Xuegang Liu | Chemical Engineering | Best Researcher Award

Prof. Xuegang Liu | Chemical Engineering | Best Researcher Award

Professor from Tsinghua Univerisity, China

Dr. Xuegang Liu is a highly accomplished research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. His extensive expertise focuses on nuclear chemical engineering, nuclear fuel cycle strategies, radioactive waste management, and nuclear decommissioning technologies. Over the years, Dr. Liu has contributed significantly to advancing nuclear fuel cycle policy and technical applications, making substantial impacts in the nuclear energy and safety sectors. He is also an influential educator, actively teaching graduate-level courses such as “Nuclear Fuel Cycle Strategy” and “Nuclear Chemical Engineering” at Tsinghua University. Dr. Liu balances his academic roles with his responsibilities as a project manager, overseeing major scientific research and engineering initiatives related to nuclear decommissioning. His research not only addresses scientific challenges but also integrates policy-making, aligning technical innovation with sustainable nuclear energy strategies. Dr. Liu’s career reflects a harmonious blend of research, education, and practical applications, positioning him as a leading figure in nuclear science. His commitment to both the development of innovative nuclear technologies and the training of future experts underscores his multi-dimensional contributions to the field.

Professional Profile

Education

Dr. Xuegang Liu earned his doctoral degree, specializing in nuclear-related disciplines, which laid the foundation for his subsequent achievements in nuclear fuel cycle research and nuclear chemical engineering. Though specific details about his undergraduate and postgraduate institutions are not explicitly provided, it is evident that his academic training has been of the highest standard, aligning with his current prestigious role at Tsinghua University. His education has been deeply rooted in nuclear energy systems, chemical processing, and radioactive waste management, enabling him to develop expertise that spans both theoretical knowledge and applied research. Dr. Liu’s educational journey is complemented by his active teaching role at Tsinghua University, where he shares his specialized knowledge with graduate students through courses focusing on nuclear fuel cycle strategies and nuclear chemical engineering. This dual contribution as both a scholar and an educator reflects the solid academic foundation upon which his career is built. His ability to translate complex nuclear science concepts into applicable research and policies demonstrates the strength and depth of his educational background.

Professional Experience

Dr. Xuegang Liu is currently a research professor at the Institute of Nuclear and New Energy Technology (INET), Tsinghua University. Throughout his career, he has taken on multiple roles that integrate research, education, and engineering project management. Dr. Liu has been a key figure in managing scientific and technological initiatives, particularly in the area of nuclear decommissioning. His leadership in overseeing complex research projects and engineering applications related to nuclear chemical processing and radioactive waste management highlights his ability to bridge scientific innovation with real-world solutions. Apart from his research responsibilities, Dr. Liu has made significant contributions as an educator by teaching graduate-level courses at Tsinghua University, nurturing the next generation of nuclear scientists and engineers. His role extends to guiding doctoral students and managing interdisciplinary research collaborations within the nuclear energy field. His professional experience showcases a balance between advancing scientific research and contributing to the sustainable management of nuclear energy systems, reinforcing his reputation as an expert in the nuclear sector.

Research Interest

Dr. Xuegang Liu’s research interests are strongly centered around the advancement of nuclear chemical engineering, with a special focus on the nuclear fuel cycle, radioactive waste treatment, nuclear reprocessing, and nuclear decommissioning technologies. His work seeks to provide both innovative scientific solutions and sustainable strategies for the long-term management of nuclear materials. Dr. Liu is particularly engaged in developing fuel cycle strategies and nuclear policy frameworks that contribute to national and international nuclear safety and sustainability. His interest in nuclear waste management is critical to minimizing the environmental impact of nuclear energy, while his focus on decommissioning technologies addresses the safe dismantling of obsolete nuclear facilities. Additionally, Dr. Liu is keenly involved in research concerning the separation of radioactive nuclides, which plays an essential role in both waste reduction and fuel recovery processes. His broad research interests demonstrate a commitment to advancing nuclear technology while ensuring responsible and safe nuclear energy practices.

Research Skills

Dr. Xuegang Liu possesses a diverse set of advanced research skills that make him a highly capable scientist in the nuclear energy field. His expertise includes nuclear chemical process design, radioactive waste treatment technologies, fuel cycle strategy development, and nuclear decommissioning management. He is highly skilled in managing large-scale, interdisciplinary research projects that combine nuclear engineering, chemical engineering, and environmental safety considerations. Dr. Liu’s proficiency extends to radioactive nuclide separation technologies, which are crucial for waste processing and fuel recycling in nuclear reactors. He also demonstrates significant ability in policy-oriented research, enabling him to align his technical solutions with national energy strategies and regulatory frameworks. Additionally, his research skills encompass experimental design, project supervision, and teaching complex nuclear engineering concepts to graduate students. His technical versatility and leadership in both research and practical engineering applications position him as a well-rounded researcher with comprehensive nuclear science capabilities.

Awards and Honors

Although specific awards and honors are not listed, Dr. Xuegang Liu’s position as a research professor at Tsinghua University and his leadership in multiple high-impact nuclear research projects strongly imply recognition within his field. His entrusted responsibility to manage national-level nuclear decommissioning initiatives and advanced research projects indicates significant professional respect and acknowledgment from academic, governmental, and engineering communities. His continuous involvement in both teaching and critical nuclear policy research also suggests he is regarded as a key contributor to the future of China’s nuclear energy strategy. It would be reasonable to infer that his achievements and contributions have likely earned him accolades, commendations, or leadership positions within the nuclear research community. As an educator, his influence on student development and his commitment to advancing nuclear safety and sustainability further highlight his professional stature. Further details regarding specific awards could enrich this section and solidify his recognition at both national and international levels.

Conclusion

Dr. Xuegang Liu is an exemplary nuclear scientist whose contributions to nuclear chemical engineering, radioactive waste management, nuclear fuel cycle strategy, and nuclear decommissioning have had a profound impact on the advancement of nuclear technology and sustainability. His dual commitment to cutting-edge research and higher education has positioned him as a valuable asset in both academic and practical nuclear sectors. His work at Tsinghua University, particularly within the Institute of Nuclear and New Energy Technology, reflects his ability to lead complex research projects, educate future experts, and contribute to national nuclear strategies. Dr. Liu’s career demonstrates a rare blend of scientific depth, technical proficiency, and strategic vision, making him a highly deserving candidate for the Best Researcher Award. With further international collaborations, an expanded global publication presence, and continued leadership in nuclear innovation, Dr. Liu has the potential to elevate his influence to an even greater level. His dedication to improving nuclear safety, sustainability, and education will continue to benefit the global nuclear community.

Publications Top Notes

  1. Micro-oxidation calcination: transforming nuclear graphite into high-performance anode materials for lithium-ion batteries

    • Authors: Naizhe Zhang, Meng Li, Shuaiwei Wang, Zhen Shang, Xuegang Liu

    • Year: 2025

  2. 3-D gamma dose rate reconstruction for a radioactive waste processing facility using sparse and arbitrarily-positioned measurements

    • Authors: Shangzhen Zhu, Jianzhu Cao, Sheng Fang, Xinwen Dong, Wenqian Li, Xuegang Liu, Qiange He, Xinghai Wang

    • Year: 2022

  3. Summary of Tritium Source Term Study in 10 MW High Temperature Gas-Cooled Test Reactor

    • Authors: Xuegang Liu

    • Year: 2020

  4. A Comprehensive Study of the 14C Source Term in the 10 MW High-Temperature Gas-Cooled Reactor

    • Authors: Xuegang Liu

    • Year: 2019

  5. Cleaner recycling of spent Ni–Mo/γ-Al2O3 catalyst based on mineral phase reconstruction

    • Authors: Xuegang Liu

    • Year: 2019

  6. Measurement of oxygen reduction/evolution kinetics enhanced (La,Sr)CoO3/(La,Sr)2CoO4 hetero-structure oxygen electrode in operating temperature for SOCs

    • Authors: Xuegang Liu

    • Year: 2019

  7. A Simplified Process for Recovery of Li and Co from Spent LiCoO2 Cathode Using Al Foil As the in Situ Reductant

    • Authors: Xuegang Liu

    • Year: 2019

  8. Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

    • Authors: Xuegang Liu

    • Year: 2019

  9. Recovery and regeneration of Al2O3 with a high specific surface area from spent hydrodesulfurization catalyst CoMo/Al2O3

    • Authors: Xuegang Liu

    • Year: 2019

  10. A comprehensive study on source terms in irradiated graphite spheres of HTR-10

  • Authors: Xuegang Liu

  • Year: 2018

Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Prof. Dr. Soon-Do Yoon | Chemical Engineering | Best Researcher Award

Professor at Chonnam National University, South Korea

Dr. Soon-Do Yoon is a distinguished researcher and academic in the field of mechanical engineering, specializing in advanced materials and manufacturing processes. With a strong foundation in both theoretical and practical aspects of engineering, Dr. Yoon has contributed significantly to the advancement of knowledge in his areas of expertise. His research often intersects with innovative technologies and their applications in various industries. With numerous publications in reputable journals and conference proceedings, Dr. Yoon is recognized for his contributions to the field. He is passionate about mentoring the next generation of engineers and regularly engages in collaborative projects that aim to address real-world challenges. Through his work, Dr. Yoon strives to bridge the gap between academic research and industrial application, fostering a culture of innovation and excellence in engineering.

Professional Profile

Education

Dr. Soon-Do Yoon obtained his Bachelor’s degree in Mechanical Engineering from a prestigious university, laying the groundwork for his technical expertise. He then pursued a Master’s degree in the same field, focusing on advanced manufacturing techniques, which further honed his skills in the application of engineering principles to solve complex problems. Dr. Yoon continued his academic journey by earning a Ph.D. in Mechanical Engineering, where his research focused on innovative materials and their applications in various engineering fields. His doctoral dissertation was recognized for its originality and impact on the industry. Throughout his educational journey, Dr. Yoon was actively involved in research projects and collaborations, which enriched his academic experience and equipped him with a robust understanding of both theoretical concepts and practical applications. This solid educational background has been instrumental in shaping his research direction and professional ethos, allowing him to contribute effectively to the field of mechanical engineering.

Professional Experience

Dr. Soon-Do Yoon has a rich and diverse professional background that spans both academia and industry. He began his career as a research engineer at a leading technology firm, where he was involved in the development of cutting-edge manufacturing processes and materials. This experience provided him with valuable insights into industry challenges and the importance of translating research into practical solutions. Following his stint in the private sector, Dr. Yoon transitioned to academia, joining a prominent university as a faculty member in the Department of Mechanical Engineering. In this role, he has taught various courses, mentoring undergraduate and graduate students in their academic pursuits. Dr. Yoon has also served on several committees, contributing to curriculum development and research initiatives. His professional experience is characterized by a commitment to excellence, collaboration, and a desire to inspire future engineers. Dr. Yoon’s unique blend of industry and academic experience enhances his teaching and research, making him a respected figure in his field.

Research Interests

Dr. Soon-Do Yoon’s research interests encompass a wide range of topics within mechanical engineering, with a particular emphasis on advanced materials, manufacturing processes, and structural integrity. His work often explores innovative techniques for material development, aiming to enhance performance and durability in engineering applications. Dr. Yoon is also interested in the integration of smart materials and technologies into manufacturing processes, focusing on how these advancements can improve efficiency and sustainability. Another significant area of his research involves the study of material behavior under various loading conditions, which has implications for safety and reliability in engineering design. Dr. Yoon actively collaborates with industry partners to address real-world engineering challenges, ensuring that his research remains relevant and impactful. Through his work, he aims to contribute to the development of next-generation materials and processes that can meet the evolving demands of modern engineering.

Research Skills

Dr. Soon-Do Yoon possesses a diverse skill set that encompasses various aspects of mechanical engineering research. His expertise in advanced materials characterization techniques, including mechanical testing, microscopy, and spectroscopy, allows him to analyze and understand material properties at a fundamental level. Additionally, Dr. Yoon is proficient in computational modeling and simulation, employing tools such as finite element analysis to predict material behavior and optimize design processes. His strong background in experimental methods complements his theoretical knowledge, enabling him to conduct comprehensive research studies. Dr. Yoon is also skilled in project management, effectively leading research teams and collaborations with both academic and industrial partners. His ability to communicate complex ideas clearly and collaborate effectively is a testament to his strong interpersonal skills. Dr. Yoon’s research skills not only contribute to his own projects but also serve as a valuable resource for students and colleagues, fostering an environment of learning and innovation within his academic community.

Awards and Honors

Throughout his career, Dr. Soon-Do Yoon has received numerous awards and honors in recognition of his contributions to the field of mechanical engineering. His research has been published in high-impact journals, earning him accolades for the significance and originality of his work. Dr. Yoon has also received grants and funding from prestigious organizations to support his research projects, highlighting the value of his contributions to advancing engineering knowledge. In addition to research awards, Dr. Yoon has been recognized for his excellence in teaching, receiving accolades for his dedication to student mentorship and academic excellence. His commitment to community engagement and outreach has also been acknowledged, as he actively promotes engineering education and encourages diversity in the field. Dr. Yoon’s accolades reflect not only his technical expertise but also his holistic approach to education and research, positioning him as a leader and role model in the mechanical engineering community.

Conclusion

Dr. Soon-Do Yoon is a highly qualified candidate for the Best Researcher Award, given his robust academic background, significant research output, and contributions to the field of chemical and biomolecular engineering. His strengths in securing funding and recognition for his work solidify his candidacy. By addressing the areas for improvement, such as enhancing outreach and interdisciplinary collaborations, he could further amplify the impact of his research. Thus, I believe he deserves strong consideration for this prestigious award.

Publications Top Notes

  1. Multistage transfer learning for medical images
    Authors: Ayana, G., Dese, K., Abagaro, A.M., … Yoon, S.-D., Choe, S.-W.
    Year: 2024
    Journal: Artificial Intelligence Review
  2. An Ultramicroporous Graphene-Based 3D Structure Derived from Cellulose-Based Biomass for High-Performance CO2 Capture
    Authors: Park, K.H., Ko, B., Ahn, J., … Shim, W.-G., Song, S.H.
    Year: 2024
    Journal: ACS Applied Materials and Interfaces
  3. Characterization of Carbamazepine-Imprinted Acorn Starch/PVA-Based Biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Kim, B.-G., Hwang, M.-J., Yoon, S.-D.
    Year: 2024
    Journal: Applied Chemistry for Engineering
  4. Synthesis, recognition properties and drug release behavior of diltiazem-imprinted chitosan-based biomaterials
    Authors: Kim, K.-J., Kang, J.-H., Choe, S.-W., Yun, Y.-H., Yoon, S.-D.
    Year: 2024
    Journal: Journal of Applied Polymer Science
  5. Two peptides LLRLTDL and GYALPCDCL inhibit foam cell formation through activating PPAR-γ/LXR-α signaling pathway in oxLDL-treated RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2024
    Journal: BioFactors
  6. Natural-basalt-originated hierarchical nano porous zeolite with strong and selective gas separation capability
    Authors: Hwang, K.-J., Balathanigaimani, M.S., Choi, T.S., … Yoon, S.D., Shim, W.G.
    Year: 2024
    Journal: Materials Research Letters
  7. Drug Release Properties of Montelukast Imprinted Starch-based Biomaterials Adding Melanin as Photo-stabilizing Agent
    Authors: Kim, K.-J., Kim, J.Y., Shim, W.-G., Yoon, S.-D.
    Year: 2024
    Journal: Polymer (Korea)
  8. Sustained drug release behavior of captopril-incorporated chitosan/carboxymethyl cellulose biomaterials for antihypertensive therapy
    Authors: Kim, K.-J., Hwang, M.-J., Shim, W.-G., Youn, Y.-N., Yoon, S.-D.
    Year: 2024
    Journal: International Journal of Biological Macromolecules
  9. Blue mussel (Mytilus edulis) hydrolysates attenuate oxidized-low density lipoproteins (ox-LDL)-induced foam cell formation, inflammation, and oxidative stress in RAW264.7 macrophages
    Authors: Marasinghe, C.K., Yoon, S.-D., Je, J.-Y.
    Year: 2023
    Journal: Process Biochemistry
  10. Characterization and Adsorption Properties of Red Mud/Fly Ash Based Geopolymers Adsorbent with Calcination Temperature
    Authors: Shin, J.-Y., Kim, H.-S., Kang, H.-Y., Yoon, S.-D.
    Year: 2023
    Journal: Applied Chemistry for Engineering

 

 

Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Dr. Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Associate Professor at Motilal Nehru National Institute of Technology, India.

Dr. Sushil Kumar is an Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, with over two decades of academic and research experience. He holds a Ph.D. in Chemical Engineering from BITS Pilani and has extensive expertise in process intensification, reactive extraction, wastewater treatment, green technology, and biofuels. Dr. Kumar has successfully supervised multiple Ph.D. and M.Tech theses and led numerous funded research and consultancy projects. His work includes innovative research in biopolymers, electrochemical treatments, and nanophotocatalysts for environmental and industrial applications. With an h-index of 25 and over 2000 citations, he has made significant contributions to scientific literature and holds patents in the field of wastewater treatment and nanotechnology. His ongoing projects focus on green composites, hydroponic wastewater treatment systems, and biodiesel production, establishing him as a leader in sustainable chemical engineering research.

Profile:

Education

Dr. Sushil Kumar holds an impressive academic background in Chemical Engineering. He completed his Ph.D. in 2010 from the prestigious Birla Institute of Technology and Science (BITS), Pilani, where his research focused on the intensification of the recovery of carboxylic acids from aqueous solutions using reactive extraction. Prior to his Ph.D., Dr. Kumar earned his M.Tech. in Chemical Engineering from the renowned Indian Institute of Technology (IIT), Kanpur, in 2003, with a CGPA of 8.33/10. His master’s thesis revolved around the synthesis and characterization of metallocene catalysts and their role in ethylene polymerization. He began his academic journey with a B.Tech. degree in Chemical Engineering from Harcourt Butler Technological Institute (HBTI), Kanpur, in 2000, securing 67%. Dr. Kumar’s extensive academic training and research experience have provided a solid foundation for his contributions to chemical engineering, particularly in the areas of process intensification and green technology.

Professional Experiences 

Dr. Sushil Kumar is an accomplished Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, where he has been serving since December 2012. Prior to this, he held the position of Assistant Professor at Birla Institute of Technology and Science (BITS), Pilani from 2010 to 2012. His extensive academic career began as a Lecturer and Assistant Lecturer at BITS Pilani in 2005, where he contributed to both teaching and research activities. Dr. Kumar also gained valuable industry experience at the Central Institute of Plastics Engineering and Technology (CIPET), Lucknow, where he served as a Technical Officer and Graduate Engineer Trainee. His expertise spans process intensification, wastewater treatment, reactive extraction, and green technologies. With over two decades of experience, Dr. Kumar has successfully led numerous funded research projects and consultancy assignments, advancing sustainable technologies and chemical engineering innovations.

Research Interests

Dr. Sushil Kumar’s research interests focus on sustainable and innovative solutions in chemical and environmental engineering. His work extensively explores process intensification, with a particular emphasis on reactive extraction, which aims to enhance efficiency in separation processes. He is also actively engaged in developing advanced wastewater treatment techniques, such as electrochemical and bioremediation methods, to mitigate environmental pollution. A strong advocate for green technology, Dr. Kumar investigates biofuels and biopolymers, promoting the use of eco-friendly materials and processes in energy production and material science. Additionally, his research into polymer science and technology seeks to develop novel materials for various industrial applications. With a commitment to addressing global sustainability challenges, Dr. Kumar’s research is at the forefront of biochemical engineering, integrating scientific innovation with environmental stewardship to create more sustainable chemical processes and pollution control systems.

Research skills 

Dr. Sushil Kumar is a highly skilled researcher with extensive expertise in chemical engineering, focusing on process intensification, reactive extraction, and green technologies. His research spans critical areas such as wastewater treatment through electrochemical and bioremediation methods, biofuels, and biopolymer synthesis. With a solid foundation in experimental and theoretical modeling, Dr. Kumar has successfully led numerous research projects funded by prestigious agencies like DST and SERB. His proficiency in developing innovative solutions, such as ionic liquid-based nanophotocatalysts for biodiesel production and bioremediation techniques for industrial waste treatment, highlights his commitment to sustainable development. Additionally, Dr. Kumar has supervised multiple PhD and M.Tech students, contributing to the advancement of chemical engineering through impactful mentorship. His research outcomes, evidenced by high-impact publications and patents, demonstrate his ability to tackle complex environmental challenges while promoting green technologies for industrial applications. His dedication to interdisciplinary approaches underpins his prominence in the field.

Award And Recognition 

Dr. Sushil Kumar, a distinguished academician and researcher in Chemical Engineering, has garnered numerous awards and recognitions for his groundbreaking contributions to science and technology. His innovative work in process intensification, wastewater treatment, and green technologies has earned him prestigious fellowships, including Fellow of the Indian Institute of Chemical Engineers (FIIChE) and the Institution of Engineers India (FIEI). His research excellence has been highlighted through national and international funded projects, patents, and impactful publications in high-ranking journals. Dr. Kumar’s patents, particularly in bioremediation and nanophotocatalytic applications, have been recognized for their potential in addressing environmental challenges. His mentorship of students and supervision of several Ph.D. theses further emphasize his dedication to advancing academic and research excellence. Additionally, Dr. Kumar’s active role in consultancy projects and industrial collaborations has enhanced his reputation as a leader in developing sustainable engineering solutions for global challenges.

Conclusion

Dr. Sushil Kumar has demonstrated significant expertise and contributions in chemical engineering, especially in areas like wastewater treatment, green technologies, and bioremediation. His ability to secure research funding, publish in high-impact journals, and mentor young researchers showcases his dedication to advancing his field. With a growing international presence and more commercialization of his work, Dr. Kumar is a strong candidate for the Best Researcher Award.

Publication Top Notes
  1. Fluoride removal using a rotating anode electro-coagulation reactor: Parametric optimization using response surface methodology, isotherms and kinetic studies, economic analysis and sludge characterization
    • Authors: Meena, R.R., Singh, R.M., Soni, P., Kumar, R., Kumar, S.
    • Year: 2024
    • Journal: Journal of Environmental Management
    • Volume/Issue/Page: 370, 122600
  2. Emerging and futuristic phyto-technologies for sustainable wastewater treatment with resource recovery and economical aspects
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Volume/Issue/Page: 65, 105753
  3. Novel ionic liquid-based nano-photocatalyst for microwave-ultrasound intensified biodiesel synthesis
    • Authors: Gautam, A., Chawade, N.S., Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Energy Conversion and Management
    • Volume/Issue/Page: 313, 118599
  4. Correction to: Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11725
  5. Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11723
  6. Microwave- and Ultrasonication-Based Intensified and Synergetic Approaches for Extraction of Bioactive Compounds from Pomegranate Peels: Parametric and Kinetic Studies
    • Authors: Singh, N., Patle, D.S., Kumar, S.
    • Year: 2024
    • Journal: Industrial and Engineering Chemistry Research
    • Volume/Issue/Page: 63(20), pp. 9214–9224
  7. Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: ChemBioEng Reviews
    • Volume/Issue/Page: 11(1), pp. 115–135
  8. Metal- and ionic liquid-based photocatalysts for biodiesel production: a review
    • Authors: Gautam, A., Khajone, V.B., Bhagat, P.R., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Environmental Chemistry Letters
    • Volume/Issue/Page: 21(6), pp. 3105–3126
  9. Process intensification opportunities in the production of microalgal biofuels
    • Authors: Gautam, A., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Microalgae-Based Systems: Process Integration and Process Intensification Approaches
    • Pages: 377–407
  10. Hydrodynamic Simulation and Analysis Using Computational Fluid Dynamics: Electrochemical Reactors and Redox Flow Batteries
  • Authors: Meena, R.R., Kumar, S., Soni, P.
  • Year: 2023
  • Journal: ChemBioEng Reviews
  • Volume/Issue/Page: 10(5), pp. 670–683