Geraldine Merle | Chemical Engineering | Best Researcher Award

Prof. Geraldine Merle | Chemical Engineering | Best Researcher Award

Professor from Polytechnique Montreal, Canada

Dr. Geraldine Merle is a distinguished researcher and academic with extensive expertise in her field. Over the years, she has contributed significantly to advancing knowledge through groundbreaking research, innovative methodologies, and dedicated teaching. She has worked in prestigious institutions and collaborated with various researchers to develop impactful solutions. Her research spans multiple disciplines, demonstrating her ability to integrate interdisciplinary approaches to address complex challenges. Dr. Merle is known for her strong leadership, mentorship, and commitment to academic excellence. Through her publications, lectures, and research projects, she continues to influence her field and inspire future scholars. She has received numerous accolades for her work and remains dedicated to pushing the boundaries of scientific discovery.

Professional Profile

Education

Dr. Geraldine Merle holds an impressive academic background, earning degrees from top-tier universities. She completed her undergraduate studies with outstanding performance, followed by a master’s degree where she specialized in advanced research methodologies. Her doctoral studies focused on a groundbreaking topic that contributed to the academic community. She has also pursued postdoctoral research at leading institutions, refining her expertise in specialized areas. Additionally, she has participated in various professional development programs and workshops to stay updated with the latest advancements in her field. Her academic journey showcases her dedication to lifelong learning and scholarly excellence.

Professional Experience

With a wealth of experience in academia and industry, Dr. Geraldine Merle has held several influential positions. She has served as a professor, researcher, and consultant in various esteemed organizations. Her teaching experience includes mentoring undergraduate and graduate students, developing curricula, and leading research projects. In addition, she has worked with government and private institutions on collaborative research initiatives aimed at solving real-world problems. Her contributions extend to editorial boards, advisory committees, and conference panels, highlighting her active role in shaping the future of her discipline. Her professional journey reflects a balance between research, teaching, and leadership.

Research Interests

Dr. Geraldine Merle’s research interests encompass a wide range of topics within her field. She is particularly passionate about exploring emerging trends, developing innovative solutions, and applying interdisciplinary approaches to problem-solving. Her work has addressed pressing societal issues, leveraging data-driven methods and cutting-edge technologies. Additionally, she is interested in policy implications, ethics, and the societal impact of research. She collaborates with scholars from different backgrounds to enhance the depth and breadth of her studies. Her research interests continue to evolve, reflecting her adaptability and curiosity in an ever-changing academic landscape.

Research Skills

Dr. Geraldine Merle possesses a robust set of research skills that make her a leader in her field. She is proficient in data analysis, experimental design, and qualitative and quantitative research methodologies. Her expertise extends to statistical modeling, software applications, and advanced laboratory techniques. She has a strong ability to synthesize complex information, write compelling research papers, and present findings at conferences. Additionally, she has experience securing research grants and managing large-scale projects. Her collaborative approach and problem-solving skills have contributed to numerous successful research endeavors. These skills have been instrumental in her contributions to academia and industry.

Awards and Honors

Dr. Geraldine Merle has received numerous awards and honors in recognition of her contributions to research and academia. Her accolades include prestigious research fellowships, best paper awards, and distinguished teaching recognitions. She has been invited as a keynote speaker at international conferences, further solidifying her reputation as an expert in her field. Her work has been acknowledged by professional organizations and funding agencies, reflecting her influence and impact. Additionally, she has received grants and scholarships that have enabled her to pursue high-impact research. Her dedication and achievements continue to inspire students, colleagues, and aspiring researchers.

Conclusion

Dr. Geraldine Merle’s career is a testament to her dedication, innovation, and passion for research and education. With a strong academic foundation, extensive professional experience, and a commitment to knowledge advancement, she has made significant contributions to her field. Her research interests and skills demonstrate her ability to address complex challenges and provide valuable insights. The numerous awards and honors she has received highlight the impact of her work. As she continues her journey, she remains committed to fostering intellectual growth, mentoring future scholars, and shaping the future of research. Dr. Merle’s contributions leave a lasting legacy in academia and beyond.

Publications Top Notes

  1. Anion exchange membranes for alkaline fuel cells: A review

    • Authors: G Merle, M Wessling, K Nijmeijer

    • Year: 2011

    • Citations: 2057

  2. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells

    • Authors: G Merle, SS Hosseiny, M Wessling, K Nijmeijer

    • Year: 2012

    • Citations: 159

  3. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications

    • Authors: E van de Ven, A Chairuna, G Merle, SP Benito, Z Borneman, K Nijmeijer

    • Year: 2013

    • Citations: 157

  4. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts

    • Authors: Z Sheikh, YL Zhang, L Grover, GE Merle, F Tamimi, J Barralet

    • Year: 2015

    • Citations: 122

  5. Concentric glucose/O2 biofuel cell

    • Authors: A Habrioux, G Merle, K Servat, KB Kokoh, C Innocent, M Cretin, S Tingry

    • Year: 2008

    • Citations: 98

  6. Top-down bottom-up graphene synthesis

    • Authors: Z Zhang, A Fraser, S Ye, G Merle, J Barralet

    • Year: 2019

    • Citations: 82

  7. Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties

    • Authors: GM Soliman, YL Zhang, G Merle, M Cerruti, J Barralet

    • Year: 2014

    • Citations: 81

  8. Simulation of a full fuel cell membrane electrode assembly using pore network modeling

    • Authors: M Aghighi, MA Hoeh, W Lehnert, G Merle, J Gostick

    • Year: 2016

    • Citations: 71

  9. Exploring the impact of electrode microstructure on redox flow battery performance using a multiphysics pore network model

    • Authors: MA Sadeghi, M Aganou, M Kok, M Aghighi, G Merle, J Barralet, J Gostick

    • Year: 2019

    • Citations: 69

 

Dan Yang | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Dan Yang | Chemical Engineering | Best Researcher Award

School of Chemistry and Molecular Engineering, Nanjing Tech University, China

Dan Yang is an accomplished associate professor at Nanjing Tech University, specializing in chemistry and molecular engineering. With a strong academic foundation and extensive research experience, she focuses on the synthesis of metal nanoclusters and their applications in photoelectrocatalysis and electrocatalysis. Her research aims to develop innovative solutions for CO2 reduction and biomass conversion, contributing to sustainable chemical processes. Throughout her career, she has made significant contributions to the field, authoring multiple high-impact publications in renowned scientific journals. Dan Yang has successfully secured competitive research grants, demonstrating her expertise in securing funding for cutting-edge projects. With her deep-rooted knowledge in physical chemistry and material science, she continues to make impactful strides in catalysis research, earning recognition and respect in her field.

Professional Profile

ORCID Profile

Education

Dan Yang has an extensive academic background in chemistry and material science. She earned her doctoral degree in physical chemistry from Nanjing University (2017–2020) under the supervision of Professors Weiping Ding and Yan Zhu. During her doctoral studies, she focused on the catalytic conversion of C1 molecules using metal clusters. Prior to this, she obtained a master’s degree in material science from Sun Yat-sen University (2012–2014), where she worked under Professor Yuezhong Meng, specializing in the development of advanced materials. Her educational journey began at Northwest Normal University, where she completed her bachelor’s degree in chemistry (2008–2012), building a strong foundation in chemical principles and laboratory techniques. This diverse and robust educational background has equipped Dan Yang with the expertise to conduct innovative research in electrocatalysis and sustainable chemical processes.

Professional Experience

Dan Yang’s professional career reflects her dedication to advancing chemical research. She is currently an associate professor at Nanjing Tech University (2023–present), where she leads research on metal nanocluster synthesis and their applications in photoelectrocatalysis and electrocatalysis of C1 molecules and biomass conversion. Prior to her current role, she served as a postdoctoral researcher at the same university (2021–2022), where she worked on electrocatalytic CO2 reduction reactions (CO2RR) and the conversion of biomass derivatives into valuable chemical products. From 2014 to 2016, she was an assistant research fellow at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. There, she contributed to the development of fine chemicals, including phase-change materials, epoxide plasticizers, and bio-based polyols. Her diverse professional experience underscores her expertise in catalysis, sustainable chemical synthesis, and material science.

Research Interests

Dan Yang’s research interests revolve around catalysis and sustainable chemistry. She specializes in the synthesis of metal nanoclusters and their catalytic applications in photoelectrocatalysis and electrocatalysis. Her current focus includes CO2 reduction reactions (CO2RR) to produce carbon monoxide (CO) and formic acid (HCOOH), offering potential solutions for carbon capture and utilization. She also explores the electrocatalytic transformation of biomass-derived molecules, such as glycerol and glucose, into valuable carboxylic acid products. Additionally, her work investigates the evolution of metal-ligand interfaces in nanoclusters and their impact on catalytic performance. Through her research, Dan Yang aims to develop efficient and sustainable catalytic systems that address environmental challenges and promote green chemical processes.

Research Skills

Dan Yang possesses a diverse set of research skills in the fields of catalysis and material science. She is highly proficient in the synthesis and characterization of metal nanoclusters, utilizing techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) to analyze cluster structures. Her expertise extends to electrochemical methods, including cyclic voltammetry and chronoamperometry, for evaluating catalytic performance. Additionally, she has experience in biomass conversion processes, utilizing electrocatalysis and photoelectrocatalysis techniques. Her analytical skills include advanced data interpretation and the use of computational tools for modeling catalytic reactions. Dan Yang’s technical proficiency enables her to design and optimize catalytic systems for efficient and selective chemical transformations.

Awards and Honors

Dan Yang has received several prestigious awards and research grants in recognition of her contributions to catalysis research. She was awarded the Young Scientists Fund of the National Natural Science Foundation of China (NSFC) for her project on the evolution of metal-ligand interfaces in gold clusters for CO2 reduction (2025–2027). She also leads a sub-project of the NSFC International Cooperation and Exchanges Program, focusing on new catalysts and materials for CO2 capture and conversion (2024–2026). Additionally, she secured funding from the Jiangsu Natural Science Foundation of China for her work on glycerol carbonate synthesis through electrochemical CO2 conversion (2023–2026). Dan Yang previously received support from the China Postdoctoral Science Foundation for her research on electrolyte-regulated CO2RR using gold clusters (2022–2023). These accolades highlight her innovative research and scientific impact.

Conclusion

Dan Yang is a distinguished researcher and associate professor with a profound expertise in catalysis, material science, and sustainable chemical processes. Her academic journey, spanning from physical chemistry to material science, has equipped her with the skills and knowledge to tackle complex challenges in CO2 reduction and biomass conversion. With a prolific publication record and multiple research grants, she continues to make significant contributions to the field. Her commitment to advancing sustainable catalytic processes reflects her dedication to addressing pressing environmental challenges. Through her innovative research, Dan Yang remains at the forefront of scientific discovery, driving advancements in electrocatalysis and green chemistry.

Publications Top Notes

  1. Metal-ligand interfaces for well-defined gold nanoclusters
    Authors: Yang, Dan; Wu, Yating; Yuan, Zhaotong; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Zhu, Yan; Yang, Yanhui
    Journal: Science China Chemistry
  2. Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application
    Authors: Yan, Qian; Yuan, Zhaotong; Wu, Yating; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Yang, Dan; Liu, Xu; Xue, Nianhua; Zhu, Yan
    Journal: Precision Chemistry

  3. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites
    Authors: Long, Jiangping; Tian, Suyang; Wei, Sheng; Lin, Hongqiao; Shi, Guiwen; Zong, Xupeng; Yang, Yanhui; Yang, Dan; Tang, Yu; Dai, Yihu
    Journal: Applied Surface Science

  4. Metal-carbonate interface promoted activity of Ag/MgCO3 catalyst for aqueous-phase formaldehyde reforming into hydrogen
    Authors: Wang, Qiaojuan; Wang, Jianyue; Rui, Wenjuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Li, Renhong; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  5. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption
    Authors: Wei, Sheng; Dai, Hua; Long, Jiangping; Lin, Hongqiao; Gu, Junkun; Zong, Xupeng; Yang, Dan; Tang, Yu; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  6. Investigation into the coking-related key reaction steps in dry reforming of methane over NiMgOx catalyst
    Authors: Wang, Jianyue; Wang, Jiawei; Wei, Sheng; Zhang, Yiwen; Tian, Fuhou; Yang, Dan; Kustov, Leonid M.; Yang, Yanhui; Dai, Yihu
    Journal: Molecular Catalysis

  7. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst
    Authors: Luo, Pan; Wang, Jianyue; Rui, Wenjuan; Xu, Ruilin; Kuai, Zhiyuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  8. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters (vol 4, pg 66, 2022)
    Authors: Not listed
    Journal: CCS Chemistry

  9. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity
    Authors: Wu, Yueqi; Long, Jiangping; Wei, Sheng; Gao, Yating; Yang, Dan; Dai, Yihu; Yang, Yanhui
    Journal: Microporous and Mesoporous Materials

  10. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone
    Authors: Gao, Xing; Ding, Yingying; Peng, Lilin; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  11. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters
    Authors: Yang, Dan; Liu, Xu; Dai, Yihu; Zhu, Yan; Yang, Yanhui
    Journal: Chemical Journal of Chinese Universities

  12. Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands
    Authors: Yang, Dan; Wang, Jiawei; Wang, Qiaojuan; Yuan, Zhaotong; Dai, Yihu; Zhou, Chunmei; Wan, Xiaoyue; Zhang, Qichun; Yang, Yanhui
    Journal: ACS Nano

  13. Chemoselective Oxidation of Glycerol over Platinum‐Based Catalysts: Toward the Role of Oxide Promoter
    Authors: Not listed
    Journal: ChemCatChem

  14. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters
    Authors: Not listed
    Journal: CCS Chemistry

  15. Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters
    Authors: Yang, Dan; Song, Yu; Yang, Fang; Sun, Yongnan; Li, Shuohao; Liu, Xu; Zhu, Yan; Yang, Yanhui
    Journal: The Journal of Chemical Physics

  16. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals
    Authors: Not listed
    Journal: EcoMat

  17. Selective CO2 conversion tuned by periodicities in Au8n+4(TBBT)4n+8 nanoclusters
    Authors: Not listed
    Journal: Nano Research

  18. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores
    Authors: Not listed
    Journal: Chinese Journal of Catalysis

  19. Ligand-protected Au4Ru2 and Au5Ru2 nanoclusters: distinct structures and implications for site-cooperation catalysis
    Authors: Not listed
    Journal: Chemical Communications

  20. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity
    Authors: Not listed
    Journal: Journal of the American Chemical Society

  21. Controllable Conversion of CO2 on Non‐Metallic Gold Clusters
    Authors: Not listed
    Journal: Angewandte Chemie International Edition

  22. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
    Authors: Chen, Limin; Feng, Jie; Yang, Dan; Tian, Falin; Ye, Xiaomin; Qian, Qiuping; Wei, Shuai; Zhou, Yunlong
    Journal: Chemical Science

  23. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles
    Authors: Chen, Limin; Yang, Dan; Feng, Jie; Zhang, Min; Qian, Qiuping; Zhou, Yunlong
    Journal: Journal of Materials Chemistry B

  24. The Evolution in Catalytic Activity Driven by Periodic Transformation in the Inner Sites of Gold Clusters
    Authors: Sun, Yongnan; Wang, Endong; Ren, Yujing; Xiao, Kang; Liu, Xu; Yang, Dan; Gao, Yi; Ding, Weiping; Zhu, Yan
    Journal: Advanced Functional Materials

Qin Guohui | Chemical Engineering | Best Researcher Award

Prof. Qin Guohui | Chemical Engineering | Best Researcher Award

professor, College of Chemical Engineering, Qingdao University of Science and Technology, China

Dr. Qin is a Professor at Qingdao University of Science and Technology in the College of Chemical Engineering. With a Ph.D. in Chemical Engineering, her research centers on developing advanced materials for lithium, sodium, and potassium batteries. She has published over 30 high-impact papers, serves as a reviewer for several leading journals, and has led multiple high-profile research projects. Dr. Qin’s innovative work and academic involvement have earned her recognition, including the prestigious Shandong Province Youth Taishan Scholar title.

Professional Profile

ORCID Profile

Education

Dr. Qin completed her B.S. in 2009 at Qilu University of Technology, followed by an M.S. in 2012 from Tianjin University of Technology. She then conducted research at the University of California, Riverside, from 2014 to 2016 under the mentorship of Prof. Yadong Yin. In 2017, Dr. Qin earned her Ph.D. in Chemical Engineering from Tianjin University, where she specialized in advanced materials for energy storage.

Professional Experience

Dr. Qin is currently a faculty member in the College of Chemical Engineering at Qingdao University of Science and Technology. She has authored over 30 publications, with 29 in high-impact journals (SCI Region I) and 8 in SCI Region II. In addition to her research, she serves as a peer reviewer for numerous prestigious journals, including Applied Catalysis B: Environmental, Journal of Power Sources, Electrochimica Acta, and Chemical Engineering Journal. Her involvement in the peer review process underscores her reputation and expertise within the scientific community.

Research Interests

Dr. Qin’s primary research focuses on energy chemical engineering, with a specific emphasis on developing and studying materials for lithium, sodium, and potassium battery systems. Her work includes advancing positive and cathode materials and exploring electrolytes essential for efficient energy storage applications.

Research Projects

Shandong Youth Innovation Program Team (2022–2024): Leading a project focused on developing organic-inorganic hybrid energy storage systems, with a budget of 2 million CNY.

National Natural Science Foundation of China (NSFC) Project (2022–2025): Leading a project on constructing self-healing polyamino acid/hollow black phosphorus composite electrodes for potassium storage (600,000 CNY).

NSFC Youth Fund Project (2019–2021): Completed a project on magnetron synthesis and assembly of red phosphorus-based composite electrodes for sodium storage, with funding of 273,000 CNY.

Representative Publications

Dr. Qin has published extensively in prominent journals, with recent works in:

Angewandte Chemie International Edition (2021, 2023)

Advanced Materials (2023)

Advanced Energy Materials (2023, 2024)

Honors and Research Awards

Dr. Qin has been recognized as a Shandong Province Youth Taishan Scholar, reflecting her impactful research in energy materials and her contributions to advancing energy storage technologies.

Conclusion

 

Publications Top Notes