Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006