guidance from renowned professors like Jyongsik Jang and Prof. Jaehong Kim. Dr. Kwon’s extensive academic experience laid the foundation for his subsequent research, making him an expert in the synthesis of advanced materials and the development of next-generation sensors.

Professional Experience:

Dr. Oh Seok Kwon currently serves as an Associate Professor at the SKKU Advanced Institute of Nanotechnology and the Department of Nano Engineering at SungKyunKwan University. Before joining SKKU, Dr. Kwon was an Associate Professor at the University of Science and Technology (UST), South Korea, where he contributed significantly to research on nanomaterials and biosensors. He has also worked as a Senior Researcher at the Infectious Research Center at the Korea Research Institute of Bioscience and Biotechnology. In his earlier career, Dr. Kwon held postdoctoral research positions at prestigious institutions such as Yale University and the Massachusetts Institute of Technology, where he advanced his expertise in environmental engineering and material science. His leadership roles in various academic and research initiatives highlight his influence in the field of nanotechnology and his commitment to advancing scientific research.

Research Interests:

Dr. Oh Seok Kwon’s research interests are primarily focused on nanotechnology, graphene materials, and biosensor development. He has pioneered the use of chemical vapor deposition (CVD) to create graphene and its integration into flexible sensor technologies, contributing to advancements in wearable electronics and environmental monitoring. His research also delves into biosensors, specifically those employing polypyrrole nanotubes and graphene for chemical and biological detection. Additionally, Dr. Kwon is exploring the applications of nanomaterials in tissue regeneration, drug delivery, and drug evaluation through 3D bioprinting technologies. He is particularly interested in ultra-sensitive detection methods using energy transfer strategies between nanomaterials, such as graphene and gold nanorods, to improve the performance of sensors. His interdisciplinary work bridges chemistry, biology, and nanotechnology to develop practical solutions for health, environmental, and industrial challenges.

Research Skills:

Dr. Kwon possesses extensive expertise in material science, particularly in the fabrication and application of nanomaterials such as graphene and polypyrrole nanotubes. He is highly skilled in chemical vapor deposition (CVD), a technique critical for growing high-quality graphene. Additionally, Dr. Kwon’s proficiency in sensor design and fabrication is evident in his work on flexible and ultra-sensitive biosensors for environmental and medical applications. His skills extend to the integration of nanomaterials in bioengineering, including tissue regeneration and drug delivery systems. Dr. Kwon is also proficient in various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopy methods. His multidisciplinary skills in nanomaterials, sensor technology, and bioengineering enable him to lead cutting-edge research projects across diverse scientific fields.

Awards and Honors:

Dr. Oh Seok Kwon’s exceptional research contributions have earned him numerous accolades. He has been widely recognized for his pioneering work in nanotechnology and sensor development. His research publications have received substantial citation recognition, and his h-index of 42 demonstrates the long-lasting impact of his scholarly work. Additionally, Dr. Kwon has served in prestigious roles such as Guest Editor for special issues of MDPI journals Sensors and Polymers, indicating his leadership within the academic community. Although specific awards and honors are not explicitly listed, his role in top-tier research institutes and the editorial board of high-impact journals showcases his standing as a respected figure in the scientific community. His ongoing work continues to shape the future of biosensors and nanotechnology, positioning him for further honors.

Conclusion:

Dr. Oh Seok Kwon is a distinguished researcher with a strong academic background and a proven track record in nanotechnology, biosensors, and chemical engineering. His impressive body of work, particularly in the development of graphene-based materials for flexible sensors, has made significant contributions to various scientific disciplines. With an outstanding citation record and leadership roles in prominent scientific journals, Dr. Kwon is highly regarded in his field. His research has practical implications in health, environmental, and industrial applications, underscoring the societal impact of his work. Dr. Kwon’s multidisciplinary expertise and ongoing commitment to scientific innovation place him among the leading researchers in his field. His career continues to inspire advancements in nanotechnology and biosensor technologies, contributing to global scientific progress.

Publication Top Notes

  • Ultrasensitive flexible graphene-based field-effect transistor (FET)-type bioelectronic nose
    • Authors: SJ Park, OS Kwon, SH Lee, HS Song, TH Park, J Jang
    • Year: 2012
    • Citations: 386
  • Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer
    • Authors: OS Kwon, SJ Park, JY Hong, AR Han, JS Lee, JS Lee, JH Oh, J Jang
    • Year: 2012
    • Citations: 291
  • Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses
    • Authors: H Yoon, SH Lee, OS Kwon, HS Song, EH Oh, TH Park, J Jang
    • Year: 2009
    • Citations: 257
  • Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
    • Authors: JS Lee, OS Kwon, SJ Park, EY Park, SA You, H Yoon, J Jang
    • Year: 2011
    • Citations: 242
  • Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing
    • Authors: OS Kwon, SJ Park, JS Lee, E Park, T Kim, HW Park, SA You, H Yoon, …
    • Year: 2012
    • Citations: 235
  • High-performance flexible graphene aptasensor for mercury detection in mussels
    • Authors: JH An, SJ Park, OS Kwon, J Bae, J Jang
    • Year: 2013
    • Citations: 229
  • Conducting nanomaterial sensor using natural receptors
    • Authors: OS Kwon, HS Song, TH Park, J Jang
    • Year: 2018
    • Citations: 201
  • Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo
    • Authors: OS Kwon, HS Song, J Conde, H Kim, N Artzi, JH Kim
    • Year: 2016
    • Citations: 199
  • Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts
    • Authors: H Kim, OS Kwon, S Kim, W Choi, JH Kim
    • Year: 2016
    • Citations: 188
  • A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor
    • Authors: OS Kwon, SJ Park, J Jang
    • Year: 2010
    • Citations: 166

 

Zhiyu Mao | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhiyu Mao | Chemical Engineering | Best Researcher Award

Associate Professor at Dalian Institute of Chemical Physics, China

Dr. Zhiyu Mao is an accomplished researcher and associate professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. With a Ph.D. in Chemical Engineering from the University of Waterloo, his research spans multiple areas within electrochemical energy storage systems, battery management, and advanced material design. Over the past 9+ years, Dr. Mao has gained substantial expertise in the development, testing, and mathematical modeling of energy storage systems, specifically lithium-ion batteries, fuel cells, and supercapacitors. His work focuses on understanding failure mechanisms in batteries, the aging process, and the implementation of artificial intelligence for battery management systems (BMS). Along with his academic career, Dr. Mao has worked in industry, collaborating with companies such as CWZE Power Inc. and Tianjin Lishen Battery Co., where he led R&D efforts on battery safety, performance evaluation, and system integration. His research has resulted in over 30 published papers and 13 patents. Dr. Mao has proven himself as a leader in the electrochemical energy field and continues to make significant strides in advancing energy storage technologies.

Professional Profile

Education:

Dr. Zhiyu Mao’s academic journey is marked by a strong foundation in chemical and materials engineering. He completed his Ph.D. in Chemical Engineering at the University of Waterloo, Canada, in 2016, where he specialized in battery materials, electrochemical systems, and modeling techniques for energy storage devices. Before this, Dr. Mao obtained his M.Sc. in Chemical Engineering from Taiyuan University of Technology, China, where he focused on electrode reaction kinetics for lithium-ion batteries. His undergraduate studies were completed at Inner Mongolia University, China, where he earned a B.Sc. in Materials Chemistry. Throughout his educational career, Dr. Mao honed his skills in both experimental research and theoretical modeling, laying the groundwork for his later contributions to the field of electrochemical energy storage. His research during his Ph.D. involved the development of innovative methodologies for understanding the behavior of battery materials, which he later applied to various real-world applications, including electric vehicles (EVs) and renewable energy storage systems. His diverse educational background has equipped him with a broad set of skills in both theoretical and applied chemistry, making him a leader in electrochemical engineering.

Professional Experience:

Dr. Zhiyu Mao has built an impressive career spanning both academia and industry, contributing significantly to the fields of electrochemical engineering and energy storage systems. Currently, Dr. Mao holds the position of Associate Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, where he leads research on electrochemical energy storage, battery modeling, and fault warning systems for batteries. Prior to this, he served as a professor at Zhejiang Normal University, focusing on the dynamics of embedded materials and failure mechanisms in energy storage systems. In addition to his academic roles, Dr. Mao has accumulated significant industrial experience. He worked as a research scientist at CWZE Power Inc., where he led the R&D of advanced long-life lead-carbon batteries. He also contributed to the development of high-performance Li-ion cells at Newtech Power Inc., playing a key role in battery design, pilot plant testing, and performance evaluation. His industrial roles have provided him with valuable hands-on experience in the commercialization of electrochemical systems, allowing him to bridge the gap between research and practical application. This combination of academic and industrial expertise has made Dr. Mao a well-rounded and influential figure in his field.

Research Interests:

Dr. Zhiyu Mao’s research interests lie at the intersection of electrochemical engineering, advanced materials, and energy storage systems. His primary focus is on the design and optimization of electrochemical energy storage devices, particularly lithium-ion batteries, sodium-ion batteries, fuel cells, and hybrid supercapacitors. Dr. Mao is particularly interested in understanding the microscopic dynamics of embedded materials and the mechanisms that lead to battery degradation and failure. This includes exploring issues like solid-electrolyte interphase (SEI) growth, transition metal dissolution, and lithium plating. He also works on the development of artificial intelligence (AI) and big data analytics for battery management systems (BMS), aiming to improve state-of-charge estimation, fault prediction, and battery life-cycle management. Dr. Mao’s research spans both theoretical and experimental work, using advanced electrochemical and non-electrochemical techniques to characterize battery performance and failure modes. He is also engaged in developing advanced materials for batteries, including silicon and graphite-based electrodes, to improve energy density, rate capability, and cycle life. His research on smart energy grids and energy storage systems for renewable energy applications is pushing the boundaries of energy storage technology and its integration into broader energy systems.

Research Skills:

Dr. Zhiyu Mao possesses a wide range of research skills that are central to his work in electrochemical energy storage systems. His technical expertise includes experimental techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration (GITT), and constant current/constant voltage (CC/CV) cycling, as well as non-electrochemical characterization methods such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Dr. Mao is highly skilled in mathematical modeling and simulation of electrochemical systems, particularly in the development of physics-based models for battery aging and life prediction. He has expertise in applying advanced AI techniques and big data analysis to energy storage and management systems, particularly in the optimization of battery performance and fault detection. Dr. Mao is also proficient in the design and fabrication of battery systems, including the selection and optimization of materials, cell assembly, and testing. His interdisciplinary approach, combining fundamental electrochemical principles with applied engineering, has allowed him to make significant contributions to both academic research and industry.

Awards and Honors:

Dr. Zhiyu Mao’s outstanding contributions to electrochemical research and energy storage systems have earned him several accolades throughout his career. While specific awards are not detailed in his CV, his impressive body of work, including over 30 publications in prestigious journals such as the Journal of the Electrochemical Society and Electrochimica Acta, demonstrates the recognition he has received in the academic community. Furthermore, Dr. Mao’s patents, totaling 13 internationally, highlight the innovative nature of his work, particularly in battery materials, energy storage systems, and management technologies. His collaborative work with industry leaders, such as Newtech Power Inc. and CWZE Power Inc., also underscores his ability to apply his research to real-world problems, advancing both scientific understanding and practical applications. His research on advanced materials, battery aging, and AI for battery management has established him as a thought leader in the field of electrochemical energy storage. Although specific honors and awards are not listed, his scientific output, patent portfolio, and industry collaborations place him in a strong position for recognition.

Conclusion:

Dr. Zhiyu Mao is a highly accomplished researcher and academic with a proven track record in advancing the field of electrochemical energy storage systems. His extensive research, spanning from battery design to artificial intelligence applications for battery management, has positioned him as a leader in the field. Dr. Mao’s interdisciplinary expertise, coupled with his industrial experience, makes him uniquely qualified to bridge the gap between academic research and practical, real-world applications in energy storage and renewable energy technologies. His contributions, including over 30 published papers and 13 patents, highlight his innovative approach and impact on the industry. While there is room for further engagement in sustainability efforts and public outreach, Dr. Mao’s work continues to push the boundaries of what is possible in energy storage systems. His dedication to both research and mentorship, along with his commitment to technological advancement, makes him a strong candidate for recognition and accolades in the scientific community. Dr. Mao’s future contributions will undoubtedly continue to shape the next generation of energy storage technologies, furthering the global transition toward sustainable energy solutions.

Publication Top Notes

  1. Title: Significant Enhancement of Electrocatalytic Activity of Nickel-Based Amorphous Zeolite Imidazolate Frameworks for Water Splitting at Elevating Temperatures
    Authors: Iqbal, M.F., Xu, T., Li, M., Xu, P., Chen, Z.
    Year: 2024
    Citations: 1
  2. Title: Optimizing Annealing Treatment of Mesoporous MoO₂ Nanoparticles for Enhancement of Hydrogen Evolution Reaction
    Authors: Iqbal, M.F., Xu, T., Li, M., Zhang, J., Chen, Z.
    Year: 2024
    Citations: 1
  3. Title: A Hybrid Deep Learning Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Discharging Fragments
    Authors: Liu, Y., Hou, B., Ahmed, M., Feng, J., Chen, Z.
    Year: 2024
    Citations: 8
  4. Title: A Review on Iron-Nitride (Fe₂N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives
    Authors: Sajjad, M., Zhang, J., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 10
  5. Title: Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications
    Authors: Sajjad, M., Zhang, J., Zhang, S., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 9
  6. Title: A Comprehensive Review of the Pseudo-Two-Dimensional (P2D) Model: Model Development, Solutions Methods, and Applications
    Authors: Hussain, A., Mao, Z., Li, M., Zhang, J., Chen, Z.
    Year: 2024
  7. Title: An Unsupervised Domain Adaptation Framework for Cross-Conditions State of Charge Estimation of Lithium-Ion Batteries
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  8. Title: Design of Lithium Exchanged Zeolite-Based Multifunctional Electrode Additive for Ultra-High Loading Electrode Toward High Energy Density Lithium Metal Battery
    Authors: Gao, Y., Yang, Y., Yang, T., Luo, D., Chen, Z.
    Year: 2024
  9. Title: Deep Learning Powered Lifetime Prediction for Lithium-Ion Batteries Based on Small Amounts of Charging Cycles
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  10. Title: Heat Transfer Analysis of MHD Prandtl-Eyring Fluid Flow with Christov-Cattaneo Heat Flux Model
    Authors: Hussain, A., Mao, Z.
    Year: 2024
    Citations: 10

 

Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006

 

 

Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof Dr. Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof at University Malaysia Sarawak, Malaysia.

Associate Professor Dr. Md. Rezaur Rahman, a distinguished scholar in Polymer/Materials Engineering, holds a PhD from the University Malaysia Sarawak (UNIMAS) and multiple master’s degrees from Bangladesh institutions. Since joining UNIMAS in 2011, he has specialized in polymer composites and nanomaterials, leading significant research projects and collaborations with global institutions, including the University of Tokoshima, Japan, and the University of Houston, USA. His research spans environmental health, vector control, and parasitology, with over 140 journal publications and eight books. Dr. Rahman’s work on nanocomposites and green materials has earned him substantial recognition, including a high h-index and international citations. He actively contributes to academia through teaching, supervising postgraduate students, and leading research initiatives funded by both UNIMAS and external agencies. Dr. Rahman is also a member of several professional societies and a top 2% world scientist according to Stanford University.

Profile

Education

Associate Professor Dr. Md. Rezaur Rahman has a robust educational background that underscores his expertise in Polymer and Materials Engineering. He earned his PhD in Advanced Materials from the University Malaysia Sarawak (UNIMAS) in 2011. Prior to this, he completed a Master of Science (M.Sc) in Polymer Engineering from the Bangladesh University of Engineering and Technology (BUET) in 2008. His academic journey began with a Master of Science (M.Sc) in Physical Inorganic Chemistry, with a focus on Advanced Polymer, from the University of Chittagong, Bangladesh, in 2001. Dr. Rahman’s foundation in chemistry was laid with a Bachelor of Science (B.Sc) (Hons) in Chemistry from the University of Chittagong in 1999. This extensive educational background has equipped him with a comprehensive understanding of polymer materials, which he has applied extensively in his research and teaching career.

Professional Experience

Associate Professor Dr. Md. Rezaur Rahman boasts extensive professional experience in the field of Polymer and Materials Engineering. Since joining the Faculty of Engineering at Universiti Malaysia Sarawak (UNIMAS) in 2011, he has taught a diverse range of courses including Polymer Engineering Applications, Environmental Engineering, and Quality Control. Dr. Rahman has supervised 26 final-year undergraduates, 9 Master’s, and 10 PhD students, with 6 Master’s and 6 PhD graduates under his mentorship. His previous roles include serving as a lecturer at the Department of Chemistry, Institute of Textile and Clothing Technology in Dhaka, Bangladesh, and as a research assistant at Bangladesh University of Engineering and Technology. Dr. Rahman has led and collaborated on 21 research projects, with significant contributions to both national and international research efforts, reflecting his strong academic leadership and commitment to advancing materials science.

Research Interest

Associate Professor Dr. Md. Rezaur Rahman’s research primarily focuses on polymer and materials engineering, with a strong emphasis on advancing polymer composites and nanomaterials. His work involves the development of green composites and the optimization of nanocomposite materials for environmental applications, such as wastewater treatment and soil stabilization. Dr. Rahman’s research includes investigating the synthesis and characterization of novel polymer materials, including biodegradable polymers and advanced composites. He also explores the mechanical and thermal properties of these materials to enhance their performance and applicability. His interdisciplinary collaborations span various institutions, contributing to innovative solutions in polymer technology and materials science. Through his research, Dr. Rahman aims to address pressing environmental challenges and advance the field of materials engineering with practical, applied solutions.

Research Contributions

Associate Professor Ts Dr Md. Rezaur Rahman is renowned for his extensive research in Polymer and Materials Engineering. His research has led to significant advancements in polymer composites and nano materials. His PhD from University Malaysia Sarawak and previous degrees in Polymer Engineering and Physical Inorganic Chemistry have shaped his research focus, enabling him to contribute to 140 international index journal publications and 8 books. His research includes novel nanocomposite powders for environmental applications, bio-cementation strategies, and innovative uses of polymers in various fields.

Geographic Impact

Dr. Rahman’s research has had a broad geographic impact, collaborating with institutions across the globe including The Institute of Technology and Science, Tokushima University (Japan), University of Houston (USA), and multiple Malaysian universities. His work on green composites and sustainable materials addresses global challenges and benefits diverse regions, from rural areas in Borneo to industrial applications worldwide.

Collaborative Efforts

Dr. Rahman has demonstrated a strong commitment to collaborative research. His partnerships span several esteemed institutions such as the University of Malaya, Universiti Putra Malaysia, and Swinburne University of Technology. These collaborations have led to groundbreaking research in sustainable materials and environmental engineering, enhancing the scope and impact of his work.

Applied Research

Dr. Rahman’s applied research focuses on practical solutions for environmental and engineering challenges. His work includes optimizing nanocomposites for heavy metal removal, enhancing soil fixation through bio-cementation, and developing novel biodegradable polymers. These applied research efforts contribute to both academic knowledge and practical solutions in environmental health and sustainability.

Specific Projects and Publications

Dr. Rahman has led numerous projects funded by both UNIMAS and external grants, including the Ministry of Higher Education (MOHE). Notable projects include the optimization of nanocomposite powders for wastewater treatment and the development of sustainable bio-cementation strategies. His publications in journals such as the Journal of Environmental Development and Sustainability and the Polymer Bulletin highlight his contributions to the field.

Environmental Health

Dr. Rahman’s research significantly contributes to environmental health through innovative materials and processes. His studies on nanocomposites for heavy metal removal from palm oil mill effluent and sustainable materials for soil fixation address critical environmental issues, promoting cleaner and safer ecosystems.

Vector Control

While not a primary focus of Dr. Rahman’s research, his work on advanced materials can indirectly support vector control efforts through the development of sustainable and environmentally friendly materials. For instance, his research on bio-cementation and nanocomposites can contribute to improved sanitation and environmental management, potentially reducing vector-borne diseases.

Parasitology and Infectious Diseases

Dr. Rahman’s research is less directly related to parasitology and infectious diseases. However, his advancements in materials science and environmental health may have indirect benefits for these fields by improving overall sanitation and environmental conditions, which are crucial for controlling parasitic infections.

Awards and Recognition

Dr. Rahman has received significant recognition for his research, including being listed as a Top 2% world scientist by Stanford University and Elsevier. His h-index of 31 and i10-index of 75, with over 3551 citations, reflect his substantial impact on the field. His professional memberships, including those with the Chemical Society and the Malaysian Board of Technologist, further underscore his standing in the academic community.

Conclusion

Associate Professor Ts Dr Md. Rezaur Rahman’s contributions to Polymer and Materials Engineering, along with his collaborative efforts and applied research, make him a strong candidate for the Research for Best Scholar Award. His work addresses critical environmental and engineering challenges, demonstrates global impact, and garners substantial recognition in his field. His continued research and leadership promise further advancements and contributions to both academia and industry.

Publications Top Notes

  1. A review on poly lactic acid (PLA) as a biodegradable polymer
    • Authors: N.A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S. Hamdan, M.K.B. Bakri, …
    • Year: 2023
    • Citations: 267
  2. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2008
    • Citations: 264
  3. Mechanical properties of polypropylene composites reinforced with chemically treated abaca
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2009
    • Citations: 248
  4. Physico-mechanical properties of chemically treated coir reinforced polypropylene composites
    • Authors: M.N. Islam, M.R. Rahman, M.M. Haque, M.M. Huque
    • Year: 2010
    • Citations: 224
  5. Comparative study of dielectric properties of hybrid natural fiber composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 152
  6. Recent developments in bamboo fiber-based composites: a review
    • Authors: A. Muhammad, M.R. Rahman, S. Hamdan, K. Sanaullah
    • Year: 2019
    • Citations: 137
  7. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites
    • Authors: M.S. Islam, S. Hamdan, I. Jusoh, M.R. Rahman, A.S. Ahmed
    • Year: 2012
    • Citations: 131
  8. Physico-mechanical properties of jute fiber reinforced polypropylene composites
    • Authors: M. Rezaur Rahman, M. Hasan, M. Monimul Huque, M. Nazrul Islam
    • Year: 2010
    • Citations: 128
  9. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications
    • Authors: M.M. Matin, P. Matin, M.R. Rahman, T. Ben Hadda, F.A. Almalki, S. Mahmud, …
    • Year: 2022
    • Citations: 120
  10. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 120

 

 

 

Melaku Tafese Awulachew | Chemical Engineering | Best Scholar Award

Mr. Melaku Tafese Awulachew | Chemical Engineering | Best Scholar Award

Researcher at Ethiopian Institute of Agricultural Research, Ethiopia.

Melaku Tafese Awulachew, a researcher at the Ethiopian Institute of Agricultural Research, holds an M.Sc. in Chemical Engineering with a specialization in Food Engineering and a B.Sc. in Chemical Engineering. He serves as Researcher I in the Food Science and Nutrition Research sector. With expertise in food processing, product development, and optimization, Melaku has contributed significantly to the field. His research interests span food rheology, sensory analysis, bakery products, and the beer industry. Melaku has authored over 50 peer-reviewed articles, published book chapters, and served as a guest editor and reviewer for various journals. He has received numerous honors, including awards for research excellence and contributions to the field. Melaku’s research skills encompass design of experiments, data analysis, and effective communication of research findings. His work underscores a commitment to advancing knowledge in food science and nutrition.

Professional Profiles:

Education:

Melaku Tafese Awulachew is a researcher at the Food Science and Nutrition Research Directorate within the Ethiopian Institute of Agricultural Research in Ethiopia. He holds a Master of Science (M.Sc.) degree in Chemical Engineering with a specialization in Food Engineering, which he obtained from Addis Ababa University in 2023. Prior to that, he completed his Bachelor of Science (B.Sc.) in Chemical Engineering, specializing in Process Engineering, at Adama Science and Technology University in Ethiopia in 2015. Melaku’s expertise lies in various aspects of food science and technology, including food processing, product development, optimization, food rheology, sensory analysis, bakery products, and the beer industry. He has authored numerous peer-reviewed articles, book chapters, and books, and serves as a reviewer and editorial board member for several journals in the field of food research.

Professional Experience:

Melaku Tafese Awulachew has served as a Researcher I at the Food Science and Nutrition Research Directorate within the Ethiopian Institute of Agricultural Research. In this role, he has contributed significantly to interdisciplinary research projects focusing on food processing, product development, and optimization. Additionally, Melaku has held leadership positions within the institute, including heading the Laboratories of Soil Science and Nutrition Research and later leading the Food Science and Nutrition Research sector. His professional experience also includes active involvement as a reviewer, associate editor, and section editor for various journals in the field of food science and technology. Moreover, he has served as a member of the editorial team for five journals, including Food Research International.

Research Interest:

Melaku Tafese Awulachew’s research interests span various aspects of food science and technology. He is particularly passionate about food processing, product development, and optimization. His expertise lies in areas such as food rheology, sensory analysis, bakery products, and the beer industry. Melaku is also interested in exploring innovative techniques for food quality characterization, including the use of rheology techniques such as dynamic rheometer, alveo-consistograph, and rheofermentometer. Additionally, he is keen on conducting research related to the design of experiments and data analysis to enhance food production processes. Overall, Melaku’s research interests revolve around improving food quality, enhancing production efficiency, and advancing techniques in the field of food science and nutrition.

Award and Honors:

Melaku Tafese Awulachew has garnered numerous accolades and distinctions throughout his career in food science and nutrition. His achievements include graduating Cum Laude in General Studies from Harvard College in 1986, during which he received the prestigious Harvard College Scholarship. Subsequently, he was honored with the National Research Service Awards from 1993 to 1995, recognizing his contributions to research by the National Institutes of Health. Additionally, his essay won the Nelson Paul Anderson Essay award in 1994, bestowed by the Pacific Dermatological Association. Notably, he received the Herschel and Diana Zackheim Endowed Chair in Cutaneous Oncology in 1997, highlighting his expertise in the field. Furthermore, he was recognized with the Health Caring Award in 2000 by the William S. Graham Foundation for Melanoma Research. These honors underscore Melaku Tafese Awulachew’s significant contributions to his field and his commitment to excellence in research and scholarship.

Research Skills:

Melaku Tafese Awulachew possesses a diverse range of research skills that have been instrumental in his contributions to the field of food science and nutrition. His expertise includes proficiency in food processing, product development, and optimization techniques. He is skilled in food rheology, sensory analysis, and quality characterization using various analytical methods such as dynamic rheometer, alveo-consistograph, and textural analyzer. Melaku is experienced in conducting design of experiments and data analysis, which has been crucial in his interdisciplinary research projects. Additionally, he has a strong background in conducting literature reviews, manuscript preparation, and publication. His research skills are further enhanced by his ability to lead research teams and effectively communicate research findings through peer-reviewed articles, book chapters, and presentations at conferences. Overall, Melaku Tafese Awulachew’s research skills reflect his dedication to advancing knowledge in food science and nutrition.

Publications:

  1. A Review of anti-nutritional factors in Plant Based Foods
    • Author: MT Awulachew
    • Citations: 13
    • Year: 2022
  2. Teff (Eragrostis Abyssinica) and teff based fermented cereals
    • Author: MT Awulachew
    • Citations: 11
    • Year: 2020
  3. Understanding basics of wheat grain and flour quality
    • Author: MT Awulachew
    • Citations: 11
    • Year: 2020
  4. Fruit jam production
    • Author: M Awulachew
    • Citations: 10
    • Year: 2021
  5. A Review of Food Packaging Materials and Active Packaging System
    • Author: MT Awulachew
    • Citations: 8
    • Year: 2022
  6. The role of wheat in human nutrition and its medicinal value
    • Author: MT Awulachew
    • Citations: 7
    • Year: 2020
  7. Effects of Blended Fertilizer (Nitrogen, Phosphorus, Sulfur and Boron) Rates on Yield, Yield Components and Grain Quality of Crop,(Durum Wheat)
    • Author: MT Awulachew
    • Citations: 7
    • Year: 2019
  8. Food Additives and Food Processing Aids: The Role, Function And Future Research Need of Industrial Food Biotechnology
    • Author: MT Awulachew
    • Citations: 5
    • Year: 2022
  9. Hand Book of Common Ethiopian Traditional Medicinal Plants: Their Parts and Uses for Human and Animal Treatments
    • Author: MT Awulachew
    • Citations: 5
    • Year: 2021
  10. Food product shelf stability overview of sourdough-risen flatbread
    • Author: MT Awulachew
    • Citations: 5
    • Year: 2021