Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Dr. Sushil Kumar | Chemical Engineering | Outstanding Scientist Award

Associate Professor at Motilal Nehru National Institute of Technology, India.

Dr. Sushil Kumar is an Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, with over two decades of academic and research experience. He holds a Ph.D. in Chemical Engineering from BITS Pilani and has extensive expertise in process intensification, reactive extraction, wastewater treatment, green technology, and biofuels. Dr. Kumar has successfully supervised multiple Ph.D. and M.Tech theses and led numerous funded research and consultancy projects. His work includes innovative research in biopolymers, electrochemical treatments, and nanophotocatalysts for environmental and industrial applications. With an h-index of 25 and over 2000 citations, he has made significant contributions to scientific literature and holds patents in the field of wastewater treatment and nanotechnology. His ongoing projects focus on green composites, hydroponic wastewater treatment systems, and biodiesel production, establishing him as a leader in sustainable chemical engineering research.

Profile:

Education

Dr. Sushil Kumar holds an impressive academic background in Chemical Engineering. He completed his Ph.D. in 2010 from the prestigious Birla Institute of Technology and Science (BITS), Pilani, where his research focused on the intensification of the recovery of carboxylic acids from aqueous solutions using reactive extraction. Prior to his Ph.D., Dr. Kumar earned his M.Tech. in Chemical Engineering from the renowned Indian Institute of Technology (IIT), Kanpur, in 2003, with a CGPA of 8.33/10. His master’s thesis revolved around the synthesis and characterization of metallocene catalysts and their role in ethylene polymerization. He began his academic journey with a B.Tech. degree in Chemical Engineering from Harcourt Butler Technological Institute (HBTI), Kanpur, in 2000, securing 67%. Dr. Kumar’s extensive academic training and research experience have provided a solid foundation for his contributions to chemical engineering, particularly in the areas of process intensification and green technology.

Professional Experiences 

Dr. Sushil Kumar is an accomplished Associate Professor in the Department of Chemical Engineering at Motilal Nehru National Institute of Technology (MNNIT), Allahabad, where he has been serving since December 2012. Prior to this, he held the position of Assistant Professor at Birla Institute of Technology and Science (BITS), Pilani from 2010 to 2012. His extensive academic career began as a Lecturer and Assistant Lecturer at BITS Pilani in 2005, where he contributed to both teaching and research activities. Dr. Kumar also gained valuable industry experience at the Central Institute of Plastics Engineering and Technology (CIPET), Lucknow, where he served as a Technical Officer and Graduate Engineer Trainee. His expertise spans process intensification, wastewater treatment, reactive extraction, and green technologies. With over two decades of experience, Dr. Kumar has successfully led numerous funded research projects and consultancy assignments, advancing sustainable technologies and chemical engineering innovations.

Research Interests

Dr. Sushil Kumar’s research interests focus on sustainable and innovative solutions in chemical and environmental engineering. His work extensively explores process intensification, with a particular emphasis on reactive extraction, which aims to enhance efficiency in separation processes. He is also actively engaged in developing advanced wastewater treatment techniques, such as electrochemical and bioremediation methods, to mitigate environmental pollution. A strong advocate for green technology, Dr. Kumar investigates biofuels and biopolymers, promoting the use of eco-friendly materials and processes in energy production and material science. Additionally, his research into polymer science and technology seeks to develop novel materials for various industrial applications. With a commitment to addressing global sustainability challenges, Dr. Kumar’s research is at the forefront of biochemical engineering, integrating scientific innovation with environmental stewardship to create more sustainable chemical processes and pollution control systems.

Research skills 

Dr. Sushil Kumar is a highly skilled researcher with extensive expertise in chemical engineering, focusing on process intensification, reactive extraction, and green technologies. His research spans critical areas such as wastewater treatment through electrochemical and bioremediation methods, biofuels, and biopolymer synthesis. With a solid foundation in experimental and theoretical modeling, Dr. Kumar has successfully led numerous research projects funded by prestigious agencies like DST and SERB. His proficiency in developing innovative solutions, such as ionic liquid-based nanophotocatalysts for biodiesel production and bioremediation techniques for industrial waste treatment, highlights his commitment to sustainable development. Additionally, Dr. Kumar has supervised multiple PhD and M.Tech students, contributing to the advancement of chemical engineering through impactful mentorship. His research outcomes, evidenced by high-impact publications and patents, demonstrate his ability to tackle complex environmental challenges while promoting green technologies for industrial applications. His dedication to interdisciplinary approaches underpins his prominence in the field.

Award And Recognition 

Dr. Sushil Kumar, a distinguished academician and researcher in Chemical Engineering, has garnered numerous awards and recognitions for his groundbreaking contributions to science and technology. His innovative work in process intensification, wastewater treatment, and green technologies has earned him prestigious fellowships, including Fellow of the Indian Institute of Chemical Engineers (FIIChE) and the Institution of Engineers India (FIEI). His research excellence has been highlighted through national and international funded projects, patents, and impactful publications in high-ranking journals. Dr. Kumar’s patents, particularly in bioremediation and nanophotocatalytic applications, have been recognized for their potential in addressing environmental challenges. His mentorship of students and supervision of several Ph.D. theses further emphasize his dedication to advancing academic and research excellence. Additionally, Dr. Kumar’s active role in consultancy projects and industrial collaborations has enhanced his reputation as a leader in developing sustainable engineering solutions for global challenges.

Conclusion

Dr. Sushil Kumar has demonstrated significant expertise and contributions in chemical engineering, especially in areas like wastewater treatment, green technologies, and bioremediation. His ability to secure research funding, publish in high-impact journals, and mentor young researchers showcases his dedication to advancing his field. With a growing international presence and more commercialization of his work, Dr. Kumar is a strong candidate for the Best Researcher Award.

Publication Top Notes
  1. Fluoride removal using a rotating anode electro-coagulation reactor: Parametric optimization using response surface methodology, isotherms and kinetic studies, economic analysis and sludge characterization
    • Authors: Meena, R.R., Singh, R.M., Soni, P., Kumar, R., Kumar, S.
    • Year: 2024
    • Journal: Journal of Environmental Management
    • Volume/Issue/Page: 370, 122600
  2. Emerging and futuristic phyto-technologies for sustainable wastewater treatment with resource recovery and economical aspects
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: Journal of Water Process Engineering
    • Volume/Issue/Page: 65, 105753
  3. Novel ionic liquid-based nano-photocatalyst for microwave-ultrasound intensified biodiesel synthesis
    • Authors: Gautam, A., Chawade, N.S., Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Energy Conversion and Management
    • Volume/Issue/Page: 313, 118599
  4. Correction to: Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11725
  5. Technological innovations in biomass processing: thematic issue for an international conference “CHEM-CONFLUX22”
    • Authors: Kumar, S., Ahmad, Z., Patle, D.S.
    • Year: 2024
    • Journal: Biomass Conversion and Biorefinery
    • Volume/Issue/Page: 14(11), pp. 11723
  6. Microwave- and Ultrasonication-Based Intensified and Synergetic Approaches for Extraction of Bioactive Compounds from Pomegranate Peels: Parametric and Kinetic Studies
    • Authors: Singh, N., Patle, D.S., Kumar, S.
    • Year: 2024
    • Journal: Industrial and Engineering Chemistry Research
    • Volume/Issue/Page: 63(20), pp. 9214–9224
  7. Phytoremediation: A Shift Towards Sustainability for Dairy Wastewater Treatment
    • Authors: Agrahari, S., Kumar, S.
    • Year: 2024
    • Journal: ChemBioEng Reviews
    • Volume/Issue/Page: 11(1), pp. 115–135
  8. Metal- and ionic liquid-based photocatalysts for biodiesel production: a review
    • Authors: Gautam, A., Khajone, V.B., Bhagat, P.R., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Environmental Chemistry Letters
    • Volume/Issue/Page: 21(6), pp. 3105–3126
  9. Process intensification opportunities in the production of microalgal biofuels
    • Authors: Gautam, A., Kumar, S., Patle, D.S.
    • Year: 2023
    • Journal: Microalgae-Based Systems: Process Integration and Process Intensification Approaches
    • Pages: 377–407
  10. Hydrodynamic Simulation and Analysis Using Computational Fluid Dynamics: Electrochemical Reactors and Redox Flow Batteries
  • Authors: Meena, R.R., Kumar, S., Soni, P.
  • Year: 2023
  • Journal: ChemBioEng Reviews
  • Volume/Issue/Page: 10(5), pp. 670–683

 

Shuying Cheng | Chemical Engineering | Best Researcher Award

Dr. Shuying Cheng | Chemical Engineering | Best Researcher Award

Senior Scientist at A-Star, Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Singapore.

Dr. Shuying Cheng is a Senior Scientist at ISCE2 in Singapore, with over 15 years of experience in process simulation, techno-economic analysis (TEA), carbon capture, and chemometrics. She holds a Ph.D. from the National University of Singapore and a Master’s and Bachelor’s from Tianjin University in China. Dr. Cheng’s research focuses on sustainable technologies, particularly in carbon capture and storage, where she applies advanced techniques like Raman and FTIR spectroscopy. She has led numerous high-impact projects, including developing alternative sand from carbon dioxide and waste materials and collaborating with NTU on life cycle assessments for chemical looping processes. Her work integrates technical assessments with economic modeling to create cost-effective and scalable environmental solutions. Dr. Cheng has published extensively in top scientific journals and collaborated with industry giants like Merck and ExxonMobil. Her expertise makes her a key contributor to sustainability and carbon capture research.

Profile

Education

Cheng Shuying holds a Ph.D. in Chemical Engineering from the National University of Singapore, awarded in 2008. Her doctoral studies focused on advanced techniques in spectroscopy and chemometrics, which laid the foundation for her expertise in process analytical technology and carbon capture research. Before her Ph.D., she earned a Master’s degree in Chemical Engineering from Tianjin University, China, in 2003. This period of study deepened her understanding of chemical processes and reaction kinetics, equipping her with the skills necessary for her future work in techno-economic analysis and process simulation. Shuying’s educational journey began with a Bachelor’s degree in Chemical Engineering from the same institution in 2000, where she developed a solid grounding in engineering principles. Her educational background, spanning two prestigious universities, has been integral in shaping her career as a senior scientist, specializing in sustainability and carbon capture technologies.

Professional Experience

Cheng Shuying is a Senior Scientist at ISCE2 Singapore, where she has been since 2022, specializing in process simulation, techno-economic analysis (TEA) for carbon capture and storage, and advanced spectroscopic techniques like Raman and FTIR. Before this, she worked for 14 years at ICES, Singapore, starting as a Research Engineer in 2007 and rising to the position of Scientist. Her work at ICES focused on Process Analytical Technology (PAT), reaction kinetics, and chemometrics, applying these to various industrial and sustainability projects. Cheng has led key research efforts in collaboration with prestigious organizations, including Merck, ExxonMobil, and P&G, focusing on cutting-edge technologies like carbon dioxide sequestration and utilization. Throughout her career, she has demonstrated expertise in integrating scientific research with economic assessments, driving impactful solutions for environmental sustainability and industrial applications.

Research Interest

Cheng Shuying’s research interests center on process analytical technology (PAT), techno-economic analysis (TEA), and carbon capture and storage (CCS), with a focus on sustainability and environmental innovation. She has a deep interest in advancing carbon capture technologies, particularly in developing methods for efficient CO₂ utilization and sequestration through the mineralization of industrial waste. Cheng’s work integrates chemometrics and spectroscopic techniques, including Raman and FTIR, to monitor and optimize industrial processes in real-time. She is dedicated to exploring the economic viability of novel carbon capture methods, ensuring that they are both technically effective and financially scalable. Her recent projects involve creating sustainable materials, such as alternative sand, and supporting emissions reduction through biogas energy systems. By aligning technical assessments with economic modeling, Cheng’s research promotes the development of environmentally responsible solutions that address critical global challenges in carbon management.

Research Skills

Cheng Shuying possesses a wide range of research skills, with a strong focus on process simulation, techno-economic analysis (TEA), and carbon capture and storage (CCS). Her expertise in Process Analytical Technology (PAT) allows her to analyze and control manufacturing processes through real-time measurements, enhancing process efficiency. Cheng is proficient in spectroscopic techniques, including Raman and FTIR, which she applies to reaction kinetics and chemometric analysis. Her ability to integrate technical assessments with economic modeling enables her to evaluate the financial viability of sustainable technologies, particularly in carbon capture. She also has experience in life cycle assessment (LCA), ensuring her projects are both environmentally and economically sustainable. Furthermore, her collaborative work with leading global companies showcases her ability to translate complex scientific concepts into industrial applications, demonstrating her versatility and problem-solving skills in research.

Award and Recognition

Cheng Shuying’s outstanding contributions to environmental and process analytical technologies have garnered significant recognition in her field. Her innovative research on carbon capture and storage, coupled with her expertise in process simulation and techno-economic analysis, has been pivotal in advancing sustainable technologies. Shuying has successfully led multiple high-impact projects, including the development of alternative sands from CO₂ and waste materials and efficient carbon capture processes using sorbents from incineration ashes. Her work has not only earned substantial research grants but also resulted in numerous high-quality publications in leading scientific journals. Recognized for her excellence, Shuying’s contributions have positioned her as a leading figure in environmental science and process technology. Her achievements highlight her role in bridging the gap between cutting-edge research and practical applications, making her a prominent candidate for prestigious awards and honors in her field.

Conclusion

Cheng Shuying is a highly qualified candidate for the Research for Best Researcher Award due to her significant contributions to carbon capture technologies, sustainability, and process analytical technology. Her extensive collaboration with industry and leadership in cutting-edge projects solidify her as a top contender. However, enhancing her global visibility and expanding her research scope could further elevate her profile. Overall, her scientific rigor and impactful contributions make her deserving of strong consideration for the award.

Publications Top Notes

  1. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement
    • Authors: Sheng, F., Chow, P.S., Hu, J., Guo, L., Dong, Y.
    • Journal: International Journal of Pharmaceutics
    • Year: 2020
    • Volume: 576, 118983
    • Citations: 20
  2. Zein film functionalized atomic force microscopy and Raman spectroscopic evaluations on surface differences between hard and soft wheat flour
    • Authors: Kwek, J.W., Siliveru, K., Cheng, S., Xu, Q., Ambrose, R.P.K.
    • Journal: Journal of Cereal Science
    • Year: 2018
    • Volume: 79, pp. 66–72
  3. Amorphization of crystalline active pharmaceutical ingredients via formulation technologies
    • Authors: Lim, R.T.Y., Ong, C.K., Cheng, S., Ng, W.K.
    • Journal: Powder Technology
    • Year: 2017
    • Volume: 311, pp. 175–184
    • Citations: 9
  4. Determining the pure component spectra of trace organometallic intermediates by combined application of in situ Raman spectroscopy and band-target entropy minimization analysis
    • Authors: Cheng, S., Li, C., Guo, L., Garland, M.
    • Journal: Vibrational Spectroscopy
    • Year: 2014
    • Volume: 70, pp. 110–114
    • Citations: 3
  5. From stoichiometric to catalytic binuclear elimination in Rh-W hydroformylations. Identification of two new heterobimetallic intermediates
    • Authors: Li, C., Gao, F., Cheng, S., Guo, L., Garland, M.
    • Journal: Organometallics
    • Year: 2011
    • Volume: 30(16), pp. 4292–4296
    • Citations: 13
  6. Self-association of acetic acid in dilute deuterated chloroform. Wide-range spectral reconstructions and analysis using FTIR spectroscopy, BTEM, and DFT
    • Authors: Tjahjono, M., Cheng, S., Li, C., Garland, M.
    • Journal: Journal of Physical Chemistry A
    • Year: 2010
    • Volume: 114(46), pp. 12168–12175
    • Citations: 14
  7. Concurrent synergism and inhibition in bimetallic catalysis: Catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in Rh-Mo hydroformylations
    • Authors: Li, C., Cheng, S., Tjahjono, M., Schreyer, M., Garland, M.
    • Journal: Journal of the American Chemical Society
    • Year: 2010
    • Volume: 132(13), pp. 4589–4599
    • Citations: 24
  8. The application of BTEM to UV-vis and UV-vis CD spectroscopies: The reaction of Rh4(CO)12 with chiral and achiral ligands
    • Authors: Cheng, S., Gao, F., Krummel, K.I., Garland, M.
    • Journal: Talanta
    • Year: 2008
    • Volume: 74(5), pp. 1132–1140
    • Citations: 12
  9. Remote monitoring of a multi-component liquid-phase organic synthesis by infrared emission spectroscopy: The recovery of pure component emissivities by band-target entropy minimization
    • Authors: Cheng, S., Tjahjono, M., Rajarathnam, D., Chen, D., Garland, M.
    • Journal: Applied Spectroscopy
    • Year: 2007
    • Volume: 61(10), pp. 1057–1062
    • Citations: 1
  10. On-line spectroscopic studies and kinetic measurements of liquid-phase heterogeneous catalytic systems
    • Authors: Gao, F., Allian, A.D., Zhang, H., Cheng, S., Garland, M.
    • Conference: AIChE Annual Meeting, Conference Proceedings
    • Year: 2006

 

 

Peter Glavic | Chemical Engineering | Best Researcher Award

Prof Dr. Peter Glavic | Chemical Engineering | Best Researcher Award

Prof Emeritus at University of Maribor, Slovenia.

Prof. Dr. Peter Glavič is a distinguished academic and researcher, currently serving as Professor Emeritus at the University of Maribor (UM). He holds multiple advanced degrees, including a BS in Chemical Technology, MS in Business and Economics, and MS and PhD in Chemistry. His career includes nine years in industrial management, and he has held prominent academic positions, such as Professor of Chemical Engineering at UM. Prof. Glavič’s research focuses on process systems engineering, sustainable development, and education, with over 100 scientific articles published and more than 4100 citations. His influential roles include Editor-in-Chief of Standards journal and Guest Editor for Processes. His leadership extends to serving as a Member of the Slovenian Parliament, vice-rector, and president of the Slovenian Academy of Engineering. His contributions to both academia and industry underscore his significant impact in his fields of expertise.

Profile

Education

Prof. Dr. Peter Glavič earned his foundational education in Chemical Technology, culminating in a Bachelor of Science degree. He further advanced his academic qualifications with a Master of Science in Business and Economics, providing a robust understanding of economic principles alongside his scientific expertise. His scholarly journey continued with dual Master’s degrees and a Doctorate in Chemistry, reflecting his commitment to both the theoretical and practical aspects of the field. This diverse educational background has equipped him with a unique interdisciplinary perspective, enabling him to approach complex problems in process systems engineering and sustainable development with a comprehensive and informed viewpoint. His extensive education laid the groundwork for a distinguished career in both academia and industry, where he has applied his knowledge to drive advancements in chemical engineering and contribute to sustainable practices.

Professional Experience

Prof. Dr. Peter Glavič is an esteemed academic and researcher with a distinguished career. He earned his BS in Chemical Technology, MS in Business and Economics, and both MS and PhD in Chemistry. With nine years of managerial experience in industry, he transitioned to academia as a Professor of Chemical Engineering at the University of Maribor (UM). At UM, he contributed significantly to the fields of process systems engineering and sustainable development. Prof. Glavič has served as Editor-in-Chief of the Standards journal and Guest Editor for Processes, reflecting his leadership in scholarly publishing. His roles extend beyond academia; he was a Member of the Slovenian Parliament, vice-rector, and president of the Slovenian Academy of Engineering. Currently, he heads the Centre for Professor Emeriti and Retired HE Professors at UM, continuing to influence the academic landscape and support the scholarly community.

Research Interest

Prof. Dr. Peter Glavič’s research interests are centered around process systems engineering, sustainable development, and education. He explores innovative methods to improve industrial processes and promote sustainability in various sectors. His work addresses the optimization of complex systems, focusing on enhancing efficiency and reducing environmental impact. Prof. Glavič is particularly interested in integrating sustainable practices into industrial operations, aiming to advance both economic and environmental outcomes. In addition to his technical research, he is dedicated to advancing educational methodologies in the field of chemical engineering. His role as Editor-in-Chief of Standards journal and Guest Editor for Processes reflects his commitment to fostering scholarly communication and collaborative research. Through his extensive publications and contributions, Prof. Glavič seeks to bridge the gap between theoretical research and practical application, making substantial contributions to the advancement of sustainable technologies and educational practices.

 Research Skills

Prof. Dr. Peter Glavič possesses exceptional research skills in process systems engineering, sustainable development, and education. His expertise in these fields is demonstrated through his extensive body of work, including over 100 scientific articles and an h-index of 22. His analytical skills are evident in his ability to address complex engineering problems and propose innovative solutions. Prof. Glavič excels in interdisciplinary research, effectively integrating principles from chemical engineering, economics, and sustainable practices. His role as Editor-in-Chief of the Standards journal and Guest Editor for Processes highlights his adeptness in managing and guiding high-quality research. His experience in managerial positions further enhances his strategic approach to research, ensuring practical applications and sustainable outcomes. Prof. Glavič’s research skills are complemented by his ability to collaborate with international researchers, reflecting his commitment to advancing knowledge and fostering scientific dialogue.

Awards and Recognition

Prof. Glavič has received numerous accolades throughout his career, including his roles as vice-rector, president of the Slovenian Academy of Engineering, and head of the Centre for Professor Emeriti and Retired HE Professors at UM. These positions highlight his esteemed status and recognition in the academic and professional communities.

Conclusion

Peter Glavič’s extensive research contributions, collaborative efforts, and impactful publications make him a strong candidate for the Research for Best Researcher Award. His work in process systems engineering and sustainable development, along with his significant influence in the academic and professional communities, underscores his qualifications for this prestigious recognition.

Publications Top Notes

  • Transitioning towards Net-Zero Emissions in Chemical and Process Industries: A Holistic Perspective
    • Authors: P. Glavič, Z.N. Pintarič, H. Levičnik, V. Dragojlović, M. Bogataj
    • Year: 2023
    • Citations: 7
  • Editorial: Organizational and consumption perspectives on sustainable food culture
    • Authors: P. Glavič, D. Gregory-Smith, F. Murmura, O.E. Olayide, I. Djekic
    • Year: 2023
  • Special Issue on “Process Design and Sustainable Development”
    • Authors: P. Glavič
    • Year: 2023
  • Updated Principles of Sustainable Engineering
    • Authors: P. Glavič
    • Year: 2022
    • Citations: 11
  • Evolution and current challenges of sustainable consumption and production
    • Authors: P. Glavič
    • Year: 2021
    • Citations: 41
  • Integrating sustainability into logistics oriented education in Europe
    • Authors: R.K. Lukman, V. Omahne, L.T.E. Sheikh, P. Glavič
    • Year: 2021
    • Citations: 9
  • Process design and sustainable development—a European perspective
    • Authors: P. Glavič, Z.N. Pintarič, M. Bogataj
    • Year: 2021
    • Citations: 28
  • Identifying key issues of education for sustainable development
    • Authors: P. Glavič
    • Year: 2020
    • Citations: 40
  • Higher education in Central European countries – Critical factors for sustainability transition
    • Authors: J. Dlouhá, P. Glavič, A. Barton
    • Year: 2017
    • Citations: 50
  • Sustainable consumption and production – Research, experience, and development – The Europe we want
    • Authors: R.K. Lukman, P. Glavič, A. Carpenter, P. Virtič
    • Year: 2016
    • Citations: 70

 

Narendra Bodawar | Chemical Engineering | Best Researcher Award |

Narendra Bodawar | Chemical Engineering | Best Researcher Award |

Senior Project Associate , ShahidCSIR-National Chemical Laboratory , India.

Narendra Bodawar, a dedicated Research Associate at CSIR-National Chemical Laboratory, has demonstrated exceptional prowess in the Chemical Engineering domain, focusing on key areas such as process development, optimization, and wastewater treatment. With a robust research portfolio highlighted by several publications and filed patents, his contributions significantly advance environmental sustainability and chemical processing technologies.

Profile
Education

Narendra Bodawar holds a Bachelor’s degree in Chemical Engineering from Manipal University Jaipur, where he graduated in 2019 with a GPA of 6.64/10. His academic foundation has equipped him with essential theoretical knowledge and practical skills in chemical engineering principles. His educational journey also includes a strong performance in his earlier studies, where he secured 90.91% in the 10th grade and 66.6% in the 12th grade from recognized Maharashtra State Board institutions. This solid educational background has laid the groundwork for his successful career in research and development.

Professional Experience

Currently, Narendra Bodawar serves as a Research Associate at the CSIR-National Chemical Laboratory in Pune, Maharashtra, where he has been employed since January 2020. In this role, he designs and scales chemical processes from lab to pilot scale, optimizes reaction parameters for maximum conversion, and develops downstream methods for isolating pure chemical products. His experience in high-pressure reactors and analytical instrumentation enables him to conduct advanced research in chemical engineering effectively. His professional journey has significantly enhanced his analytical and problem-solving skills, positioning him well for a potential doctoral degree.

 

Research Interests

Narendra’s research interests encompass a range of critical areas within chemical engineering. He focuses on process development and intensification, aiming to enhance efficiency and sustainability in chemical production. His work in plastic upcycling and depolymerization addresses pressing environmental concerns related to plastic waste management. Additionally, he is interested in effluent wastewater treatment, utilizing advanced oxidation processes to improve the removal of pollutants. His enthusiasm for process optimization and scale-up further drives his innovative contributions to the field, aligning with global sustainability goals.

Research Skills

Narendra possesses a diverse set of research skills crucial for his work in chemical engineering. He is proficient in process design and optimization, including mass and energy balances, P&ID formulation, and HAZOP analysis. His hands-on experience with high-pressure reactors and pilot plant operations underscores his technical expertise. Additionally, he is skilled in various analytical techniques, including HPLC, GC, FTIR, and DSC, which he employs to interpret data and optimize chemical processes. Furthermore, his proficiency in software such as MATLAB and Aspen Plus enhances his ability to model and analyze complex systems.

 

Awards and Recognition

Narendra Bodawar has received notable recognition for his contributions to chemical engineering research. He won the Best Paper Award at the “International Chemical Engineering Conference on Energy, Environment, and Sustainability” held at IIT Roorkee in February 2024, highlighting the impact of his research on advancing sustainable technologies. His collaborative work in developing processes for synthesizing Bisphenol A and other chemical products, which have significant industrial applications, has also garnered attention and praise. These accolades reflect his commitment to excellence and innovation in research, reinforcing his position as a valuable contributor to the field.

Conclusion

Narendra Bodawar’s research embodies a perfect blend of innovation, practicality, and sustainability in the field of Chemical Engineering. His comprehensive expertise in process development and optimization, coupled with a solid track record of impactful research outcomes, makes him an outstanding candidate for the Best Research Award. His work not only contributes to academic knowledge but also has far-reaching implications for industrial practices and environmental sustainability, thereby aligning perfectly with the goals of the award.

Publications

      1. Enhanced Degradation of Ciprofloxacin Hydrochloride Using Hybrid Advanced Oxidation Process of Hydrodynamic Cavitation and Ozonation
        • Year: 2024
        • Journal: Chemical Engineering and Technology
        • 🧪💧
      2. Comparative Evaluation of Advanced Oxidation Processes (AOPs) for Reducing SARS-CoV-2 Viral Load from Campus Sewage Water
        • Year: 2023
        • Journal: Journal of Environmental Chemical Engineering
        • 🦠🚰

 

Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof Dr. Md Rezaur Rahman | Chemical Engineering | Best Researcher Award

Assoc Prof at University Malaysia Sarawak, Malaysia.

Associate Professor Dr. Md. Rezaur Rahman, a distinguished scholar in Polymer/Materials Engineering, holds a PhD from the University Malaysia Sarawak (UNIMAS) and multiple master’s degrees from Bangladesh institutions. Since joining UNIMAS in 2011, he has specialized in polymer composites and nanomaterials, leading significant research projects and collaborations with global institutions, including the University of Tokoshima, Japan, and the University of Houston, USA. His research spans environmental health, vector control, and parasitology, with over 140 journal publications and eight books. Dr. Rahman’s work on nanocomposites and green materials has earned him substantial recognition, including a high h-index and international citations. He actively contributes to academia through teaching, supervising postgraduate students, and leading research initiatives funded by both UNIMAS and external agencies. Dr. Rahman is also a member of several professional societies and a top 2% world scientist according to Stanford University.

Profile

Education

Associate Professor Dr. Md. Rezaur Rahman has a robust educational background that underscores his expertise in Polymer and Materials Engineering. He earned his PhD in Advanced Materials from the University Malaysia Sarawak (UNIMAS) in 2011. Prior to this, he completed a Master of Science (M.Sc) in Polymer Engineering from the Bangladesh University of Engineering and Technology (BUET) in 2008. His academic journey began with a Master of Science (M.Sc) in Physical Inorganic Chemistry, with a focus on Advanced Polymer, from the University of Chittagong, Bangladesh, in 2001. Dr. Rahman’s foundation in chemistry was laid with a Bachelor of Science (B.Sc) (Hons) in Chemistry from the University of Chittagong in 1999. This extensive educational background has equipped him with a comprehensive understanding of polymer materials, which he has applied extensively in his research and teaching career.

Professional Experience

Associate Professor Dr. Md. Rezaur Rahman boasts extensive professional experience in the field of Polymer and Materials Engineering. Since joining the Faculty of Engineering at Universiti Malaysia Sarawak (UNIMAS) in 2011, he has taught a diverse range of courses including Polymer Engineering Applications, Environmental Engineering, and Quality Control. Dr. Rahman has supervised 26 final-year undergraduates, 9 Master’s, and 10 PhD students, with 6 Master’s and 6 PhD graduates under his mentorship. His previous roles include serving as a lecturer at the Department of Chemistry, Institute of Textile and Clothing Technology in Dhaka, Bangladesh, and as a research assistant at Bangladesh University of Engineering and Technology. Dr. Rahman has led and collaborated on 21 research projects, with significant contributions to both national and international research efforts, reflecting his strong academic leadership and commitment to advancing materials science.

Research Interest

Associate Professor Dr. Md. Rezaur Rahman’s research primarily focuses on polymer and materials engineering, with a strong emphasis on advancing polymer composites and nanomaterials. His work involves the development of green composites and the optimization of nanocomposite materials for environmental applications, such as wastewater treatment and soil stabilization. Dr. Rahman’s research includes investigating the synthesis and characterization of novel polymer materials, including biodegradable polymers and advanced composites. He also explores the mechanical and thermal properties of these materials to enhance their performance and applicability. His interdisciplinary collaborations span various institutions, contributing to innovative solutions in polymer technology and materials science. Through his research, Dr. Rahman aims to address pressing environmental challenges and advance the field of materials engineering with practical, applied solutions.

Research Contributions

Associate Professor Ts Dr Md. Rezaur Rahman is renowned for his extensive research in Polymer and Materials Engineering. His research has led to significant advancements in polymer composites and nano materials. His PhD from University Malaysia Sarawak and previous degrees in Polymer Engineering and Physical Inorganic Chemistry have shaped his research focus, enabling him to contribute to 140 international index journal publications and 8 books. His research includes novel nanocomposite powders for environmental applications, bio-cementation strategies, and innovative uses of polymers in various fields.

Geographic Impact

Dr. Rahman’s research has had a broad geographic impact, collaborating with institutions across the globe including The Institute of Technology and Science, Tokushima University (Japan), University of Houston (USA), and multiple Malaysian universities. His work on green composites and sustainable materials addresses global challenges and benefits diverse regions, from rural areas in Borneo to industrial applications worldwide.

Collaborative Efforts

Dr. Rahman has demonstrated a strong commitment to collaborative research. His partnerships span several esteemed institutions such as the University of Malaya, Universiti Putra Malaysia, and Swinburne University of Technology. These collaborations have led to groundbreaking research in sustainable materials and environmental engineering, enhancing the scope and impact of his work.

Applied Research

Dr. Rahman’s applied research focuses on practical solutions for environmental and engineering challenges. His work includes optimizing nanocomposites for heavy metal removal, enhancing soil fixation through bio-cementation, and developing novel biodegradable polymers. These applied research efforts contribute to both academic knowledge and practical solutions in environmental health and sustainability.

Specific Projects and Publications

Dr. Rahman has led numerous projects funded by both UNIMAS and external grants, including the Ministry of Higher Education (MOHE). Notable projects include the optimization of nanocomposite powders for wastewater treatment and the development of sustainable bio-cementation strategies. His publications in journals such as the Journal of Environmental Development and Sustainability and the Polymer Bulletin highlight his contributions to the field.

Environmental Health

Dr. Rahman’s research significantly contributes to environmental health through innovative materials and processes. His studies on nanocomposites for heavy metal removal from palm oil mill effluent and sustainable materials for soil fixation address critical environmental issues, promoting cleaner and safer ecosystems.

Vector Control

While not a primary focus of Dr. Rahman’s research, his work on advanced materials can indirectly support vector control efforts through the development of sustainable and environmentally friendly materials. For instance, his research on bio-cementation and nanocomposites can contribute to improved sanitation and environmental management, potentially reducing vector-borne diseases.

Parasitology and Infectious Diseases

Dr. Rahman’s research is less directly related to parasitology and infectious diseases. However, his advancements in materials science and environmental health may have indirect benefits for these fields by improving overall sanitation and environmental conditions, which are crucial for controlling parasitic infections.

Awards and Recognition

Dr. Rahman has received significant recognition for his research, including being listed as a Top 2% world scientist by Stanford University and Elsevier. His h-index of 31 and i10-index of 75, with over 3551 citations, reflect his substantial impact on the field. His professional memberships, including those with the Chemical Society and the Malaysian Board of Technologist, further underscore his standing in the academic community.

Conclusion

Associate Professor Ts Dr Md. Rezaur Rahman’s contributions to Polymer and Materials Engineering, along with his collaborative efforts and applied research, make him a strong candidate for the Research for Best Scholar Award. His work addresses critical environmental and engineering challenges, demonstrates global impact, and garners substantial recognition in his field. His continued research and leadership promise further advancements and contributions to both academia and industry.

Publications Top Notes

  1. A review on poly lactic acid (PLA) as a biodegradable polymer
    • Authors: N.A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S. Hamdan, M.K.B. Bakri, …
    • Year: 2023
    • Citations: 267
  2. Improvement of physico-mechanical properties of jute fiber reinforced polypropylene composites by post-treatment
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2008
    • Citations: 264
  3. Mechanical properties of polypropylene composites reinforced with chemically treated abaca
    • Authors: M.R. Rahman, M.M. Huque, M.N. Islam, M. Hasan
    • Year: 2009
    • Citations: 248
  4. Physico-mechanical properties of chemically treated coir reinforced polypropylene composites
    • Authors: M.N. Islam, M.R. Rahman, M.M. Haque, M.M. Huque
    • Year: 2010
    • Citations: 224
  5. Comparative study of dielectric properties of hybrid natural fiber composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 152
  6. Recent developments in bamboo fiber-based composites: a review
    • Authors: A. Muhammad, M.R. Rahman, S. Hamdan, K. Sanaullah
    • Year: 2019
    • Citations: 137
  7. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites
    • Authors: M.S. Islam, S. Hamdan, I. Jusoh, M.R. Rahman, A.S. Ahmed
    • Year: 2012
    • Citations: 131
  8. Physico-mechanical properties of jute fiber reinforced polypropylene composites
    • Authors: M. Rezaur Rahman, M. Hasan, M. Monimul Huque, M. Nazrul Islam
    • Year: 2010
    • Citations: 128
  9. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications
    • Authors: M.M. Matin, P. Matin, M.R. Rahman, T. Ben Hadda, F.A. Almalki, S. Mahmud, …
    • Year: 2022
    • Citations: 120
  10. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites
    • Authors: E. Jayamani, S. Hamdan, M.R. Rahman, M.K.B. Bakri
    • Year: 2014
    • Citations: 120

 

 

 

Prof Dr. Mohamed Cheira | Chemical Engineering | Best Researcher Award

Prof Dr. Mohamed Cheira | Chemical Engineering | Best Researcher Award

Prof Dr at Nuclear Materials Authority, Egypt.

Dr. Mohamed Farid Cheira possesses extensive research skills in inorganic chemistry, specializing in materials synthesis, chemical processing, and hydrometallurgy. He is adept at extracting high-purity nano-silica from agricultural wastes and analyzing rare earth elements using advanced techniques like atomic absorption spectrometry and ICP-MS. His expertise includes extracting uranium, thorium, and rare earth elements from radioactive ores, utilizing various extraction and separation methods such as solvent extraction and ion exchange. Additionally, Dr. Cheira is skilled in spectrophotometric methods, phosphoric acid purification, ore beneficiation, and scaling up processes from laboratory research to semi-pilot applications. His strong computational analysis abilities further support his complex chemical and engineering data interpretations.

Profile

Education🎓

Professor Dr. Mohamed Farid Cheira has a distinguished educational background in chemistry, starting with his B.Sc. in Special Chemistry, which he completed in 1991 with an Excellent with Honor Degree from the Department of Chemistry, Faculty of Science, Minufiya University. He furthered his education by obtaining an M.Sc. in Inorganic Chemistry from the Faculty of Science, Zagazig University in 2005. His master’s thesis focused on the “Analysis of Rare Earth Elements and Some of Their Isotopes in Geologic Samples Using Inductively Coupled Plasma Mass Spectrometry,” demonstrating his early commitment to advanced analytical techniques. Dr. Cheira then earned his Ph.D. in Analytical and Inorganic Chemistry from the same institution in 2010, with his dissertation titled “Chemical Studies on Separation and Determination of Mo, W, and V Elements and Their Applications on Different Geologic Samples.” This comprehensive educational foundation laid the groundwork for his prolific career in research and academia, specializing in inorganic and analytical chemistry.

Professional Experience 🏢

Dr. Mohamed Farid Cheira boasts a rich professional journey in the realm of inorganic chemistry, primarily at the Nuclear Materials Authority (NMA) in Cairo, Egypt. He began his career in 1997 as a Chemist, gaining extensive research experience over 12 years. In 2009, he advanced to Assistant Lecturer, contributing significantly to isotopes geology research. By 2010, he was promoted to Lecturer, and his expertise continued to flourish. In 2015, Dr. Cheira became an Assistant Professor, solidifying his role as a leader in nuclear materials research. His dedication and achievements led to his current position as Professor since 2020. Throughout his tenure, Dr. Cheira has specialized in applied research, waste management, materials synthesis, chemical processing, and hydrometallurgy. He heads the Uranium and Thorium Lab Analysis and is a pivotal member of the Technical Office Labs and Scientific Office at NMA. His career is marked by a steadfast commitment to advancing nuclear materials science and education.

Skills and Expertise

  1. Technical Proficiency: Proficient in various analytical techniques and computer programs for data analysis and interpretation.
  2. Language Skills: Excellent command of English, enabling effective communication and collaboration in international research projects.

Research Interests 🔬

Dr. Mohamed Farid Cheira’s research interests are deeply rooted in the fields of analytical and inorganic chemistry, with a particular focus on nuclear materials. His work encompasses the synthesis and chemical processing of materials, emphasizing the extraction and separation of nuclear elements such as uranium, thorium, and rare earth elements (REEs). Dr. Cheira is also engaged in the study of waste management, aiming to convert agricultural waste into high-purity nano-silica and other valuable materials. His expertise extends to hydrometallurgy, where he investigates the beneficiation and upgrading of ores and minerals through various physical and chemical techniques. Furthermore, he is interested in the development and optimization of methods for the chemical analysis of major and trace elements using advanced analytical instruments. Dr. Cheira’s research contributions aim to enhance the understanding and application of chemical processes in the context of nuclear materials and environmental sustainability.

Award and Honors

Dr. Mohamed Farid Cheira has received numerous accolades and recognitions for his outstanding contributions to the field of chemistry. Notably, he was named among the world’s top 2% scientists in 2023 by Stanford University, a prestigious honor provided by Elsevier. This recognition underscores his significant impact and influence in his area of expertise. Dr. Cheira’s dedication to research and innovation has also earned him various awards from esteemed scientific organizations. Additionally, he holds prominent positions such as Editor-in-Chief of the Aswan University Journal of Environmental Studies (AUJES) and is an active member of multiple professional societies, including the Egyptian Society for Nuclear Sciences and Applications (ESNSA) and the Scientific Society of Nuclear Materials Authority (SSNMA). His exemplary work and leadership in the scientific community continue to inspire and drive advancements in the field of inorganic chemistry and nuclear materials.

Research Skills

Dr. Mohamed Farid Cheira boasts a robust set of research skills that have cemented his standing in inorganic chemistry. He excels in materials synthesis, particularly in extracting high-purity nano-silica from agricultural wastes like rice husk and wheat straw. His expertise extends to chemical processing, especially in extracting uranium, thorium, and rare earth elements from radioactive ores. Dr. Cheira is proficient in advanced analytical techniques, including atomic absorption spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), which he uses to analyze rare earth elements in geological samples. He is adept at various extraction and separation techniques, such as solvent extraction and ion exchange. His skills in spectrophotometric methods and purification processes for phosphoric acid are noteworthy. Additionally, Dr. Cheira is experienced in ore beneficiation and scale-up processes, bridging the gap from laboratory research to semi-pilot scale applications. His computational analysis skills further enhance his ability to interpret complex chemical and engineering data.

Conclusion

Mohamed Farid Cheira’s extensive and impactful research career, coupled with his recognition as a top scientist, robust educational background, significant practical contributions, and leadership roles, make him a strong candidate for the Best Researcher Award. His work not only advances the field of inorganic chemistry but also contributes to the development of future scientists and researchers.

 

Todd Pugsley | Chemical Engineering | Best Researcher Award

Dr. Todd Pugsley | Chemical Engineering | Best Researcher Award

Engineer at University of Saskatchewan, Canada.

Todd Pugsley’s research skills are centered on chemical engineering, including process modeling and simulation using Aspen Plus and MATLAB. He excels in experimental design, particularly for carbon capture technologies, and is adept at data analysis with R and Python. His technical expertise also includes advanced laboratory techniques like spectroscopy and chromatography, essential for his work in sustainable energy solutions.

Professional Profiles:

Education

Todd Pugsley completed his academic journey with a strong foundation in Chemical Engineering. He earned his Bachelor of Science in Chemical Engineering from the University of Saskatchewan in 2000, where he laid the groundwork for his future research and professional endeavors. He continued his studies at the same institution, obtaining a Master of Science in Chemical Engineering in 2003. Pugsley further advanced his expertise by earning a Doctor of Philosophy in Chemical Engineering from the University of Saskatchewan in 2011. His education provided him with a comprehensive understanding of chemical engineering principles, which he has applied extensively in both academic and industrial settings.

Professional Experience

Todd Pugsley has built a diverse career in chemical engineering and industrial research. He began his professional journey as a Research Engineer at SaskPower, where he focused on energy systems and optimization from 2004 to 2007. His role involved developing innovative solutions to enhance energy efficiency and environmental performance. Following this, Pugsley joined the University of Saskatchewan as a Research Associate in the Department of Chemical Engineering, where he contributed to various research projects and collaborated with academic and industry partners from 2007 to 2010. His expertise led him to become a Faculty Member at the University of Saskatchewan, where he currently serves as an Assistant Professor. In this role, he engages in teaching, mentoring, and advancing research in chemical engineering. His professional experience reflects a strong commitment to both applied research and education, demonstrating his expertise in the field.

Research Interest

Todd Pugsley’s research focuses on improving energy systems and advancing environmental sustainability. He investigates energy systems optimization to enhance efficiency in both renewable and traditional power generation. A key area of his work is carbon capture and storage (CCS), aiming to reduce greenhouse gas emissions. He also explores sustainable chemical processes, applying green chemistry principles to minimize environmental impact. Additionally, Pugsley is involved in industrial waste management strategies, emphasizing recycling and treatment to reduce waste. His research into advanced materials seeks to develop innovative solutions for energy and environmental technologies, combining his expertise in chemical engineering to address global challenges in sustainability.

Award and Honors

Todd Pugsley has received several notable awards and honors throughout his career. He was honored with the Outstanding Researcher Award by the Chemical Engineering Society for his significant contributions to energy and environmental sustainability research. Pugsley also received the Innovative Research Award from the National Science Foundation, recognizing his pioneering work in carbon capture technologies. Additionally, he was awarded the Excellence in Teaching Award by his university, acknowledging his outstanding commitment to education and mentorship in the field of chemical engineering. These accolades reflect his impact on both research and education in his field..

Research Skills

Todd Pugsley’s research skills encompass a range of advanced methodologies and techniques in chemical engineering. He is proficient in process modeling and simulation, utilizing tools like Aspen Plus and MATLAB for designing and optimizing chemical processes. His expertise extends to experimental design, particularly in the development and testing of carbon capture technologies. Pugsley is skilled in data analysis and interpretation, applying statistical methods and software such as R and Python. His capabilities also include proficiency in advanced laboratory techniques, such as spectroscopy and chromatography, essential for his research on sustainable energy solutions..

Publications

  • “Fluidized bed reactor”
    • Authors: Grace, J.R., Chaouki, J., Pugsley, T.
    • Year: 2016
    • Citations: 2
  • “Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques”
    • Authors: Dubrawski, K., Tebianian, S., Bi, H.T., Zhu, J.X., Grace, J.R.
    • Year: 2013
    • Citations: 69
  • “MBM fuel feeding system design and evaluation for FBG pilot plant”
    • Authors: Campbell, W.A., Fonstad, T., Pugsley, T., Gerspacher, R.
    • Year: 2012
    • Citations: 8
  • “Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2012
    • Citations: 56
  • “An effect of tar model compound toluene treatment with high-temperature flames”
    • Authors: Granovskii, M., Gerspacher, R., Pugsley, T., Sanchez, F.
    • Year: 2012
    • Citations: 7
  • “A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2011
    • Citations: 124
  • “Steam gasification of meat and bone meal in a two-stage fixed-bed reactor system”
    • Authors: Soni, C.G., Dalai, A.K., Pugsley, T., Fonstad, T.
    • Year: 2011
    • Citations: 13
  • “CFD simulation of a fluidized bed gasifier operating with lignite coal”
    • Authors: Karimipour, S., Pugsley, T., Spiteri, R.J.
    • Year: 2010
    • Citations: 1
  • “Experimental study of the nature of gas streaming in deep fluidized beds of Geldart A particles”
    • Authors: Karimipour, S., Pugsley, T.
    • Year: 2010
    • Citations: 12
  • “The use of peat granules in a fluidized bed bioreactor”
    • Authors: Clarke, K., Pugsley, T., Hill, G.A.
    • Year: 2010