Ahmed El-Harairy | Chemical Engineering | Best Researcher Award

Dr. Ahmed El-Harairy | Chemical Engineering | Best Researcher Award

University of Nebraska-Lincoln | United States

Dr. Ahmed El-Harairy is an accomplished researcher in the field of chemical and biomolecular engineering, recognized for his pioneering contributions to electrocatalysis, nanomaterials, and sustainable energy systems. He has a diverse academic background across Egypt, China, and the United States, reflecting his strong commitment to global scientific engagement and excellence. Currently based at the University of Nebraska–Lincoln, Dr. El-Harairy focuses on developing multifunctional catalysts and advanced materials for energy conversion, water splitting, and environmental remediation. His work bridges fundamental chemistry with practical applications, aiming to address pressing global challenges in clean energy production and environmental sustainability. He has published extensively in top-ranked journals such as ACS Nano, Angewandte Chemie, Advanced Synthesis & Catalysis, and RSC Advances. Beyond research, he is also deeply involved in teaching, mentoring, and scientific community service, with over 200 peer reviews for internationally reputed journals. His leadership in professional organizations, international conferences, and collaborative projects highlights his dynamic role as a researcher, educator, and thought leader. With a proven record of scientific achievements, professional dedication, and cross-cultural experience, Dr. El-Harairy embodies the qualities of an outstanding researcher with immense potential for future breakthroughs in his field.

Professional Profile

Scopus | ORCID | Google Scholar

Education

Dr. Ahmed El-Harairy’s educational journey is marked by academic excellence and international exposure, providing him with a strong foundation in chemical sciences and engineering. He began with a bachelor’s degree in Environmental Science and Chemistry, where he developed an early interest in sustainable solutions for pollution control and environmental protection. Building upon this foundation, he pursued a master’s degree in Physical Chemistry and Catalysis, focusing on ionic liquid catalysts and their application in sustainable chemical transformations. His research during this stage laid the groundwork for his expertise in advanced catalytic systems. Later, he expanded his knowledge in chemical engineering by completing a second master’s degree in Chemical and Biomolecular Engineering at the University of Nebraska–Lincoln, where he gained in-depth expertise in applied research methodologies and modern chemical engineering principles. Currently, he is advancing his career through doctoral research in Chemical Engineering, specializing in the development of novel catalysts for electrocatalytic reactions and energy applications. His education reflects a balanced combination of theoretical knowledge, experimental skills, and interdisciplinary training. With academic exposure across Egypt, China, and the United States, Dr. El-Harairy has cultivated a truly global perspective that enriches his approach to solving complex scientific and engineering challenges.

Professional Experience

Dr. Ahmed El-Harairy has accumulated extensive professional experience through academic appointments, teaching roles, and international research fellowships. He has worked as a teaching assistant and lecturer in environmental and chemical sciences, contributing significantly to the training and mentorship of undergraduate and graduate students. His early career in Egypt focused on environmental chemistry, where he gained valuable insights into pollution control and green chemistry practices. He later expanded his expertise in China, serving as a research assistant in leading laboratories of materials science and catalysis. During this period, he gained hands-on experience in advanced analytical techniques and developed skills in synthesizing organic and hybrid nanomaterials for energy applications. At the University of Nebraska–Lincoln, he has worked as a graduate research and teaching assistant, where he combines cutting-edge research in electrocatalysis with responsibilities in teaching chemical engineering courses. He has been actively involved in organizing conference sessions, moderating symposia, and presenting at prestigious platforms, including ACS conferences and SPIE Photonics West. This blend of research, teaching, and leadership has shaped him into a versatile professional, equally dedicated to knowledge creation, dissemination, and collaboration across global scientific networks. His professional trajectory showcases his adaptability and consistent pursuit of excellence.

Research Interests

Dr. Ahmed El-Harairy’s research interests center on the development of advanced materials for electrocatalysis, energy conversion, and environmental sustainability. He is particularly focused on designing and synthesizing multifunctional catalysts that enable efficient water splitting, carbon dioxide reduction, oxygen reduction, nitrogen fixation, and urea oxidation reactions. His work integrates physical chemistry, materials science, and chemical engineering principles to develop practical solutions for renewable energy and green technologies. Another key area of his research is the exploration of porphyrin-based thin films and macrocyclic compounds for electrocatalysis, which hold promise in energy storage and sustainable chemical production. He is also actively engaged in investigating nanostructured composites, porous organic polymers, and metal-organic frameworks for applications in energy harvesting and pollution control. Beyond experimental research, Dr. El-Harairy is interested in interdisciplinary collaborations that merge catalysis, nanotechnology, and environmental engineering. He strives to address global challenges such as energy security, climate change, and clean water access through innovative scientific approaches. His long-term vision is to develop catalytic systems that are not only efficient but also environmentally benign and cost-effective, making them suitable for large-scale applications. His research philosophy emphasizes both scientific advancement and real-world societal impact.

Research Skills

Dr. Ahmed El-Harairy possesses an impressive portfolio of research skills that enable him to carry out advanced scientific investigations in chemical and biomolecular engineering. He is highly proficient in the synthesis of organic, inorganic, and hybrid nanomaterials with tailored properties for specific catalytic applications. His expertise extends to a wide range of characterization techniques, including XRD, TEM, SEM, XPS, TGA, IR, Raman spectroscopy, fluorescence spectroscopy, and NMR, which he uses to explore material structures and functionalities at the nanoscale. He is also skilled in electrochemical methods, allowing him to evaluate catalyst performance in various energy-related reactions such as hydrogen evolution, oxygen reduction, and CO₂ conversion. Dr. El-Harairy has strong capabilities in scientific writing, data analysis, and visualization, employing tools such as ChemDraw, Origin, LaTeX, and MestReNova for publication-quality outputs. Additionally, he has substantial experience as a reviewer, providing critical assessments for international journals, which reflects his sharp analytical and evaluative abilities. His skills extend to teaching and mentoring, supported by evidence-based STEM teaching training, which enhances his effectiveness as an educator. Overall, his combination of experimental, analytical, and pedagogical skills positions him as a versatile researcher capable of tackling complex, multidisciplinary challenges in science and engineering.

Awards and Honors

Dr. Ahmed El-Harairy has received numerous awards and honors that underscore his academic excellence, research contributions, and leadership in the global scientific community. He has been recognized with multiple travel awards and teaching assistantships at the University of Nebraska–Lincoln, reflecting his dual strengths as both a researcher and educator. His distinguished achievements include the Outstanding International Student Award in Chemistry and the Distinguished Scientific Publication Award from Damietta University, highlighting his international impact and contributions to advancing chemical research. He has served as a presider and moderator for multiple sessions of the American Chemical Society conferences, demonstrating his leadership in high-profile scientific gatherings. His recognition as an IOP Trusted Reviewer and Exceptional Reviewer for Materials further showcases his dedication to maintaining the highest standards of scholarly communication. Additionally, he has earned prestigious research fellowships and scholarships from top universities in China and Egypt, where he was honored for both academic and volunteer achievements. His membership in professional societies such as ACS, ECS, RSC, and AIChE reflects his integration into international research networks. Collectively, these awards and honors affirm his reputation as a highly accomplished and respected figure in chemical engineering and materials science.

Publication Top Notes

  • Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis — 2021 — 392 citations

  • Engineering electronic transfer dynamics and ion adsorption capability in dual-doped carbon for high-energy potassium ion hybrid capacitors — 2022 — 99 citations

  • Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni₃N Nanosheets Endows Exceptionally Energy-Saving Hydrogen Evolution Coupled with … — 2021 — 64 citations

  • A Sulfone‐Containing Imidazolium‐Based Brønsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate — 2019 — 47 citations

  • A Sulfone‐Containing Imidazolium‐Based Brønsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate (duplicate entry) — 2019

  • Comprehensive review of progress made in soil electrokinetic research during 1993–2020, Part I: Process design modifications with brief summaries of main output — 2023 — 28 citations

Conclusion

Dr. Ahmed El-Harairy is a highly distinguished scholar whose career embodies excellence in research, teaching, and international collaboration. His contributions to the development of advanced catalysts and nanomaterials for sustainable energy and environmental applications reflect both depth of expertise and breadth of impact. With an academic foundation across Egypt, China, and the United States, he has cultivated a truly global outlook that enriches his research and fosters meaningful collaborations. His extensive publication record, active involvement in international conferences, and service as a reviewer for leading journals demonstrate his influential role in advancing chemical engineering and materials science. Furthermore, his recognition through prestigious awards and memberships in global scientific societies positions him as a rising leader with significant potential. Looking ahead, Dr. El-Harairy is poised to make transformative contributions to sustainable energy research, environmental protection, and next-generation technologies. His combination of intellectual rigor, innovative thinking, and community engagement makes him a deserving candidate for recognition as a best researcher, with the capacity to inspire future generations of scientists and engineers worldwide.

Behnam Rezvani | Chemical Engineering | Best Researcher Award

Mr. Behnam Rezvani | Chemical Engineering | Best Researcher Award

Laboratory Operator from University of Tehran, Iran 

Behnam (Benjamin) Rezvani is a promising chemical engineer whose academic and research credentials place him among the top emerging scientists in the field of sustainable energy and environmental engineering. With a strong foundation in chemical engineering from Hakim Sabzevari University and advanced specialization in separation processes from the University of Tehran—Iran’s top-ranked university—Rezvani has built an interdisciplinary research portfolio that integrates bio-oil production, biodiesel synthesis, and wastewater treatment technologies. His ability to blend experimental proficiency with software modeling and data-driven methods such as machine learning demonstrates his versatility and innovation in tackling global environmental challenges. He has authored multiple peer-reviewed articles in high-impact journals and presented research at international congresses. His projects span from catalyst optimization to advanced adsorption techniques using biochar, emphasizing his commitment to sustainable and scalable chemical engineering solutions. Beyond research, he has served as a teaching assistant in various laboratory courses and holds editorial and review positions in reputable scientific platforms. With awards from national competitions and a growing number of publications, Rezvani stands out as a dynamic contributor to scientific advancement. His passion for clean energy and sustainable technologies marks him as a strong contender for the Best Researcher Award.

Professional Profile

Education

Behnam Rezvani’s educational journey reflects a progressive commitment to excellence in chemical engineering, particularly in areas tied to sustainability, green chemistry, and process optimization. He earned his Bachelor of Science degree in Chemical Engineering from Hakim Sabzevari University, where he developed a solid foundation in core chemical engineering principles. He then pursued his Master of Science degree in Chemical Engineering with a specialization in Separation Processes at the prestigious University of Tehran, Iran’s leading academic institution. During his graduate studies, he maintained a commendable GPA of 3.65/4.00 and undertook significant research, including his thesis on the removal of Alizarine Red S from wastewater using a biochar composite derived from rice husk and sewage sludge pyrolysis. His advanced education involved both experimental and computational modeling, allowing him to blend theoretical knowledge with practical skills. In addition to core engineering courses, he engaged in interdisciplinary projects incorporating design of experiments, process simulation, and environmental remediation. His language proficiency, demonstrated by an IELTS score of 7, further qualifies him for international collaboration and academic endeavors. This robust academic background, enriched by hands-on lab work and innovative research, has positioned Rezvani as a capable and globally aware chemical engineering researcher.

Professional Experience

Behnam Rezvani has amassed a diverse range of professional experiences that reflect his technical acumen, interdisciplinary expertise, and proactive engagement with industry challenges. He served as a teaching assistant at the University of Tehran in courses such as Thermodynamics, Heat Transfer Laboratory, Processes Control Laboratory, and Unit Operations Laboratory. These roles underscore his hands-on proficiency and teaching capabilities in key engineering disciplines. Additionally, Rezvani has contributed to research and development initiatives across several companies, including AMPER INNOVATION Center, Pishgam Rooyesh Espadana Company, Payafan Yakhteh Alborz Company, and Arfa Iron and Steel Company. His work has spanned a variety of applied domains, from interface thermal materials and fertilizer development to wastewater treatment system design for industrial facilities. He has also served as a laboratory specialist at Gemizdar Petrorefinery, reinforcing his practical skills in a petrochemical setting. His experience with simulation software such as HYSYS, MATLAB, and Design-Expert, alongside programming in Python and C++, has enabled him to lead data-driven and computational modeling projects. Whether designing biodiesel production processes, simulating complex chemical reactions, or developing machine learning models for medical applications, Rezvani consistently demonstrates an ability to integrate scientific innovation with real-world solutions.

Research Interests

Behnam Rezvani’s research interests center around sustainable energy technologies, environmental remediation, and advanced chemical process engineering. His academic and experimental focus lies in bio-oil and biodiesel production through pyrolysis and transesterification, particularly using agricultural and industrial waste biomass. He is keenly interested in developing innovative adsorbents from biochar and activated carbon for water treatment and pollution mitigation, employing chemical modifications and modern pyrolysis techniques to enhance efficiency. His research also explores catalytic systems for oxidation processes and eco-friendly indigo dye synthesis, indicating a broader commitment to green chemistry. Rezvani’s interest in adsorption and biosorption extends to electrospun bio-nanocomposites, such as chitosan/Chlorella vulgaris, for heavy metal removal from wastewater. Additionally, he is invested in techno-economic analyses and design of experiments (DOE), aiming to bridge laboratory innovation with industrial scalability. His emerging work in machine learning, particularly in predicting medical outcomes from biochemical data, adds a computational edge to his experimental profile. Through these multidisciplinary interests, Rezvani seeks to develop sustainable, cost-effective, and technologically advanced solutions for global environmental challenges. His ongoing research contributions not only address critical environmental concerns but also aim to advance circular economy principles and resource recovery from waste materials.

Research Skills

Behnam Rezvani possesses a wide range of research skills that make him a well-rounded and capable chemical engineering researcher. His expertise spans both experimental and computational methodologies, allowing him to bridge theory and practice effectively. In the laboratory, he has conducted extensive work on pyrolysis for bio-oil and biochar production, biodiesel synthesis from halophytic plants, catalyst development, and wastewater treatment through biosorption and advanced adsorption methods. He is proficient in various analytical and fabrication techniques, including electrospinning, FTIR spectroscopy, and SEM imaging. Rezvani is also skilled in using MATLAB for modeling partial differential equations and performing advanced statistical analyses via Minitab and Design-Expert for experimental optimization. His software skills include HYSYS for chemical process simulations, ChemDraw for chemical structure design, and Python for machine learning applications, achieving high-accuracy predictive models in healthcare analytics. Additionally, he has conducted techno-economic assessments and scaling feasibility studies to ensure practical applicability of his research. His strong technical communication is evidenced by published journal articles, conference presentations, and experience as an editor and reviewer for scientific journals. These combined skills equip him to tackle complex, interdisciplinary problems in chemical engineering, particularly in the pursuit of cleaner energy, efficient resource recovery, and sustainable industrial processes.

Awards and Honors

Behnam Rezvani has earned numerous distinctions that highlight his scientific excellence, innovation, and leadership in chemical engineering. His notable achievements include securing 1st place in the prestigious Rah Neshan National Competition in Iran by proposing a novel indigo synthesis method using a microflow reactor—an innovative take on the traditional Heumann & Pfleger process. He also placed 3rd in the Rahisho National Competition for a pioneering wastewater treatment and reuse proposal tailored to steel manufacturing processes. Rezvani’s editorial contributions further exemplify his leadership; he served as an editor and editorial board member of the student-led ‘Farayand’ scientific journal for over two years, promoting scientific literacy in chemical engineering. His academic engagement extended internationally through his role as a peer reviewer for the International Journal of Biological Macromolecules (IF: 7.7), demonstrating his analytical acumen and contribution to global research. Additionally, his published research in high-impact journals like Bioresource Technology Reports, Canadian Journal of Chemical Engineering, and Journal of the Energy Institute has garnered professional recognition. With several accepted conference papers, under-review articles, and two registered inventions, Rezvani’s award record showcases his innovation, productivity, and impact on sustainable technologies and environmental remediation.

Conclusion

In conclusion, Behnam Rezvani exemplifies the qualities of a dedicated, innovative, and impactful researcher. With a multidisciplinary approach rooted in chemical engineering and sustainability, he has consistently demonstrated the ability to convert complex scientific ideas into practical and scalable solutions. His contributions to bio-oil and biodiesel production, waste-to-resource conversion, and water treatment technologies address some of the most urgent environmental challenges of our time. He skillfully integrates experimental research with computational modeling, simulation, and data analysis, embodying a modern and systems-thinking perspective. His achievements, including national awards, editorial roles, and international publications, reflect his commitment to excellence and advancement in his field. Furthermore, his engagement in teaching, industry collaboration, and ongoing innovation—through registered inventions and cutting-edge research—underscores his leadership potential. Behnam Rezvani’s well-rounded profile, global mindset, and dedication to sustainable development make him an outstanding candidate for the Best Researcher Award. With continued support and recognition, he is poised to make lasting contributions to science, industry, and society at large.

Publications Top Notes

  1. Title: Enhanced bio-oil production from Co-pyrolysis of cotton seed and polystyrene waste; fuel upgrading by metal-doped activated carbon catalysts
    Authors: Mahshid Vaghar Mousavi, Behnam Rezvani, Ahmad Hallajisani
    Year: 2025

  2. Title: Super-effective biochar adsorbents from Co-pyrolysis of rice husk and sewage sludge: Adsorption performance, advanced regeneration, and economic analysis
    Authors: Behnam Rezvani, Ahmad Hallajisani, Omid Tavakoli
    Year: 2025

  3. Title: Novel techniques in bio‐oil production through catalytic pyrolysis of waste biomass: Effective parameters, innovations, and techno‐economic analysis
    Authors: Behnam Rezvani
    Year: 2025

  4. Title: Canola, Camelina, and Linseed Biodiesel: A Sustainable Pathway for Renewable Energy
    Authors: Behnam Rezvani
    Year: 2024

  5. Title: Exploring the Potential of Biosorption By Algae: A Sustainable Solution for Water Treatment
    Authors: Behnam Rezvani
    Year: 2024

  6. Title: Mercury Removal by Biochar and Activated Carbon: An Effective Approach for Environmental Remediation
    Authors: Behnam Rezvani
    Year: 2024

  7. Title: Safflower, Moringa, and Salicornia Biodiesel: A Comparative Analysis of Sustainable Fuel Alternatives
    Authors: Behnam Rezvani
    Year: 2024