Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Prof. Oh Seok Kwon | Chemical Engineering | Best Researcher Award

Associate Professor at Sungkyunkwan University, South Korea

Dr. Oh Seok Kwon is an accomplished researcher and Associate Professor at the SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, SungKyunKwan University, South Korea. Born on April 13, 1979, Dr. Kwon has made significant contributions to the fields of nanotechnology, biosensors, and chemical engineering. With an impressive academic background and a career marked by prestigious positions, including postdoctoral roles at Yale University and MIT, Dr. Kwon has focused his research on graphene-based materials and their applications in flexible sensors, bioengineering, and environmental monitoring. His work has garnered wide recognition, reflected in over 5,000 citations and numerous high-impact publications in top-tier journals. Dr. Kwon also serves as a guest editor for Sensors and Polymers and holds a leadership role in advancing nanotechnology research globally. He is committed to advancing scientific knowledge while contributing to technological innovations with practical applications in health, environmental, and industrial sectors.

Professional Profile

Education:

Dr. Oh Seok Kwon earned his Doctor of Philosophy (Ph.D.) in Chemical and Biological Engineering from Seoul National University in 2013, where he conducted groundbreaking research on graphene materials and their applications in flexible sensors. Prior to his Ph.D., he obtained a Master of Science in Chemical Engineering from the same institution in 2010, where he focused on biosensor applications using polypyrrole nanotubes. His academic journey began with a Bachelor of Science in Chemistry from Yeungnam University in South Korea in 2007. His educational path is marked by strong mentorship, including guidance from renowned professors like Jyongsik Jang and Prof. Jaehong Kim. Dr. Kwon’s extensive academic experience laid the foundation for his subsequent research, making him an expert in the synthesis of advanced materials and the development of next-generation sensors.

Professional Experience:

Dr. Oh Seok Kwon currently serves as an Associate Professor at the SKKU Advanced Institute of Nanotechnology and the Department of Nano Engineering at SungKyunKwan University. Before joining SKKU, Dr. Kwon was an Associate Professor at the University of Science and Technology (UST), South Korea, where he contributed significantly to research on nanomaterials and biosensors. He has also worked as a Senior Researcher at the Infectious Research Center at the Korea Research Institute of Bioscience and Biotechnology. In his earlier career, Dr. Kwon held postdoctoral research positions at prestigious institutions such as Yale University and the Massachusetts Institute of Technology, where he advanced his expertise in environmental engineering and material science. His leadership roles in various academic and research initiatives highlight his influence in the field of nanotechnology and his commitment to advancing scientific research.

Research Interests:

Dr. Oh Seok Kwon’s research interests are primarily focused on nanotechnology, graphene materials, and biosensor development. He has pioneered the use of chemical vapor deposition (CVD) to create graphene and its integration into flexible sensor technologies, contributing to advancements in wearable electronics and environmental monitoring. His research also delves into biosensors, specifically those employing polypyrrole nanotubes and graphene for chemical and biological detection. Additionally, Dr. Kwon is exploring the applications of nanomaterials in tissue regeneration, drug delivery, and drug evaluation through 3D bioprinting technologies. He is particularly interested in ultra-sensitive detection methods using energy transfer strategies between nanomaterials, such as graphene and gold nanorods, to improve the performance of sensors. His interdisciplinary work bridges chemistry, biology, and nanotechnology to develop practical solutions for health, environmental, and industrial challenges.

Research Skills:

Dr. Kwon possesses extensive expertise in material science, particularly in the fabrication and application of nanomaterials such as graphene and polypyrrole nanotubes. He is highly skilled in chemical vapor deposition (CVD), a technique critical for growing high-quality graphene. Additionally, Dr. Kwon’s proficiency in sensor design and fabrication is evident in his work on flexible and ultra-sensitive biosensors for environmental and medical applications. His skills extend to the integration of nanomaterials in bioengineering, including tissue regeneration and drug delivery systems. Dr. Kwon is also proficient in various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and spectroscopy methods. His multidisciplinary skills in nanomaterials, sensor technology, and bioengineering enable him to lead cutting-edge research projects across diverse scientific fields.

Awards and Honors:

Dr. Oh Seok Kwon’s exceptional research contributions have earned him numerous accolades. He has been widely recognized for his pioneering work in nanotechnology and sensor development. His research publications have received substantial citation recognition, and his h-index of 42 demonstrates the long-lasting impact of his scholarly work. Additionally, Dr. Kwon has served in prestigious roles such as Guest Editor for special issues of MDPI journals Sensors and Polymers, indicating his leadership within the academic community. Although specific awards and honors are not explicitly listed, his role in top-tier research institutes and the editorial board of high-impact journals showcases his standing as a respected figure in the scientific community. His ongoing work continues to shape the future of biosensors and nanotechnology, positioning him for further honors.

Conclusion:

Dr. Oh Seok Kwon is a distinguished researcher with a strong academic background and a proven track record in nanotechnology, biosensors, and chemical engineering. His impressive body of work, particularly in the development of graphene-based materials for flexible sensors, has made significant contributions to various scientific disciplines. With an outstanding citation record and leadership roles in prominent scientific journals, Dr. Kwon is highly regarded in his field. His research has practical implications in health, environmental, and industrial applications, underscoring the societal impact of his work. Dr. Kwon’s multidisciplinary expertise and ongoing commitment to scientific innovation place him among the leading researchers in his field. His career continues to inspire advancements in nanotechnology and biosensor technologies, contributing to global scientific progress.

Publication Top Notes

  • Ultrasensitive flexible graphene-based field-effect transistor (FET)-type bioelectronic nose
    • Authors: SJ Park, OS Kwon, SH Lee, HS Song, TH Park, J Jang
    • Year: 2012
    • Citations: 386
  • Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer
    • Authors: OS Kwon, SJ Park, JY Hong, AR Han, JS Lee, JS Lee, JH Oh, J Jang
    • Year: 2012
    • Citations: 291
  • Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses
    • Authors: H Yoon, SH Lee, OS Kwon, HS Song, EH Oh, TH Park, J Jang
    • Year: 2009
    • Citations: 257
  • Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application
    • Authors: JS Lee, OS Kwon, SJ Park, EY Park, SA You, H Yoon, J Jang
    • Year: 2011
    • Citations: 242
  • Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing
    • Authors: OS Kwon, SJ Park, JS Lee, E Park, T Kim, HW Park, SA You, H Yoon, …
    • Year: 2012
    • Citations: 235
  • High-performance flexible graphene aptasensor for mercury detection in mussels
    • Authors: JH An, SJ Park, OS Kwon, J Bae, J Jang
    • Year: 2013
    • Citations: 229
  • Conducting nanomaterial sensor using natural receptors
    • Authors: OS Kwon, HS Song, TH Park, J Jang
    • Year: 2018
    • Citations: 201
  • Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo
    • Authors: OS Kwon, HS Song, J Conde, H Kim, N Artzi, JH Kim
    • Year: 2016
    • Citations: 199
  • Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts
    • Authors: H Kim, OS Kwon, S Kim, W Choi, JH Kim
    • Year: 2016
    • Citations: 188
  • A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor
    • Authors: OS Kwon, SJ Park, J Jang
    • Year: 2010
    • Citations: 166

 

Chithra K | Chemical Engineering | Best Researcher Award

Dr. Chithra K | Chemical Engineering | Best Researcher Award

Professor at Anna University, India

Dr. K. Chithra is a distinguished professor in the Department of Chemical Engineering at Anna University, Chennai, with a robust background in both academia and industry. With over 25 years of experience, her career spans across teaching, research, and consultancy, contributing to several high-impact projects in the field of environmental engineering. Her research focuses primarily on wastewater treatment, nanotechnology, environmental sustainability, and pollution control. She has authored numerous publications in leading journals and co-investigated projects with prominent institutions like ISRO. Dr. Chithra is also involved in industry collaborations for pollution studies and process optimization, making her work relevant to both scientific and industrial communities. She exemplifies a commitment to blending academic knowledge with practical applications to address pressing environmental challenges.

Professional Profile

Education:

Dr. K. Chithra completed her B.Tech, M.Tech, and Ph.D. in Chemical Engineering from A.C. Tech Campus, Anna University, Chennai. Her strong educational background has been the foundation of her career, equipping her with the technical skills and knowledge to excel in both academia and industry. Her education at a renowned institution provided a comprehensive understanding of chemical processes, environmental engineering, and research methodologies. This academic training has enabled her to take on significant research challenges, produce impactful publications, and contribute to the scientific community with notable expertise.

Professional Experience:

Dr. K. Chithra’s professional experience is marked by roles that reflect both leadership and technical expertise. She is currently a professor at Anna University, Chennai, where she has taught and mentored numerous students. Her earlier positions as an associate professor and assistant professor at SRMIST also contributed significantly to her teaching and research profile. In addition to her academic roles, Dr. Chithra served as an Assistant Engineer at the Tamil Nadu Pollution Control Board (TNPCB), where she gained valuable practical experience in environmental management and pollution control. Her professional journey showcases her ability to lead, collaborate, and innovate within both educational and industrial sectors.

Research Interest:

Dr. Chithra’s research interests span a wide range of topics within the chemical engineering and environmental sustainability fields. She is particularly focused on wastewater treatment processes, the application of nanotechnology for environmental remediation, and the development of sustainable materials for pollution control. Her research also explores the use of bio-based materials for heavy metal removal and the design of efficient waste management systems. She has a keen interest in investigating the mechanisms behind chemical reactions, as evidenced by her co-investigation on dielectric spectroscopy with ISRO. Dr. Chithra’s interdisciplinary approach to research has led to innovative solutions for contemporary environmental issues, making her work both relevant and impactful.

Research Skills:

Dr. Chithra possesses a diverse set of research skills that encompass both theoretical and applied aspects of chemical engineering. Her expertise includes experimental design, reaction kinetics, nanomaterials synthesis, environmental modeling, and simulation. She is skilled in advanced analytical techniques, such as dielectric spectroscopy and simulation tools like ANSYS Fluent and Aspen Plus, which she uses for process optimization and environmental impact assessments. Dr. Chithra’s ability to integrate practical problem-solving with cutting-edge scientific techniques has resulted in numerous successful projects and publications. Her strong data analysis, problem-solving, and critical thinking abilities ensure that her research continues to push the boundaries of environmental engineering.

Awards and Honors:

Dr. K. Chithra’s career is marked by several awards and honors for her contributions to chemical engineering and environmental sustainability. Her work in pollution control, wastewater treatment, and the application of nanotechnology in environmental science has been widely recognized in academic circles. Although specific awards are not detailed in the provided information, her consistent publication in high-impact journals and successful industry collaborations stand as a testament to her excellence. Further, her involvement in significant research projects, including those funded by prominent agencies like ISRO, highlights the recognition she has earned within both academic and industrial communities.

Conclusion:

Dr. K. Chithra is a highly accomplished academic and researcher, whose expertise in chemical engineering and environmental sustainability makes her an ideal candidate for the Best Researcher Award. Her strong academic foundation, extensive research experience, and active involvement in both industry and academia have led to impactful contributions to the field. Dr. Chithra’s research on pollution control, wastewater treatment, and nanotechnology has provided innovative solutions to pressing environmental challenges. While she has an impressive body of work, further expansion of international collaborations and patentable innovations would further strengthen her profile. Overall, Dr. Chithra exemplifies the qualities of a leader in research and continues to push the boundaries of her field with a commitment to sustainability and environmental impact.

Zhiyu Mao | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhiyu Mao | Chemical Engineering | Best Researcher Award

Associate Professor at Dalian Institute of Chemical Physics, China

Dr. Zhiyu Mao is an accomplished researcher and associate professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. With a Ph.D. in Chemical Engineering from the University of Waterloo, his research spans multiple areas within electrochemical energy storage systems, battery management, and advanced material design. Over the past 9+ years, Dr. Mao has gained substantial expertise in the development, testing, and mathematical modeling of energy storage systems, specifically lithium-ion batteries, fuel cells, and supercapacitors. His work focuses on understanding failure mechanisms in batteries, the aging process, and the implementation of artificial intelligence for battery management systems (BMS). Along with his academic career, Dr. Mao has worked in industry, collaborating with companies such as CWZE Power Inc. and Tianjin Lishen Battery Co., where he led R&D efforts on battery safety, performance evaluation, and system integration. His research has resulted in over 30 published papers and 13 patents. Dr. Mao has proven himself as a leader in the electrochemical energy field and continues to make significant strides in advancing energy storage technologies.

Professional Profile

Education:

Dr. Zhiyu Mao’s academic journey is marked by a strong foundation in chemical and materials engineering. He completed his Ph.D. in Chemical Engineering at the University of Waterloo, Canada, in 2016, where he specialized in battery materials, electrochemical systems, and modeling techniques for energy storage devices. Before this, Dr. Mao obtained his M.Sc. in Chemical Engineering from Taiyuan University of Technology, China, where he focused on electrode reaction kinetics for lithium-ion batteries. His undergraduate studies were completed at Inner Mongolia University, China, where he earned a B.Sc. in Materials Chemistry. Throughout his educational career, Dr. Mao honed his skills in both experimental research and theoretical modeling, laying the groundwork for his later contributions to the field of electrochemical energy storage. His research during his Ph.D. involved the development of innovative methodologies for understanding the behavior of battery materials, which he later applied to various real-world applications, including electric vehicles (EVs) and renewable energy storage systems. His diverse educational background has equipped him with a broad set of skills in both theoretical and applied chemistry, making him a leader in electrochemical engineering.

Professional Experience:

Dr. Zhiyu Mao has built an impressive career spanning both academia and industry, contributing significantly to the fields of electrochemical engineering and energy storage systems. Currently, Dr. Mao holds the position of Associate Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, where he leads research on electrochemical energy storage, battery modeling, and fault warning systems for batteries. Prior to this, he served as a professor at Zhejiang Normal University, focusing on the dynamics of embedded materials and failure mechanisms in energy storage systems. In addition to his academic roles, Dr. Mao has accumulated significant industrial experience. He worked as a research scientist at CWZE Power Inc., where he led the R&D of advanced long-life lead-carbon batteries. He also contributed to the development of high-performance Li-ion cells at Newtech Power Inc., playing a key role in battery design, pilot plant testing, and performance evaluation. His industrial roles have provided him with valuable hands-on experience in the commercialization of electrochemical systems, allowing him to bridge the gap between research and practical application. This combination of academic and industrial expertise has made Dr. Mao a well-rounded and influential figure in his field.

Research Interests:

Dr. Zhiyu Mao’s research interests lie at the intersection of electrochemical engineering, advanced materials, and energy storage systems. His primary focus is on the design and optimization of electrochemical energy storage devices, particularly lithium-ion batteries, sodium-ion batteries, fuel cells, and hybrid supercapacitors. Dr. Mao is particularly interested in understanding the microscopic dynamics of embedded materials and the mechanisms that lead to battery degradation and failure. This includes exploring issues like solid-electrolyte interphase (SEI) growth, transition metal dissolution, and lithium plating. He also works on the development of artificial intelligence (AI) and big data analytics for battery management systems (BMS), aiming to improve state-of-charge estimation, fault prediction, and battery life-cycle management. Dr. Mao’s research spans both theoretical and experimental work, using advanced electrochemical and non-electrochemical techniques to characterize battery performance and failure modes. He is also engaged in developing advanced materials for batteries, including silicon and graphite-based electrodes, to improve energy density, rate capability, and cycle life. His research on smart energy grids and energy storage systems for renewable energy applications is pushing the boundaries of energy storage technology and its integration into broader energy systems.

Research Skills:

Dr. Zhiyu Mao possesses a wide range of research skills that are central to his work in electrochemical energy storage systems. His technical expertise includes experimental techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration (GITT), and constant current/constant voltage (CC/CV) cycling, as well as non-electrochemical characterization methods such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Dr. Mao is highly skilled in mathematical modeling and simulation of electrochemical systems, particularly in the development of physics-based models for battery aging and life prediction. He has expertise in applying advanced AI techniques and big data analysis to energy storage and management systems, particularly in the optimization of battery performance and fault detection. Dr. Mao is also proficient in the design and fabrication of battery systems, including the selection and optimization of materials, cell assembly, and testing. His interdisciplinary approach, combining fundamental electrochemical principles with applied engineering, has allowed him to make significant contributions to both academic research and industry.

Awards and Honors:

Dr. Zhiyu Mao’s outstanding contributions to electrochemical research and energy storage systems have earned him several accolades throughout his career. While specific awards are not detailed in his CV, his impressive body of work, including over 30 publications in prestigious journals such as the Journal of the Electrochemical Society and Electrochimica Acta, demonstrates the recognition he has received in the academic community. Furthermore, Dr. Mao’s patents, totaling 13 internationally, highlight the innovative nature of his work, particularly in battery materials, energy storage systems, and management technologies. His collaborative work with industry leaders, such as Newtech Power Inc. and CWZE Power Inc., also underscores his ability to apply his research to real-world problems, advancing both scientific understanding and practical applications. His research on advanced materials, battery aging, and AI for battery management has established him as a thought leader in the field of electrochemical energy storage. Although specific honors and awards are not listed, his scientific output, patent portfolio, and industry collaborations place him in a strong position for recognition.

Conclusion:

Dr. Zhiyu Mao is a highly accomplished researcher and academic with a proven track record in advancing the field of electrochemical energy storage systems. His extensive research, spanning from battery design to artificial intelligence applications for battery management, has positioned him as a leader in the field. Dr. Mao’s interdisciplinary expertise, coupled with his industrial experience, makes him uniquely qualified to bridge the gap between academic research and practical, real-world applications in energy storage and renewable energy technologies. His contributions, including over 30 published papers and 13 patents, highlight his innovative approach and impact on the industry. While there is room for further engagement in sustainability efforts and public outreach, Dr. Mao’s work continues to push the boundaries of what is possible in energy storage systems. His dedication to both research and mentorship, along with his commitment to technological advancement, makes him a strong candidate for recognition and accolades in the scientific community. Dr. Mao’s future contributions will undoubtedly continue to shape the next generation of energy storage technologies, furthering the global transition toward sustainable energy solutions.

Publication Top Notes

  1. Title: Significant Enhancement of Electrocatalytic Activity of Nickel-Based Amorphous Zeolite Imidazolate Frameworks for Water Splitting at Elevating Temperatures
    Authors: Iqbal, M.F., Xu, T., Li, M., Xu, P., Chen, Z.
    Year: 2024
    Citations: 1
  2. Title: Optimizing Annealing Treatment of Mesoporous MoO₂ Nanoparticles for Enhancement of Hydrogen Evolution Reaction
    Authors: Iqbal, M.F., Xu, T., Li, M., Zhang, J., Chen, Z.
    Year: 2024
    Citations: 1
  3. Title: A Hybrid Deep Learning Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Discharging Fragments
    Authors: Liu, Y., Hou, B., Ahmed, M., Feng, J., Chen, Z.
    Year: 2024
    Citations: 8
  4. Title: A Review on Iron-Nitride (Fe₂N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives
    Authors: Sajjad, M., Zhang, J., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 10
  5. Title: Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications
    Authors: Sajjad, M., Zhang, J., Zhang, S., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 9
  6. Title: A Comprehensive Review of the Pseudo-Two-Dimensional (P2D) Model: Model Development, Solutions Methods, and Applications
    Authors: Hussain, A., Mao, Z., Li, M., Zhang, J., Chen, Z.
    Year: 2024
  7. Title: An Unsupervised Domain Adaptation Framework for Cross-Conditions State of Charge Estimation of Lithium-Ion Batteries
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  8. Title: Design of Lithium Exchanged Zeolite-Based Multifunctional Electrode Additive for Ultra-High Loading Electrode Toward High Energy Density Lithium Metal Battery
    Authors: Gao, Y., Yang, Y., Yang, T., Luo, D., Chen, Z.
    Year: 2024
  9. Title: Deep Learning Powered Lifetime Prediction for Lithium-Ion Batteries Based on Small Amounts of Charging Cycles
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  10. Title: Heat Transfer Analysis of MHD Prandtl-Eyring Fluid Flow with Christov-Cattaneo Heat Flux Model
    Authors: Hussain, A., Mao, Z.
    Year: 2024
    Citations: 10

 

Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Yerbol Tileuberdi | Chemical Engineering | Best Researcher Award

Associate Professor at Abai University, Kazakhstan

Yerbol Tileuberdi is an accomplished researcher and associate professor with over 15 years of experience in chemical engineering, petrochemistry, and nanotechnology. His work primarily focuses on sustainable practices in heavy oil processing, bitumen production, and carbon material development. Yerbol’s extensive academic background, paired with his practical research at the Institute of Combustion Problems, highlights his commitment to ecological innovation. Recognized by numerous awards and honors, he has made impactful contributions through research, patents, and publications. His international collaborations, including multiple internships at Berlin Technical University and other esteemed institutions, have helped shape his expertise in global engineering and environmental solutions. Yerbol’s academic and research achievements make him a notable figure in chemical engineering and sustainable technology development.

Professional Profile

Education

Yerbol Tileuberdi pursued all his higher education at Al-Farabi Kazakh National University (KazNU). He completed his undergraduate studies in 2008, earning a Bachelor’s degree, followed by a Master’s degree in 2010. He later obtained a Ph.D. in 2014 from KazNU, specializing in chemical engineering. Yerbol’s academic journey has equipped him with advanced theoretical knowledge and practical insights, particularly in petrochemistry and nanotechnology. His education laid a strong foundation for his ongoing research work and established a career path that includes leadership roles at Kazakh institutions. Yerbol has further enhanced his expertise through foreign internships and research opportunities at renowned universities, including Berlin Technical University and Petroleum University of China.

Professional Experience

Yerbol Tileuberdi serves as an associate professor at Abai Kazakh National Pedagogical University (KazNPU) and is also a leading researcher at the Institute of Combustion Problems. Over the past 15 years, he has amassed a wealth of experience in chemical engineering, focusing on petrochemistry, nanotechnology, and ecological solutions. His roles involve both teaching and conducting advanced research, emphasizing sustainable practices in energy and material science. Yerbol’s professional journey reflects his dedication to academia and his expertise in addressing complex chemical engineering challenges. His position as a leading researcher has allowed him to contribute significantly to scientific advancements, particularly in recycling and carbon material production.

Research Interests

Yerbol Tileuberdi’s research interests span several areas within chemical engineering and environmental sustainability. He focuses on processing heavy oil, natural bitumen, oil sands, and oil shale, aiming to develop efficient methods for producing and modifying bitumen. He is also interested in hydrocarbons’ oxidation and asphaltene structures, exploring ways to enhance fuel quality and sustainability. Additionally, Yerbol is committed to recycling worn tires and producing carbon materials, which align with his goal of developing eco-friendly solutions in petrochemical engineering. His work on flameless heaters showcases his interest in innovative, sustainable technologies that reduce environmental impact, highlighting his commitment to advancing both ecological and industrial applications.

Research Skills

Yerbol possesses a diverse set of research skills that reflect his extensive experience in chemical engineering and petrochemistry. He is skilled in analyzing complex hydrocarbons, studying bitumen and asphaltene structures, and processing oil sands. His technical expertise extends to sustainable technologies, such as recycling and carbon material production, which contribute to the development of eco-friendly solutions. Yerbol’s skills in hydrocarbon oxidation and material modification are particularly valuable for his work on fuel processing and bitumen improvement. He is proficient in laboratory techniques necessary for his research, complemented by a strong ability to lead and conduct complex experiments at the Institute of Combustion Problems. His practical and analytical skills underscore his commitment to innovative chemical engineering.

Awards and Honors

Yerbol Tileuberdi has received numerous awards and honors that recognize his achievements in research and education. In 2024, he won the “Best Paper Award” from the Engineered Science Society and the “Best Youth Scientist” title at the Institute of Combustion Problems. Yerbol was also awarded the prestigious state grant for “The Best Teacher of Higher Education Institution” in 2018 and held the DAAD scholarship in the same year, marking his contributions to teaching and research. Earlier, he received the state scholarship for talented young scientists (2015–2016) and the “Best Youth Scientist” award at KazNU. These honors emphasize Yerbol’s dedication to excellence in both research and teaching, showcasing his influence in the academic and scientific communities.

Conclusion

Yerbol Tileuberdi’s extensive research background, notable achievements, and contributions to his field make him a strong contender for the Best Researcher Award. His experience in petrochemistry and commitment to sustainable practices position him as an impactful researcher in the field. Focusing on publishing in more high-impact journals and furthering interdisciplinary projects could further enhance his research influence and international recognition.

Publications Top Notes

  • Demetallization and desulfurization of heavy oil residues by adsorbents
    Authors: Y. Ongarbayev, S. Oteuli, Y. Tileuberdi, G. Maldybaev, S. Nurzhanova
    Journal: Petroleum Science and Technology
    Year: 2019
    Citations: 29
  • Study of asphaltene structure precipitated from oil sands
    Authors: F. R. Sultanov, Y. Tileuberdi, Y. K. Ongarbayev, Z. A. Mansurov, K. A. Khasseinov, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2013
    Citations: 23
  • Changing the structure of resin-asphaltenes molecules in cracking
    Authors: Y. Imanbayev, Y. Tileuberdi, Y. Ongarbayev, Z. Mansurov, A. Batyrbayev, et al.
    Journal: Eurasian Chemico-Technological Journal
    Year: 2017
    Citations: 18
  • Antimicrobial and Other Biomedical Properties of Extracts from Plantago major, Plantaginaceae
    Authors: K. Zhakipbekov, A. Turgumbayeva, R. Issayeva, A. Kipchakbayeva, et al.
    Journal: Pharmaceuticals
    Year: 2023
    Citations: 17
  • Thermocatalytic cracking of the natural bitumens of Kazakhstan
    Authors: Y. K. Ongarbayev, A. K. Golovko, E. B. Krivtsov, Y. I. Imanbayev, E. Tileuberdi, et al.
    Journal: Solid Fuel Chemistry
    Year: 2016
    Citations: 17
  • Functionalization and modification of bitumen by silica nanoparticles
    Authors: A. Zhambolova, A. L. Vocaturo, Y. Tileuberdi, Y. Ongarbayev, P. Caputo, et al.
    Journal: Applied Sciences
    Year: 2020
    Citations: 15
  • High temperature transformation of tar-asphaltene components of oil sand bitumen
    Authors: Y. Imanbayev, Y. Ongarbayev, Y. Tileuberdi, E. Krivtsov, A. Golovko, et al.
    Journal: Journal of the Serbian Chemical Society
    Year: 2017
    Citations: 15
  • Rice husk ash for oil spill cleanup
    Authors: K. Kudaibergenov, Y. Ongarbayev, M. Zulkhair, M. Tulepov, Y. Tileuberdi
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 14
  • Study of natural bitumen extracted from oil sands
    Authors: Y. Tileuberdi, Y. Ongarbaev, B. Tuleutaev, Z. Mansurov, F. Behrendt
    Journal: Applied Mechanics and Materials
    Year: 2014
    Citations: 12
  • Structural study and upgrading of Kazakhstan oil sands
    Authors: Y. Tileuberdi, Z. A. Mansurov, Y. K. Ongarbayev, B. K. Tuleutaev
    Journal: Eurasian Chemico-Technological Journal
    Year: 2015
    Citations: 11

 

 

Qin Guohui | Chemical Engineering | Best Researcher Award

Prof. Qin Guohui | Chemical Engineering | Best Researcher Award

professor, College of Chemical Engineering, Qingdao University of Science and Technology, China

Dr. Qin is a Professor at Qingdao University of Science and Technology in the College of Chemical Engineering. With a Ph.D. in Chemical Engineering, her research centers on developing advanced materials for lithium, sodium, and potassium batteries. She has published over 30 high-impact papers, serves as a reviewer for several leading journals, and has led multiple high-profile research projects. Dr. Qin’s innovative work and academic involvement have earned her recognition, including the prestigious Shandong Province Youth Taishan Scholar title.

Professional Profile

ORCID Profile

Education

Dr. Qin completed her B.S. in 2009 at Qilu University of Technology, followed by an M.S. in 2012 from Tianjin University of Technology. She then conducted research at the University of California, Riverside, from 2014 to 2016 under the mentorship of Prof. Yadong Yin. In 2017, Dr. Qin earned her Ph.D. in Chemical Engineering from Tianjin University, where she specialized in advanced materials for energy storage.

Professional Experience

Dr. Qin is currently a faculty member in the College of Chemical Engineering at Qingdao University of Science and Technology. She has authored over 30 publications, with 29 in high-impact journals (SCI Region I) and 8 in SCI Region II. In addition to her research, she serves as a peer reviewer for numerous prestigious journals, including Applied Catalysis B: Environmental, Journal of Power Sources, Electrochimica Acta, and Chemical Engineering Journal. Her involvement in the peer review process underscores her reputation and expertise within the scientific community.

Research Interests

Dr. Qin’s primary research focuses on energy chemical engineering, with a specific emphasis on developing and studying materials for lithium, sodium, and potassium battery systems. Her work includes advancing positive and cathode materials and exploring electrolytes essential for efficient energy storage applications.

Research Projects

Shandong Youth Innovation Program Team (2022–2024): Leading a project focused on developing organic-inorganic hybrid energy storage systems, with a budget of 2 million CNY.

National Natural Science Foundation of China (NSFC) Project (2022–2025): Leading a project on constructing self-healing polyamino acid/hollow black phosphorus composite electrodes for potassium storage (600,000 CNY).

NSFC Youth Fund Project (2019–2021): Completed a project on magnetron synthesis and assembly of red phosphorus-based composite electrodes for sodium storage, with funding of 273,000 CNY.

Representative Publications

Dr. Qin has published extensively in prominent journals, with recent works in:

Angewandte Chemie International Edition (2021, 2023)

Advanced Materials (2023)

Advanced Energy Materials (2023, 2024)

Honors and Research Awards

Dr. Qin has been recognized as a Shandong Province Youth Taishan Scholar, reflecting her impactful research in energy materials and her contributions to advancing energy storage technologies.

Conclusion

 

Publications Top Notes

 

 

 

Jiakun Zhu | | Engineering | Best Researcher Award

Dr. Jiakun Zhu | Engineering | Best Researcher Award

Teaching Assistant,  College of Post and Telecommunication of WIT,  China

Jiakun Zhu is a promising researcher in the field of Civil Engineering with a strong academic background, holding both a Bachelor’s and Ph.D. from Huazhong University of Science and Technology. His research focuses on materials science, nanotechnology, and engineering applications, reflected in his diverse publications in prestigious journals like ACS Applied Materials & Interfaces and Analytical Chemistry. Zhu has contributed to cutting-edge research on dielectric elastomers, hydrogels, and lithium-ion batteries, showcasing his expertise across interdisciplinary fields. His work has been widely cited, and he has taken a leadership role as a corresponding author on a 2024 publication, further establishing his prominence in the research community. Currently employed at the College of Post and Telecommunication of WIT, Zhu continues to make significant strides in engineering research. His growing list of accomplishments positions him as a strong candidate for the Research for Best Researcher Award, with the potential for continued impact in his field.

Profile

Education 

Jiakun Zhu has an impressive academic background rooted in Civil Engineering, having completed both his Bachelor’s and Ph.D. degrees at Huazhong University of Science and Technology (HUST), one of the leading institutions in China. He earned his Bachelor’s degree in 2015, laying a strong foundation in engineering principles. Motivated to pursue advanced research, Zhu continued his academic journey at HUST, where he earned his Ph.D. in 2021. His doctoral studies enabled him to specialize in complex areas such as dielectric elastomers and nanotechnology, equipping him with the skills necessary to contribute to groundbreaking research in the field of civil engineering. HUST’s rigorous academic environment and Zhu’s research focus on cutting-edge materials science have significantly shaped his expertise. This robust educational background, combined with his research experience, places him in an excellent position to excel as a leading researcher in civil engineering and related interdisciplinary fields.

Professional Experience

Jiakun Zhu has established himself as a dedicated researcher in Civil Engineering, with a focus on the mechanical behavior of advanced materials. Currently serving at the College of Post and Telecommunication of WIT, Zhu’s professional experience is marked by significant contributions to materials science, particularly in dielectric elastomers, hydrogels, and nanotechnology. His work on in-situ transmission electron microscopy has advanced understanding of lithium-ion battery materials, while his expertise in polymer chain entanglements and finite extensibility has influenced the development of novel hydrogels. As a corresponding author, Zhu has demonstrated leadership in collaborative research, contributing to journals with high impact factors. His interdisciplinary approach, spanning civil engineering and applied materials science, reflects a professional career committed to innovation and solving complex engineering challenges. Zhu’s ability to bridge theoretical research with practical applications marks him as an asset to the engineering and materials science community.

Research Interests

Jiakun Zhu’s research interests lie at the intersection of civil engineering, materials science, and nanotechnology. His work focuses on the mechanical behavior and stability of advanced materials, particularly dielectric elastomers and hydrogels, which are crucial for developing flexible and durable engineering structures. Zhu is also deeply invested in understanding the effects of polymer chain entanglements and finite extensibility on the mechanical performance of these materials, which has significant implications for their application in smart materials and soft robotics. Additionally, his research extends to the field of energy storage, where he investigates the chemical and structural evolution of nanomaterials in lithium-ion batteries. Zhu’s interdisciplinary approach allows him to address both theoretical challenges and practical applications, contributing to advancements in materials engineering, energy storage, and sustainable infrastructure. His ongoing work aims to explore the potential of engineered nanocomposites in marine environments, further broadening the scope of his research interests.

Research Skills

Jiakun Zhu demonstrates exceptional research skills through his ability to address complex problems in civil engineering and materials science. His expertise spans various domains, including the mechanical behavior of hydrogels, dielectric elastomers, and lithium-ion batteries, showcasing his versatility. Zhu’s research on the influence of polymer chain entanglements and finite extensibility on mechanical stability illustrates his capability to merge theoretical analysis with experimental techniques. Additionally, his proficiency in using advanced tools, such as In-Situ Transmission Electron Microscopy, highlights his technical acumen. His role as a corresponding author reflects strong leadership and collaboration in multi-disciplinary research. Moreover, Zhu’s work has been published in prestigious journals with high impact factors, such as ACS Applied Materials & Interfaces and Analytical Chemistry, further underscoring the significance and rigor of his contributions. His innovative approach, combined with technical expertise, positions him as a highly skilled researcher making meaningful advancements in his field.

Awards and Honors

Jiakun Zhu has been recognized for his outstanding contributions to civil engineering and materials science. His research achievements have earned him several prestigious awards and honors, highlighting his commitment to academic excellence and innovation. He was honored with the “Outstanding Ph.D. Dissertation Award” from Huazhong University of Science and Technology in 2021, acknowledging the groundbreaking nature of his doctoral research on dielectric elastomers and hydrogels. Zhu’s work has also been recognized internationally, as evidenced by his publications in top-tier journals like ACS Applied Materials & Interfaces and Analytical Chemistry, both of which have significantly advanced the understanding of nanotechnology and energy storage materials. Additionally, Zhu has been invited to present his findings at numerous international conferences, further solidifying his reputation in the research community. His leadership as a corresponding author in recent publications showcases his growing influence in the field. These accolades underscore his potential for continued success and his suitability for further recognition in the form of research awards.

Conclusion 

Jiakun Zhu’s educational pedigree, professional field, and an impressive list of high-impact publications make him a strong candidate for the Research for Best Researcher Award. His diverse research contributions in materials science, civil engineering, and nanotechnology position him as an innovative scholar with the potential to make significant future advances. The recognition Zhu has garnered thus far through his publications suggests he is both an established and emerging leader in his field.

Publication Top Notes

  1. “Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Acta Mechanica
    • DOI: 10.1007/S00707-017-2060-8
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000430184900015
  2. “Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements”
    • Authors: Zhongmin Xiao, Jun Luo, Jiakun Zhu
    • Year: 2018
    • Journal: Materials Research Express
    • DOI: 10.1088/2053-1591/AAC6FE
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000434485600004
  3. “Bending gel beam with consideration of entanglements and finite extensibility”
    • Authors: Jiakun Zhu
    • Year: 2018
    • Journal: EPL (Europhysics Letters)
    • Citations: Check Web of Science for updated citation count
  4. “Effect of entanglements on the electromechanical stability of dielectric elastomers”
    • Authors: Jun Luo, Jiakun Zhu
    • Year: 2017
    • Journal: EPL (Europhysics Letters)
    • DOI: 10.1209/0295-5075/119/26003
    • Citations: Check Web of Science for updated citation count
    • WOSUID: WOS:000414715000014
  5. “Ionic Conduction in Composite Polymer Electrolytes: Case of PEO

    Composites”

    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)
  6. “Ultrahigh Malleability of the Lithiation-Induced LixSi Phase”
    • Authors: Jiakun Zhu
    • Year: (No year provided; more information required)

 

Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006

 

 

Peter Glavic | Chemical Engineering | Best Researcher Award

Prof Dr. Peter Glavic | Chemical Engineering | Best Researcher Award

Prof Emeritus at University of Maribor, Slovenia.

Prof. Dr. Peter Glavič is a distinguished academic and researcher, currently serving as Professor Emeritus at the University of Maribor (UM). He holds multiple advanced degrees, including a BS in Chemical Technology, MS in Business and Economics, and MS and PhD in Chemistry. His career includes nine years in industrial management, and he has held prominent academic positions, such as Professor of Chemical Engineering at UM. Prof. Glavič’s research focuses on process systems engineering, sustainable development, and education, with over 100 scientific articles published and more than 4100 citations. His influential roles include Editor-in-Chief of Standards journal and Guest Editor for Processes. His leadership extends to serving as a Member of the Slovenian Parliament, vice-rector, and president of the Slovenian Academy of Engineering. His contributions to both academia and industry underscore his significant impact in his fields of expertise.

Profile

Education

Prof. Dr. Peter Glavič earned his foundational education in Chemical Technology, culminating in a Bachelor of Science degree. He further advanced his academic qualifications with a Master of Science in Business and Economics, providing a robust understanding of economic principles alongside his scientific expertise. His scholarly journey continued with dual Master’s degrees and a Doctorate in Chemistry, reflecting his commitment to both the theoretical and practical aspects of the field. This diverse educational background has equipped him with a unique interdisciplinary perspective, enabling him to approach complex problems in process systems engineering and sustainable development with a comprehensive and informed viewpoint. His extensive education laid the groundwork for a distinguished career in both academia and industry, where he has applied his knowledge to drive advancements in chemical engineering and contribute to sustainable practices.

Professional Experience

Prof. Dr. Peter Glavič is an esteemed academic and researcher with a distinguished career. He earned his BS in Chemical Technology, MS in Business and Economics, and both MS and PhD in Chemistry. With nine years of managerial experience in industry, he transitioned to academia as a Professor of Chemical Engineering at the University of Maribor (UM). At UM, he contributed significantly to the fields of process systems engineering and sustainable development. Prof. Glavič has served as Editor-in-Chief of the Standards journal and Guest Editor for Processes, reflecting his leadership in scholarly publishing. His roles extend beyond academia; he was a Member of the Slovenian Parliament, vice-rector, and president of the Slovenian Academy of Engineering. Currently, he heads the Centre for Professor Emeriti and Retired HE Professors at UM, continuing to influence the academic landscape and support the scholarly community.

Research Interest

Prof. Dr. Peter Glavič’s research interests are centered around process systems engineering, sustainable development, and education. He explores innovative methods to improve industrial processes and promote sustainability in various sectors. His work addresses the optimization of complex systems, focusing on enhancing efficiency and reducing environmental impact. Prof. Glavič is particularly interested in integrating sustainable practices into industrial operations, aiming to advance both economic and environmental outcomes. In addition to his technical research, he is dedicated to advancing educational methodologies in the field of chemical engineering. His role as Editor-in-Chief of Standards journal and Guest Editor for Processes reflects his commitment to fostering scholarly communication and collaborative research. Through his extensive publications and contributions, Prof. Glavič seeks to bridge the gap between theoretical research and practical application, making substantial contributions to the advancement of sustainable technologies and educational practices.

 Research Skills

Prof. Dr. Peter Glavič possesses exceptional research skills in process systems engineering, sustainable development, and education. His expertise in these fields is demonstrated through his extensive body of work, including over 100 scientific articles and an h-index of 22. His analytical skills are evident in his ability to address complex engineering problems and propose innovative solutions. Prof. Glavič excels in interdisciplinary research, effectively integrating principles from chemical engineering, economics, and sustainable practices. His role as Editor-in-Chief of the Standards journal and Guest Editor for Processes highlights his adeptness in managing and guiding high-quality research. His experience in managerial positions further enhances his strategic approach to research, ensuring practical applications and sustainable outcomes. Prof. Glavič’s research skills are complemented by his ability to collaborate with international researchers, reflecting his commitment to advancing knowledge and fostering scientific dialogue.

Awards and Recognition

Prof. Glavič has received numerous accolades throughout his career, including his roles as vice-rector, president of the Slovenian Academy of Engineering, and head of the Centre for Professor Emeriti and Retired HE Professors at UM. These positions highlight his esteemed status and recognition in the academic and professional communities.

Conclusion

Peter Glavič’s extensive research contributions, collaborative efforts, and impactful publications make him a strong candidate for the Research for Best Researcher Award. His work in process systems engineering and sustainable development, along with his significant influence in the academic and professional communities, underscores his qualifications for this prestigious recognition.

Publications Top Notes

  • Transitioning towards Net-Zero Emissions in Chemical and Process Industries: A Holistic Perspective
    • Authors: P. Glavič, Z.N. Pintarič, H. Levičnik, V. Dragojlović, M. Bogataj
    • Year: 2023
    • Citations: 7
  • Editorial: Organizational and consumption perspectives on sustainable food culture
    • Authors: P. Glavič, D. Gregory-Smith, F. Murmura, O.E. Olayide, I. Djekic
    • Year: 2023
  • Special Issue on “Process Design and Sustainable Development”
    • Authors: P. Glavič
    • Year: 2023
  • Updated Principles of Sustainable Engineering
    • Authors: P. Glavič
    • Year: 2022
    • Citations: 11
  • Evolution and current challenges of sustainable consumption and production
    • Authors: P. Glavič
    • Year: 2021
    • Citations: 41
  • Integrating sustainability into logistics oriented education in Europe
    • Authors: R.K. Lukman, V. Omahne, L.T.E. Sheikh, P. Glavič
    • Year: 2021
    • Citations: 9
  • Process design and sustainable development—a European perspective
    • Authors: P. Glavič, Z.N. Pintarič, M. Bogataj
    • Year: 2021
    • Citations: 28
  • Identifying key issues of education for sustainable development
    • Authors: P. Glavič
    • Year: 2020
    • Citations: 40
  • Higher education in Central European countries – Critical factors for sustainability transition
    • Authors: J. Dlouhá, P. Glavič, A. Barton
    • Year: 2017
    • Citations: 50
  • Sustainable consumption and production – Research, experience, and development – The Europe we want
    • Authors: R.K. Lukman, P. Glavič, A. Carpenter, P. Virtič
    • Year: 2016
    • Citations: 70

 

Narendra Bodawar | Chemical Engineering | Best Researcher Award |

Narendra Bodawar | Chemical Engineering | Best Researcher Award |

Senior Project Associate , ShahidCSIR-National Chemical Laboratory , India.

Narendra Bodawar, a dedicated Research Associate at CSIR-National Chemical Laboratory, has demonstrated exceptional prowess in the Chemical Engineering domain, focusing on key areas such as process development, optimization, and wastewater treatment. With a robust research portfolio highlighted by several publications and filed patents, his contributions significantly advance environmental sustainability and chemical processing technologies.

Profile
Education

Narendra Bodawar holds a Bachelor’s degree in Chemical Engineering from Manipal University Jaipur, where he graduated in 2019 with a GPA of 6.64/10. His academic foundation has equipped him with essential theoretical knowledge and practical skills in chemical engineering principles. His educational journey also includes a strong performance in his earlier studies, where he secured 90.91% in the 10th grade and 66.6% in the 12th grade from recognized Maharashtra State Board institutions. This solid educational background has laid the groundwork for his successful career in research and development.

Professional Experience

Currently, Narendra Bodawar serves as a Research Associate at the CSIR-National Chemical Laboratory in Pune, Maharashtra, where he has been employed since January 2020. In this role, he designs and scales chemical processes from lab to pilot scale, optimizes reaction parameters for maximum conversion, and develops downstream methods for isolating pure chemical products. His experience in high-pressure reactors and analytical instrumentation enables him to conduct advanced research in chemical engineering effectively. His professional journey has significantly enhanced his analytical and problem-solving skills, positioning him well for a potential doctoral degree.

 

Research Interests

Narendra’s research interests encompass a range of critical areas within chemical engineering. He focuses on process development and intensification, aiming to enhance efficiency and sustainability in chemical production. His work in plastic upcycling and depolymerization addresses pressing environmental concerns related to plastic waste management. Additionally, he is interested in effluent wastewater treatment, utilizing advanced oxidation processes to improve the removal of pollutants. His enthusiasm for process optimization and scale-up further drives his innovative contributions to the field, aligning with global sustainability goals.

Research Skills

Narendra possesses a diverse set of research skills crucial for his work in chemical engineering. He is proficient in process design and optimization, including mass and energy balances, P&ID formulation, and HAZOP analysis. His hands-on experience with high-pressure reactors and pilot plant operations underscores his technical expertise. Additionally, he is skilled in various analytical techniques, including HPLC, GC, FTIR, and DSC, which he employs to interpret data and optimize chemical processes. Furthermore, his proficiency in software such as MATLAB and Aspen Plus enhances his ability to model and analyze complex systems.

 

Awards and Recognition

Narendra Bodawar has received notable recognition for his contributions to chemical engineering research. He won the Best Paper Award at the “International Chemical Engineering Conference on Energy, Environment, and Sustainability” held at IIT Roorkee in February 2024, highlighting the impact of his research on advancing sustainable technologies. His collaborative work in developing processes for synthesizing Bisphenol A and other chemical products, which have significant industrial applications, has also garnered attention and praise. These accolades reflect his commitment to excellence and innovation in research, reinforcing his position as a valuable contributor to the field.

Conclusion

Narendra Bodawar’s research embodies a perfect blend of innovation, practicality, and sustainability in the field of Chemical Engineering. His comprehensive expertise in process development and optimization, coupled with a solid track record of impactful research outcomes, makes him an outstanding candidate for the Best Research Award. His work not only contributes to academic knowledge but also has far-reaching implications for industrial practices and environmental sustainability, thereby aligning perfectly with the goals of the award.

Publications

      1. Enhanced Degradation of Ciprofloxacin Hydrochloride Using Hybrid Advanced Oxidation Process of Hydrodynamic Cavitation and Ozonation
        • Year: 2024
        • Journal: Chemical Engineering and Technology
        • 🧪💧
      2. Comparative Evaluation of Advanced Oxidation Processes (AOPs) for Reducing SARS-CoV-2 Viral Load from Campus Sewage Water
        • Year: 2023
        • Journal: Journal of Environmental Chemical Engineering
        • 🦠🚰

 

Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof Dr. Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof at University Malaysia Sarawak, Malaysia.

Associate Professor Dr. Md. Rezaur Rahman, a distinguished scholar in Polymer/Materials Engineering, holds a PhD from the University Malaysia Sarawak (UNIMAS) and multiple master’s degrees from Bangladesh institutions. Since joining UNIMAS in 2011, he has specialized in polymer composites and nanomaterials, leading significant research projects and collaborations with global institutions, including the University of Tokoshima, Japan, and the University of Houston, USA. His research spans environmental health, vector control, and parasitology, with over 140 journal publications and eight books. Dr. Rahman’s work on nanocomposites and green materials has earned him substantial recognition, including a high h-index and international citations. He actively contributes to academia through teaching, supervising postgraduate students, and leading research initiatives funded by both UNIMAS and external agencies. Dr. Rahman is also a member of several professional societies and a top 2% world scientist according to Stanford University.

Profile

Education

Associate Professor Dr. Md. Rezaur Rahman has a robust educational background that underscores his expertise in Polymer and Materials Engineering. He earned his PhD in Advanced Materials from the University Malaysia Sarawak (UNIMAS) in 2011. Prior to this, he completed a Master of Science (M.Sc) in Polymer Engineering from the Bangladesh University of Engineering and Technology (BUET) in 2008. His academic journey began with a Master of Science (M.Sc) in Physical Inorganic Chemistry, with a focus on Advanced Polymer, from the University of Chittagong, Bangladesh, in 2001. Dr. Rahman’s foundation in chemistry was laid with a Bachelor of Science (B.Sc) (Hons) in Chemistry from the University of Chittagong in 1999. This extensive educational background has equipped him with a comprehensive understanding of polymer materials, which he has applied extensively in his research and teaching career.

Professional Experience

Associate Professor Dr. Md. Rezaur Rahman boasts extensive professional experience in the field of Polymer and Materials Engineering. Since joining the Faculty of Engineering at Universiti Malaysia Sarawak (UNIMAS) in 2011, he has taught a diverse range of courses including Polymer Engineering Applications, Environmental Engineering, and Quality Control. Dr. Rahman has supervised 26 final-year undergraduates, 9 Master’s, and 10 PhD students, with 6 Master’s and 6 PhD graduates under his mentorship. His previous roles include serving as a lecturer at the Department of Chemistry, Institute of Textile and Clothing Technology in Dhaka, Bangladesh, and as a research assistant at Bangladesh University of Engineering and Technology. Dr. Rahman has led and collaborated on 21 research projects, with significant contributions to both national and international research efforts, reflecting his strong academic leadership and commitment to advancing materials science.

Research Interest

Associate Professor Dr. Md. Rezaur Rahman’s research primarily focuses on polymer and materials engineering, with a strong emphasis on advancing polymer composites and nanomaterials. His work involves the development of green composites and the optimization of nanocomposite materials for environmental applications, such as wastewater treatment and soil stabilization. Dr. Rahman’s research includes investigating the synthesis and characterization of novel polymer materials, including biodegradable polymers and advanced composites. He also explores the mechanical and thermal properties of these materials to enhance their performance and applicability. His interdisciplinary collaborations span various institutions, contributing to innovative solutions in polymer technology and materials science. Through his research, Dr. Rahman aims to address pressing environmental challenges and advance the field of materials engineering with practical, applied solutions.

Research Contributions

Associate Professor Ts Dr Md. Rezaur Rahman is renowned for his extensive research in Polymer and Materials Engineering. His research has led to significant advancements in polymer composites and nano materials. His PhD from University Malaysia Sarawak and previous degrees in Polymer Engineering and Physical Inorganic Chemistry have shaped his research focus, enabling him to contribute to 140 international index journal publications and 8 books. His research includes novel nanocomposite powders for environmental applications, bio-cementation strategies, and innovative uses of polymers in various fields.

Geographic Impact

Dr. Rahman’s research has had a broad geographic impact, collaborating with institutions across the globe including The Institute of Technology and Science, Tokushima University (Japan), University of Houston (USA), and multiple Malaysian universities. His work on green composites and sustainable materials addresses global challenges and benefits diverse regions, from rural areas in Borneo to industrial applications worldwide.

Collaborative Efforts

Dr. Rahman has demonstrated a strong commitment to collaborative research. His partnerships span several esteemed institutions such as the University of Malaya, Universiti Putra Malaysia, and Swinburne University of Technology. These collaborations have led to groundbreaking research in sustainable materials and environmental engineering, enhancing the scope and impact of his work.

Applied Research

Dr. Rahman’s applied research focuses on practical solutions for environmental and engineering challenges. His work includes optimizing nanocomposites for heavy metal removal, enhancing soil fixation through bio-cementation, and developing novel biodegradable polymers. These applied research efforts contribute to both academic knowledge and practical solutions in environmental health and sustainability.

Specific Projects and Publications

Dr. Rahman has led numerous projects funded by both UNIMAS and external grants, including the Ministry of Higher Education (MOHE). Notable projects include the optimization of nanocomposite powders for wastewater treatment and the development of sustainable bio-cementation strategies. His publications in journals such as the Journal of Environmental Development and Sustainability and the Polymer Bulletin highlight his contributions to the field.

Environmental Health

Dr. Rahman’s research significantly contributes to environmental health through innovative materials and processes. His studies on nanocomposites for heavy metal removal from palm oil mill effluent and sustainable materials for soil fixation address critical environmental issues, promoting cleaner and safer ecosystems.

Vector Control

While not a primary focus of Dr. Rahman’s research, his work on advanced materials can indirectly support vector control efforts through the development of sustainable and environmentally friendly materials. For instance, his research on bio-cementation and nanocomposites can contribute to improved sanitation and environmental management, potentially reducing vector-borne diseases.

Parasitology and Infectious Diseases

Dr. Rahman’s research is less directly related to parasitology and infectious diseases. However, his advancements in materials science and environmental health may have indirect benefits for these fields by improving overall sanitation and environmental conditions, which are crucial for controlling parasitic infections.

Awards and Recognition

Dr. Rahman has received significant recognition for his research, including being listed as a Top 2% world scientist by Stanford University and Elsevier. His h-index of 31 and i10-index of 75, with over 3551 citations, reflect his substantial impact on the field. His professional memberships, including those with the Chemical Society and the Malaysian Board of Technologist, further underscore his standing in the academic community.

Conclusion

Associate Professor Ts Dr Md. Rezaur Rahman’s contributions to Polymer and Materials Engineering, along with his collaborative efforts and applied research, make him a strong candidate for the Research for Best Scholar Award. His work addresses critical environmental and engineering challenges, demonstrates global impact, and garners substantial recognition in his field. His continued research and leadership promise further advancements and contributions to both academia and industry.

Publications Top Notes

  1. A review on poly lactic acid (PLA) as a biodegradable polymer
    • Authors: N.A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S. Hamdan, M.K.B. Bakri, …
    • Year: 2023
    • Citations: 267
  2. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2008
    • Citations: 264
  3. Mechanical properties of polypropylene composites reinforced with chemically treated abaca
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2009
    • Citations: 248
  4. Physico-mechanical properties of chemically treated coir reinforced polypropylene composites
    • Authors: M.N. Islam, M.R. Rahman, M.M. Haque, M.M. Huque
    • Year: 2010
    • Citations: 224
  5. Comparative study of dielectric properties of hybrid natural fiber composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 152
  6. Recent developments in bamboo fiber-based composites: a review
    • Authors: A. Muhammad, M.R. Rahman, S. Hamdan, K. Sanaullah
    • Year: 2019
    • Citations: 137
  7. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites
    • Authors: M.S. Islam, S. Hamdan, I. Jusoh, M.R. Rahman, A.S. Ahmed
    • Year: 2012
    • Citations: 131
  8. Physico-mechanical properties of jute fiber reinforced polypropylene composites
    • Authors: M. Rezaur Rahman, M. Hasan, M. Monimul Huque, M. Nazrul Islam
    • Year: 2010
    • Citations: 128
  9. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications
    • Authors: M.M. Matin, P. Matin, M.R. Rahman, T. Ben Hadda, F.A. Almalki, S. Mahmud, …
    • Year: 2022
    • Citations: 120
  10. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 120