Zhiyu Mao | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhiyu Mao | Chemical Engineering | Best Researcher Award

Associate Professor at Dalian Institute of Chemical Physics, China

Dr. Zhiyu Mao is an accomplished researcher and associate professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences. With a Ph.D. in Chemical Engineering from the University of Waterloo, his research spans multiple areas within electrochemical energy storage systems, battery management, and advanced material design. Over the past 9+ years, Dr. Mao has gained substantial expertise in the development, testing, and mathematical modeling of energy storage systems, specifically lithium-ion batteries, fuel cells, and supercapacitors. His work focuses on understanding failure mechanisms in batteries, the aging process, and the implementation of artificial intelligence for battery management systems (BMS). Along with his academic career, Dr. Mao has worked in industry, collaborating with companies such as CWZE Power Inc. and Tianjin Lishen Battery Co., where he led R&D efforts on battery safety, performance evaluation, and system integration. His research has resulted in over 30 published papers and 13 patents. Dr. Mao has proven himself as a leader in the electrochemical energy field and continues to make significant strides in advancing energy storage technologies.

Professional Profile

Education:

Dr. Zhiyu Mao’s academic journey is marked by a strong foundation in chemical and materials engineering. He completed his Ph.D. in Chemical Engineering at the University of Waterloo, Canada, in 2016, where he specialized in battery materials, electrochemical systems, and modeling techniques for energy storage devices. Before this, Dr. Mao obtained his M.Sc. in Chemical Engineering from Taiyuan University of Technology, China, where he focused on electrode reaction kinetics for lithium-ion batteries. His undergraduate studies were completed at Inner Mongolia University, China, where he earned a B.Sc. in Materials Chemistry. Throughout his educational career, Dr. Mao honed his skills in both experimental research and theoretical modeling, laying the groundwork for his later contributions to the field of electrochemical energy storage. His research during his Ph.D. involved the development of innovative methodologies for understanding the behavior of battery materials, which he later applied to various real-world applications, including electric vehicles (EVs) and renewable energy storage systems. His diverse educational background has equipped him with a broad set of skills in both theoretical and applied chemistry, making him a leader in electrochemical engineering.

Professional Experience:

Dr. Zhiyu Mao has built an impressive career spanning both academia and industry, contributing significantly to the fields of electrochemical engineering and energy storage systems. Currently, Dr. Mao holds the position of Associate Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, where he leads research on electrochemical energy storage, battery modeling, and fault warning systems for batteries. Prior to this, he served as a professor at Zhejiang Normal University, focusing on the dynamics of embedded materials and failure mechanisms in energy storage systems. In addition to his academic roles, Dr. Mao has accumulated significant industrial experience. He worked as a research scientist at CWZE Power Inc., where he led the R&D of advanced long-life lead-carbon batteries. He also contributed to the development of high-performance Li-ion cells at Newtech Power Inc., playing a key role in battery design, pilot plant testing, and performance evaluation. His industrial roles have provided him with valuable hands-on experience in the commercialization of electrochemical systems, allowing him to bridge the gap between research and practical application. This combination of academic and industrial expertise has made Dr. Mao a well-rounded and influential figure in his field.

Research Interests:

Dr. Zhiyu Mao’s research interests lie at the intersection of electrochemical engineering, advanced materials, and energy storage systems. His primary focus is on the design and optimization of electrochemical energy storage devices, particularly lithium-ion batteries, sodium-ion batteries, fuel cells, and hybrid supercapacitors. Dr. Mao is particularly interested in understanding the microscopic dynamics of embedded materials and the mechanisms that lead to battery degradation and failure. This includes exploring issues like solid-electrolyte interphase (SEI) growth, transition metal dissolution, and lithium plating. He also works on the development of artificial intelligence (AI) and big data analytics for battery management systems (BMS), aiming to improve state-of-charge estimation, fault prediction, and battery life-cycle management. Dr. Mao’s research spans both theoretical and experimental work, using advanced electrochemical and non-electrochemical techniques to characterize battery performance and failure modes. He is also engaged in developing advanced materials for batteries, including silicon and graphite-based electrodes, to improve energy density, rate capability, and cycle life. His research on smart energy grids and energy storage systems for renewable energy applications is pushing the boundaries of energy storage technology and its integration into broader energy systems.

Research Skills:

Dr. Zhiyu Mao possesses a wide range of research skills that are central to his work in electrochemical energy storage systems. His technical expertise includes experimental techniques like cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration (GITT), and constant current/constant voltage (CC/CV) cycling, as well as non-electrochemical characterization methods such as scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). Dr. Mao is highly skilled in mathematical modeling and simulation of electrochemical systems, particularly in the development of physics-based models for battery aging and life prediction. He has expertise in applying advanced AI techniques and big data analysis to energy storage and management systems, particularly in the optimization of battery performance and fault detection. Dr. Mao is also proficient in the design and fabrication of battery systems, including the selection and optimization of materials, cell assembly, and testing. His interdisciplinary approach, combining fundamental electrochemical principles with applied engineering, has allowed him to make significant contributions to both academic research and industry.

Awards and Honors:

Dr. Zhiyu Mao’s outstanding contributions to electrochemical research and energy storage systems have earned him several accolades throughout his career. While specific awards are not detailed in his CV, his impressive body of work, including over 30 publications in prestigious journals such as the Journal of the Electrochemical Society and Electrochimica Acta, demonstrates the recognition he has received in the academic community. Furthermore, Dr. Mao’s patents, totaling 13 internationally, highlight the innovative nature of his work, particularly in battery materials, energy storage systems, and management technologies. His collaborative work with industry leaders, such as Newtech Power Inc. and CWZE Power Inc., also underscores his ability to apply his research to real-world problems, advancing both scientific understanding and practical applications. His research on advanced materials, battery aging, and AI for battery management has established him as a thought leader in the field of electrochemical energy storage. Although specific honors and awards are not listed, his scientific output, patent portfolio, and industry collaborations place him in a strong position for recognition.

Conclusion:

Dr. Zhiyu Mao is a highly accomplished researcher and academic with a proven track record in advancing the field of electrochemical energy storage systems. His extensive research, spanning from battery design to artificial intelligence applications for battery management, has positioned him as a leader in the field. Dr. Mao’s interdisciplinary expertise, coupled with his industrial experience, makes him uniquely qualified to bridge the gap between academic research and practical, real-world applications in energy storage and renewable energy technologies. His contributions, including over 30 published papers and 13 patents, highlight his innovative approach and impact on the industry. While there is room for further engagement in sustainability efforts and public outreach, Dr. Mao’s work continues to push the boundaries of what is possible in energy storage systems. His dedication to both research and mentorship, along with his commitment to technological advancement, makes him a strong candidate for recognition and accolades in the scientific community. Dr. Mao’s future contributions will undoubtedly continue to shape the next generation of energy storage technologies, furthering the global transition toward sustainable energy solutions.

Publication Top Notes

  1. Title: Significant Enhancement of Electrocatalytic Activity of Nickel-Based Amorphous Zeolite Imidazolate Frameworks for Water Splitting at Elevating Temperatures
    Authors: Iqbal, M.F., Xu, T., Li, M., Xu, P., Chen, Z.
    Year: 2024
    Citations: 1
  2. Title: Optimizing Annealing Treatment of Mesoporous MoO₂ Nanoparticles for Enhancement of Hydrogen Evolution Reaction
    Authors: Iqbal, M.F., Xu, T., Li, M., Zhang, J., Chen, Z.
    Year: 2024
    Citations: 1
  3. Title: A Hybrid Deep Learning Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Discharging Fragments
    Authors: Liu, Y., Hou, B., Ahmed, M., Feng, J., Chen, Z.
    Year: 2024
    Citations: 8
  4. Title: A Review on Iron-Nitride (Fe₂N) Based Nanostructures for Electrochemical Energy Storage Applications: Research Progress, and Future Perspectives
    Authors: Sajjad, M., Zhang, J., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 10
  5. Title: Long-Life Lead-Carbon Batteries for Stationary Energy Storage Applications
    Authors: Sajjad, M., Zhang, J., Zhang, S., Mao, Z., Chen, Z.
    Year: 2024
    Citations: 9
  6. Title: A Comprehensive Review of the Pseudo-Two-Dimensional (P2D) Model: Model Development, Solutions Methods, and Applications
    Authors: Hussain, A., Mao, Z., Li, M., Zhang, J., Chen, Z.
    Year: 2024
  7. Title: An Unsupervised Domain Adaptation Framework for Cross-Conditions State of Charge Estimation of Lithium-Ion Batteries
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  8. Title: Design of Lithium Exchanged Zeolite-Based Multifunctional Electrode Additive for Ultra-High Loading Electrode Toward High Energy Density Lithium Metal Battery
    Authors: Gao, Y., Yang, Y., Yang, T., Luo, D., Chen, Z.
    Year: 2024
  9. Title: Deep Learning Powered Lifetime Prediction for Lithium-Ion Batteries Based on Small Amounts of Charging Cycles
    Authors: Liu, Y., Ahmed, M., Feng, J., Mao, Z., Chen, Z.
    Year: 2024
  10. Title: Heat Transfer Analysis of MHD Prandtl-Eyring Fluid Flow with Christov-Cattaneo Heat Flux Model
    Authors: Hussain, A., Mao, Z.
    Year: 2024
    Citations: 10

 

Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006