Saeid Maghami | Chemical Engineering | Best Researcher Award

Dr. Saeid Maghami | Chemical Engineering | Best Researcher Award

Assistant Professor at Yazd University, Iran

Dr. Saeid Maghami is an accomplished researcher and educator specializing in chemical and polymer engineering. Currently serving as a faculty member at Yazd University, Iran, he has built an impressive career in both academia and industry. Dr. Maghami’s research focuses on innovative areas such as membrane gas separation, polymeric and mixed matrix membranes, and water treatment. With a robust educational background, international research exposure, patents, and numerous high-impact publications, he has contributed significantly to advancing his field. His career reflects a commitment to combining theoretical research with practical applications, addressing industrial and societal challenges through engineering innovation.

Professional Profile

Education

Dr. Maghami holds a PhD in Chemical Engineering from Isfahan University of Technology, Iran (2013-2019), where he focused on modeling operational temperature and pressure effects on gas separation properties of membranes. He earned his MSc in Chemical Engineering from Shiraz University, Iran (2010-2012), where he explored CO2 removal via microalgae. His undergraduate studies in chemical engineering at Sahand University of Technology, Iran (2006-2010), laid the foundation for his research, focusing on environmental pollutants. His educational journey reflects a strong emphasis on tackling real-world engineering problems through innovative approaches.

Professional Experience

Dr. Maghami has a diverse professional background encompassing both academia and industry. He currently serves as a faculty member in the Department of Chemical and Polymer Engineering at Yazd University. He previously worked as an engineering manager at Shirin Salamat Partikan Company, focusing on industrial-scale isomalt production from sucrose. His teaching experience spans over a decade, during which he has taught courses like Process Control, Heat Transfer, and Industrial Chemistry. Additionally, his eight-month research visit to the University of Zaragoza, Spain, highlights his commitment to global academic collaboration and advanced research.

Research Interests

Dr. Maghami’s research interests lie in cutting-edge areas of chemical and polymer engineering. He focuses on membrane gas separation, modeling the performance of polymeric and mixed matrix membranes, and characterizing interfacial regions in polymer-particle composites. His work also includes water treatment processes and the production and purification of sugar alcohols, reflecting a balance between theoretical exploration and industrial application. Dr. Maghami’s interdisciplinary approach addresses critical challenges in sustainability and innovation.

Research Skills

Dr. Maghami possesses advanced skills in research methodologies and engineering tools. His expertise includes mathematical modeling, membrane performance optimization, and interfacial morphology characterization. He is proficient in using software like MATLAB, HYSIS, and ASPEN for process simulation and data analysis. These skills, combined with his deep understanding of polymer science and engineering principles, enable him to conduct impactful research and develop practical solutions to complex problems.

Awards and Honors

Dr. Maghami’s contributions to chemical and polymer engineering have been recognized through various awards and honors. Notably, he holds a patent on characterizing polymer-particle interfaces in composite materials. His research papers have been published in top-tier journals, and he has actively participated in international conferences. These achievements underscore his innovation and dedication to advancing his field.

Conclusion

Dr. Saeid Maghami is a distinguished researcher whose career epitomizes the integration of academic excellence, industrial innovation, and practical application. His extensive research contributions, combined with his teaching and leadership roles, demonstrate his commitment to advancing chemical and polymer engineering. With a strong foundation in education, exceptional research skills, and global collaborations, Dr. Maghami is well-positioned to make continued significant contributions to his field.

Publication Top Notes

  1. A comprehensive modeling approach for determining the role and nature of interfacial morphology in mixed matrix membranes
    Authors: Zarabadipoor, M., Maghami, S., Mehrabani-Zeinabad, A., Sadeghi, M.
    Year: 2021
    Journal: Computational Materials Science
    Citations: 5
  2. Influence of solvent, Lewis acid–base complex, and nanoparticles on the morphology and gas separation properties of polysulfone membranes
    Authors: Maghami, S., Sadeghi, M., Baghersad, S., Zornoza, B.
    Year: 2021
    Journal: Polymer Engineering and Science
    Citations: 6
  3. Gas separation through polyurethane–ZnO mixed matrix membranes and mathematical modeling of the interfacial morphology
    Authors: Fakhar, A., Maghami, S., Sameti, E., Shekari, M., Sadeghi, M.
    Year: 2020
    Journal: SPE Polymers
    Citations: 11
  4. Determination of maximum possible contribution of porous particles in gas transport properties of their corresponding mixed matrix membranes
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A., Simiari, M.
    Year: 2020
    Journal: SPE Polymers
    Citations: 3
  5. Influence of solvent and nanoparticles on the morphology and gas separation properties of copolyimide membranes
    Authors: Maghami, S., Sadeghi, M., Khoshkam, M., Chenar, M.P.
    Year: 2020
    Journal: Journal of Applied Polymer Science
    Citations: 6
  6. Characterization of the polymer/particle interphase in composite materials by molecular probing
    Authors: Maghami, S., Shahrooz, M., Mehrabani-Zeinabad, A., Zornoza, B., Sadeghi, M.
    Year: 2020
    Journal: Polymer
    Citations: 21
  7. Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes
    Authors: Maghami, S., Mehrabani-Zeinabad, A., Sadeghi, M., Téllez, C., Coronas, J.
    Year: 2019
    Journal: Chemical Engineering Science
    Citations: 34
  8. Influence of blend composition and silica nanoparticles on the morphology and gas separation performance of PU/PVA blend membranes
    Authors: Shirvani, H., Maghami, S., Isfahani, A.P., Sadeghi, M.
    Year: 2019
    Journal: Membranes
    Citations: 19
  9. The Role of Interfacial Morphology in the Gas Transport Behavior of Nanocomposite Membranes: A Mathematical Modeling Approach
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A., Zarabadi, M., Ghalei, B.
    Year: 2019
    Journal: Industrial and Engineering Chemistry Research
    Citations: 14
  10. Recognition of polymer-particle interfacial morphology in mixed matrix membranes through ideal permeation predictive models
    Authors: Maghami, S., Sadeghi, M., Mehrabani-Zeinabad, A.
    Year: 2017
    Journal: Polymer Testing
    Citations: 16

 

Corby Anderson | Chemical Engineering | Best Researcher Award

Prof. Dr. Corby Anderson | Chemical Engineering | Best Researcher Award

Director, Kroll Institute for Extractive Metallurgy at Colorado School of Mines, United States

Dr. Corby G. Anderson is a highly experienced Licensed Professional Chemical Engineer with over 40 years in engineering design, industrial plant operations, research, consulting, and teaching. His career spans multiple continents and industries, including metallurgy, pyrometallurgy, hydrometallurgy, environmental recycling, and mineral processing. Dr. Anderson has developed and implemented significant technologies, such as the Nitrogen Species Catalyzed (NSC) Pressure Oxidation and Alkaline Sulfide Leaching (ASL) technologies. Throughout his career, he has successfully led teams in research, process development, engineering design, and industrial operations. In addition to his industrial achievements, Dr. Anderson has published extensively, authored numerous peer-reviewed articles, and contributed to over 600 presentations. His work is highly respected in the global mineral processing and metallurgical sectors.

Professional Profile

Education:

Dr. Corby G. Anderson earned his academic credentials through extensive education, though specific degrees are not detailed in the provided information. His qualifications and hands-on experience in engineering and metallurgy have shaped his professional trajectory. Dr. Anderson’s academic expertise spans various subjects, including chemical engineering, extractive metallurgy, mineral processing, and chemical kinetics. He has taught and mentored students at the graduate level, emphasizing practical applications of these principles.

Professional Experience:

Dr. Anderson has had a distinguished career in both academia and industry. He has worked internationally in over 40 countries, contributing to significant advancements in metallurgy, hydrometallurgy, and pyrometallurgy. As Chief Process Engineer at Sunshine Mining and Refining, he pioneered innovative technologies such as the NSC Pressure Oxidation and ASL. He also served as Director of the Center for Advanced Mineral and Metallurgical Processing at Montana Tech, leading it to become a globally recognized institution. Throughout his career, Dr. Anderson has held leadership positions, including CEO, Director, and Technical Advisor for several private and public companies, while also maintaining an active role in consulting and professional services.

Research Interests:

Dr. Anderson’s research interests primarily focus on hydrometallurgy, pyrometallurgy, mineral processing, and extractive metallurgy. He has developed and implemented technologies aimed at improving the extraction, refining, and recovery of metals such as gold, silver, cobalt, and copper. His work in process development, engineering design, and environmental impact has had substantial industrial and academic implications. He is particularly interested in creating more efficient and sustainable methods of metal recovery, refining processes, and improving recycling techniques. He has also worked on advancing nano-technologies in metallurgy.

Research Skills:

Dr. Anderson possesses a diverse set of research skills, which include the development of new metallurgical processes, pilot plant design, engineering process optimization, and environmental management in mineral processing. He has extensive expertise in laboratory and field research, feasibility studies, and the management of large-scale industrial operations. His experience in mineral and metallurgical processes is complemented by his knowledge in process control, separations, purifications, refining, and electrolysis. He is skilled in working across various engineering and scientific disciplines to drive technological innovations in metallurgy and mining. Additionally, Dr. Anderson has strong analytical, leadership, and communication skills, having guided numerous research teams and published widely.

Awards and Honors:

Dr. Anderson has received numerous prestigious awards and honors throughout his career. These include the TMS Distinguished Service Award, the Milton E. Wadsworth Award for Chemical Metallurgy, and the IPMI Jun-ichiro Tanaka Distinguished Achievement Award. He has also been recognized by the Society for Mining, Metallurgy, and Exploration (SME) with the MPD Millman of Distinction Award and the Taggart Award. In addition, Dr. Anderson has received the Distinguished Researcher Award from Montana Tech and the Distinguished Alumni Award from the same institution. He has been named a Fellow of the Institution of Chemical Engineers and a Fellow of the Institute of Materials, Minerals and Mining. These accolades reflect his significant contributions to the fields of metallurgy, mineral processing, and engineering research.

Conclusion

Dr. Corby G. Anderson exemplifies the epitome of a best researcher through his groundbreaking contributions, leadership in both academia and industry, and a consistent record of innovation and mentorship. His extensive international experience, proven track record in developing novel technologies, and continuous engagement with both the scientific and industrial sectors position him as an ideal candidate for the Best Researcher Award. His diverse achievements, ranging from global patents to leadership roles in professional organizations, make him a standout figure in his field. By expanding his research focus to include emerging technologies and strengthening interdisciplinary collaborations, Dr. Anderson’s future contributions could further cement his legacy in the scientific community.

Publication Top Notes

  • The metallurgy of antimony
    Authors: CG Anderson
    Year: 2012
    Journal: Geochemistry 72, 3-8
    Citations: 340
  • Cyanide: Social, Industrial and Economic Aspects
    Authors: C.G. A. Young, L.G. Twidwell
    Year: 2001
    Journal: TMS
    Citations: 278*
  • Literature review of hydrometallurgical recycling of printed circuit boards (PCBs)
    Authors: H Cui, CG Anderson
    Year: 2016
    Journal: J. Adv. Chem. Eng 6 (1), 142-153
    Citations: 157
  • Rare earths: market disruption, innovation, and global supply chains
    Authors: R Eggert, C Wadia, C Anderson, D Bauer, F Fields, L Meinert, P Taylor
    Year: 2016
    Journal: Annual Review of Environment and Resources 41 (1), 199-222
    Citations: 146
  • Hydrometallurgical recovery of rare earth elements from NdFeB permanent magnet scrap: A review
    Authors: Y Zhang, F Gu, Z Su, S Liu, C Anderson, T Jiang
    Year: 2020
    Journal: Metals 10 (6), 841
    Citations: 96
  • Global electrification of vehicles and intertwined material supply chains of cobalt, copper and nickel
    Authors: RT Nguyen, RG Eggert, MH Severson, CG Anderson
    Year: 2021
    Journal: Resources, Conservation and Recycling 167, 105198
    Citations: 89
  • Extractive metallurgy of rhenium: a review
    Authors: CD Anderson, PR Taylor, CG Anderson
    Year: 2013
    Journal: Mining, Metallurgy & Exploration 30, 59-73
    Citations: 85
  • A review of the cyanidation treatment of copper-gold ores and concentrates
    Authors: D Medina, CG Anderson
    Year: 2020
    Journal: Metals 10 (7), 897
    Citations: 82
  • A primer on hydrometallurgical rare earth separations
    Authors: B Kronholm, CG Anderson, PR Taylor
    Year: 2013
    Journal: Jom 65, 1321-1326
    Citations: 78
  • An assessment of US rare earth availability for supporting US wind energy growth targets
    Authors: DD Imholte, RT Nguyen, A Vedantam, M Brown, A Iyer, BJ Smith, …
    Year: 2018
    Journal: Energy Policy 113, 294-305
    Citations: 75