Dr. Radwan Ali | Organic Chemistry | Young Scientist Award

Dr. Radwan Ali | Organic Chemistry | Young Scientist Award

Assistant Lecturer from University of Al-Qadisiyah, Iraq

Radwan Ali is a dedicated researcher and academic specializing in organic chemistry. Born in Al-Qadisiyah, Iraq, he has pursued an extensive academic career, culminating in a PhD in Organic Chemistry from Ilam University, Iran. His expertise lies in organic synthesis, heterocyclic chemistry, and catalysis, with a particular focus on multicomponent reactions and synthetic methodologies. Currently, he serves as an Assistant Lecturer at the University of Al-Qadisiyah, where he balances teaching responsibilities with active research. His work aims to develop innovative and sustainable chemical processes, contributing to advancements in organic and analytical chemistry. Through his academic journey, Radwan Ali has developed a strong foundation in research, demonstrated leadership in education, and explored new frontiers in chemistry. His contributions to the field are evident through his focus on natural product synthesis and the application of nanocatalysts. As a researcher, he aspires to bridge the gap between theoretical chemistry and real-world applications, ensuring that his work has both scientific and practical significance. His commitment to continuous learning and research innovation positions him as a promising candidate for recognition in the field of young scientists.

Professional Profile

Education

Radwan Ali has pursued a comprehensive education in chemistry, specializing in organic and analytical chemistry. He earned his Bachelor of Science (BSc) in Chemistry from the University of Al-Qadisiyah, Iraq, in 2018. His undergraduate studies provided a strong foundation in chemical principles, laboratory techniques, and research methodologies. Following his BSc, he pursued a Master of Science (MSc) in Analytical Chemistry at Azad University, Mashhad, Iran, completing his degree in 2020. His MSc research involved advanced analytical techniques, contributing to his expertise in chemical analysis and methodology. Building on his previous studies, he began his Doctor of Philosophy (PhD) in Organic Chemistry at Ilam University, Iran, which he is set to complete in 2025. His doctoral research focuses on organic synthesis, heterocyclic compounds, and catalytic applications in multicomponent reactions. Through his educational journey, Radwan Ali has acquired an extensive understanding of both theoretical and practical chemistry, positioning him as a skilled researcher and educator. His academic achievements have prepared him to make meaningful contributions to the scientific community and advance research in organic chemistry.

Professional Experience

Radwan Ali is currently an Assistant Lecturer at the University of Al-Qadisiyah, Iraq. In this role, he teaches undergraduate chemistry courses, supervises laboratory sessions, and mentors students in their academic and research pursuits. His teaching responsibilities include fundamental and advanced chemistry courses, ensuring that students gain a comprehensive understanding of chemical principles and laboratory techniques. Beyond teaching, he is actively involved in research, contributing to advancements in organic synthesis and catalysis. His professional experience extends beyond academia, as he collaborates on research projects that explore new synthetic methodologies and the application of nanocatalysts in chemical reactions. Through his role as a lecturer, he has developed strong leadership and communication skills, effectively bridging the gap between research and education. His ability to integrate research findings into teaching enriches the learning experience for his students. Additionally, his involvement in laboratory supervision ensures that students gain hands-on experience with modern analytical and synthetic techniques. His professional journey reflects a commitment to both education and research, positioning him as a valuable contributor to the field of organic chemistry.

Research Interests

Radwan Ali’s research interests lie in the field of organic chemistry, particularly in organic synthesis and catalytic applications. His work focuses on the development of novel synthetic methodologies, including multicomponent reactions and asymmetric synthesis. He has a strong interest in heterocyclic synthesis, exploring the design and application of heterocyclic compounds in medicinal and industrial chemistry. Additionally, he is actively involved in the synthesis of natural products, aiming to develop environmentally friendly and efficient synthetic pathways. His research extends to the use of catalysts, including magnetic nanocatalysts, in organic transformations. These catalysts offer advantages in green chemistry, enhancing reaction efficiency while minimizing waste. His interest in analytical chemistry further supports his research, allowing him to develop advanced techniques for chemical characterization and reaction optimization. Through his research, he aims to contribute to sustainable and innovative approaches in organic synthesis, addressing challenges in pharmaceutical, agricultural, and materials science applications. His interdisciplinary approach ensures that his findings have both scientific and practical significance, reinforcing his commitment to advancing the field of organic chemistry.

Research Skills

Radwan Ali has developed a strong set of research skills in organic chemistry, analytical chemistry, and catalysis. His expertise in organic synthesis enables him to design and execute complex chemical reactions, including heterocyclic and asymmetric synthesis. He is proficient in various synthetic methodologies, particularly multicomponent reactions, which offer efficient and innovative approaches to chemical synthesis. His work with catalysts, including magnetic nanocatalysts, has provided him with experience in optimizing reaction conditions for enhanced efficiency and sustainability. Additionally, he has expertise in analytical techniques such as chromatography (HPLC, GC), spectroscopy (NMR, FTIR, UV-Vis), and mass spectrometry, allowing him to characterize and analyze chemical compounds effectively. His laboratory skills extend to experimental design, reaction optimization, and data interpretation, ensuring accuracy and reproducibility in his research. His ability to integrate synthetic and analytical chemistry techniques enhances the depth and applicability of his research. Furthermore, he has experience in scientific writing, publishing, and presenting research findings, which strengthens his ability to communicate complex scientific concepts to academic and professional audiences.

Awards and Honors

Radwan Ali’s contributions to chemistry research and education have earned him recognition in academia. While specific awards and honors are not mentioned, his selection as an Assistant Lecturer at the University of Al-Qadisiyah reflects his academic excellence and teaching capabilities. His involvement in advanced research on organic synthesis and catalysts suggests potential for future recognition, particularly in the areas of innovation and sustainable chemistry. Participation in international conferences, research collaborations, and publication in high-impact journals would further enhance his academic profile. Achieving funding grants, research fellowships, or best paper awards would also strengthen his standing as a leading young scientist. As he progresses in his academic and research career, his contributions to organic chemistry may lead to prestigious honors from scientific organizations, universities, or government institutions. Recognition for his work would not only validate his research impact but also open doors for further collaborations and professional growth.

Conclusion

Radwan Ali is a dedicated researcher and educator with a strong academic background in organic chemistry. His expertise in organic synthesis, heterocyclic chemistry, and catalyst applications positions him as a valuable contributor to scientific advancements. Through his role as an Assistant Lecturer, he combines research and teaching, ensuring that students receive high-quality education while also advancing his research in sustainable chemical methodologies. While he has demonstrated significant potential, enhancing his publication record, securing research grants, and engaging in international collaborations would further solidify his status as a leading young scientist. His interdisciplinary approach and commitment to green chemistry make his research highly relevant to modern scientific and industrial challenges. With continued contributions and recognition, he has the potential to achieve excellence in his field and make a lasting impact on organic and analytical chemistry. His dedication to innovation and education ensures that he will continue to play a crucial role in the advancement of scientific knowledge and sustainable chemical practices.

Publications Top Notes

  1. Title: Titanium Dioxide Nanoparticles in Dentistry: Multifaceted Applications and Innovations
    Authors: R. No, A.H. Alwan
    Year: 2023
    Citations: 5

  2. Title: Research on Ecofriendly Synthesis of Quinolin-4(1H)-Ones Using Fe3O4@SiO2-Diol-Phen-Pd(0) Nanocomposites as a Novel and Reusable Catalyst: Catalysis
    Authors: A.M. Amshawee, R. Ali, M.A. Hussain, M. Kazemi
    Year: 2025
    Citations: 3

  3. Title: Monolithic Zirconia in Dentistry: Evolving Aesthetics, Durability, and Cementation Techniques–An In-depth Review
    Authors: H.N. Jabber, R. Ali, M.N. Al-Delfi
    Year: 2023
    Citations: 3

  4. Title: Applications of Nano Magnesium Ferrite as a Catalyst in the Preparation of Heterocyclic Compounds: A Short Review
    Authors: R. Ali, S.A. Hussein, M.R. Znad, M.N. Al-Delfi
    Year: 2025
    Citations: 1

  5. Title: Probiotic Supplementation: A Promising Preventive Strategy for Dental Caries
    Authors: Z.F.A.L. Radwan Ali, Ali H. Murad
    Year: 2024
    Citations: 1

  6. Title: Fe3O4@SiO2-DHB/DI (S-NH)-Pd(0) Nanocomposite: A Novel, Efficient, and Reusable Heterogeneous Catalyst for Carbonylative Preparation of N-Aryl Amides
    Authors: A.M.H. Abudken, L. Saadi, R. Ali, M. Kazemi
    Year: 2025

  7. Title: Synthesis of Tetrahydrobenzo[𝑏]pyran Derivatives Using Reusable CoFe₂O₄@SiO₂-CPTES-Melamine-Cu Nanocatalyst
    Authors: R. Ali, L. Shiri
    Year: 2025

  8. Title: Magnetic Nanoparticles in the Treatment of Dental and Oral Diseases: A Brief Review of Their Use as Drug Carriers
    Authors: R. Ali, Z.F.A.L. Sultani, M.N. Al-Delfi
    Year: 2024

  9. Title: Determination of Trace Levels of Cu²⁺ Using Ultrasonicated Dispersive Liquid Phase Microextraction Based on Deep Eutectic Solvents Followed by Flame Atomic Absorption Spectrometry
    Authors: M. Shahinfar, R. Alsaeedi, Z. Ahmadabadi, M. Masrournia
    Year: Not provided

Safdar Ali Amur | Chemical Engineering | Best Researcher Award

Mr. Safdar Ali Amur | Chemical Engineering | Best Researcher Award

Beijing University of Chemical Technology, China

Safdar Ali Amur is a dedicated researcher in the fields of chemical engineering, biochemistry, and microbiology. With a strong academic foundation and international research exposure, he has contributed significantly to biomedical applications, focusing on metal-organic frameworks for antibacterial applications. He is currently pursuing a Ph.D. in Chemical Engineering & Technology at Beijing University of Chemical Technology, China. His expertise spans analytical chemistry, molecular modeling, and microbiological testing, making him a valuable contributor to scientific advancements. In addition to his research pursuits, he has experience in teaching, administrative roles, and laboratory management. His technical proficiency includes advanced scientific software and instrumentation techniques, supporting his innovative approach to scientific inquiries. With multiple research publications indexed in Google Scholar, ORCID, and Web of Science, Safdar demonstrates an ongoing commitment to expanding knowledge in his field. His background in biochemistry, microbiology, and vaccine supply management through WHO also highlights his ability to work in interdisciplinary research environments. Despite his achievements, he continues to seek opportunities for collaborative research and professional growth. His aspirations include furthering biomedical applications through nanotechnology-based innovations, aiming to bridge fundamental research with practical applications in healthcare and industry.

Professional Profile

Education

Safdar Ali Amur has pursued a rigorous academic journey that reflects his dedication to research and scientific exploration. Currently, he is a Ph.D. candidate in Chemical Engineering & Technology at Beijing University of Chemical Technology, China, where he is working on bioactive material encapsulation for antibacterial applications. His Ph.D. research integrates chemical sciences, biochemistry, and biomedical engineering, showcasing interdisciplinary expertise. Before his doctoral studies, he earned a Master of Philosophy (M.Phil.) in Biochemistry from the University of Sindh, Pakistan. His thesis focused on epidemiology and serum lipid alterations in laryngeal and pharyngeal cancer patients, contributing to understanding cancer biomarkers. His bachelor’s degree in Biochemistry, also from the University of Sindh, provided him with a solid foundation in biological sciences, chemistry, and analytical techniques. In addition to formal education, he has completed various certifications and internships, including analytical instrumentation training at the Pakistan Council of Scientific & Industrial Research. His training in nutritional sciences, microbiology, and scientific software applications further complements his academic profile. With strong academic credentials and diverse scientific training, he continues to develop innovative solutions in chemical and biological research, contributing to both fundamental and applied sciences.

Professional Experience

Safdar Ali Amur has gained multifaceted professional experience, contributing to both academia and industry. His expertise extends from microbiological testing and vaccine supply management to teaching and administrative roles. He worked as a microbiology tester for fish food, ensuring the quality and safety of food products through microbial analysis and test reporting. Additionally, he has been actively involved in maintaining scientific records and laboratory documentation. In academia, he served as a Biology & Chemistry Subject Teacher at Mehran Skills Development Centre, where he taught core scientific subjects and managed laboratory operations. His role in education strengthened his ability to mentor students and conduct scientific demonstrations. Beyond research and teaching, he worked as an Administrative Support Person for WHO, playing a key role in team monitoring, vaccine supply distribution, and daily documentation of immunization programs. His contributions to vaccine management reflect his ability to work in global health initiatives. Currently, as a Ph.D. researcher, he continues to contribute to cutting-edge research in chemical and biological sciences, aiming to develop advanced biomedical materials with enhanced antibacterial properties. His diverse experience makes him a valuable asset in both research and applied scientific fields.

Research Interests

Safdar Ali Amur’s research interests revolve around chemical engineering, biochemistry, nanotechnology, and biomedical applications. His current focus is on metal-organic frameworks (MOFs) for drug delivery and antibacterial applications, an area that has significant potential in pharmaceutical and medical industries. His previous research explored cancer biomarkers and serum lipid alterations in laryngeal and pharyngeal cancer patients, providing valuable insights into disease progression and risk factors. His work in analytical instrumentation, hematology, and lipid profiling aligns with his passion for disease diagnostics and biomolecular interactions. Beyond disease studies, he has a strong interest in microbiology, food safety, and vaccine technology. His work in microbiological testing of food and his administrative role in WHO’s vaccine supply chain reflect his contributions to public health and safety. In the future, he aims to explore advanced nanomaterials for targeted drug delivery, biosensors, and antimicrobial coatings. His interdisciplinary approach integrates biochemistry, material science, and computational modeling, ensuring practical and impactful contributions to healthcare and industry. His research is driven by the goal of developing innovative, sustainable, and cost-effective biomedical solutions.

Research Skills

Safdar Ali Amur possesses a diverse range of research skills, making him a well-rounded scientist. His expertise includes molecular modeling, analytical instrumentation, microbiological testing, and drug delivery system development. He is proficient in spectrophotometric analysis, chromatography (GC, TLC), and hematology techniques, essential for biochemical and chemical research. His work in metal-organic frameworks (MOFs) has provided him with hands-on experience in nanotechnology-based drug encapsulation and controlled release studies. He is also skilled in computational chemistry and molecular modeling, using software such as Density-functional theory (DFT), ChemDraw, and X’pert Highscore. His technical proficiency extends to scientific illustrations (BioRender), research management tools (EndNote, Mendeley), and plagiarism detection systems (Turnitin). Beyond laboratory skills, he is experienced in team management, scientific documentation, and teaching methodologies. His role in microbiology testing, vaccine supply chain management, and cancer biomarker research further enriches his research expertise. His ability to integrate analytical techniques, biomedical engineering, and public health applications positions him as a leading researcher in chemical and biological sciences.

Awards and Honors

Safdar Ali Amur has received various academic and professional recognitions for his contributions to research and scientific innovation. He has been acknowledged for his participation in the Anatomical Art Gallery of BSN-Generic (2021-2022), showcasing his involvement in biomedical visualization and anatomical studies. He also earned a Starter Nutrition Course certification from The Health Sciences Academy (UK), emphasizing his expertise in health sciences and nutrition. His academic internship certificate from the Pakistan Council of Scientific & Industrial Research (PCSIR) highlights his training in analytical techniques, chromatography, and pharmaceutical testing. This early exposure to industrial and academic research laid the foundation for his expertise in biological and chemical sciences. Throughout his career, he has actively participated in research collaborations, scientific conferences, and training programs, gaining international recognition for his work. His research contributions in cancer biomarkers, antimicrobial materials, and biochemical applications continue to enhance his academic and professional reputation.

Conclusion

Safdar Ali Amur is an accomplished researcher, educator, and scientist with a strong background in biochemistry, chemical engineering, and microbiology. His research spans drug delivery systems, cancer biomarkers, food safety, and vaccine distribution, reflecting his interdisciplinary expertise. His academic journey, from M.Phil. in Biochemistry to a Ph.D. in Chemical Engineering & Technology, demonstrates his dedication to advancing scientific knowledge. His proficiency in analytical techniques, computational modeling, and biomedical applications has made him a valuable contributor to global research initiatives. Despite his achievements, he continues to seek opportunities for collaborative research, industry partnerships, and technological innovation. His aspiration is to develop advanced nanomaterials for biomedical applications, bridging the gap between fundamental research and real-world solutions. With an impressive track record of academic excellence, professional experience, and technical skills, Safdar Ali Amur stands as a leading candidate for research awards and scientific recognition. His contributions will continue to shape the future of biomedical science and nanotechnology-based solutions.

Publications Top Notes

  1. Title: Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent
    Authors: NA Soomro, Q Wu, SA Amur, H Liang, AU Rahman, Q Yuan, Y Wei
    Year: 2019
    Citations: 81

  2. Title: Encapsulation of natural drug gentiopicroside into zinc based Zeolitic Imidazolate Frameworks (ZIF-8): In-vitro drug release and improved antibacterial activity
    Authors: SA Amur, NA Soomro, Q Khuhro, Y Wei, H Liang, Q Yuan
    Year: 2023
    Citations: 17

  3. Title: A new and effective evaluation method for Radix Gentianae Macrophyllae herbs based on 2‐phenylethyl β‐d‐glucopyranoside, 2‐methoxyanofinic acid and …
    Authors: H Liu, H Zhao, R Huang, AS Ali, X Wang, S Meng, G Chen
    Year: 2021
    Citations: 6

  4. Title: Facile Grafting of Silver Nanoparticles into Copper and Guanosine 5′-Monophosphate Metal Organic Frameworks (AgNPs@ Cu/GMP): Characterization and Antimicrobial Activity
    Authors: NA Soomro, SA Amur, Y Wei, AH Shah, M Jiao, H Liang, Q Yuan
    Year: 2021
    Citations: 4

  5. Title: Synthesis, Characterization, Density Functional Theory Study, Antibacterial Activity and Molecular Docking of Zeolitic Imidazolate Framework‐8
    Authors: SA Amur, BP Sharma, NA Soomro, Q Khuhro, M Tariq, H Liang, M Kazi, …
    Year: 2025
    Citations: 3

  6. Title: Endogenous crude Scutellaria baicalensis polysaccharide robustly enhances one-pot extraction and deglycosylation of baicalin
    Authors: Y Yan, SA Amur, H Liu, R Shen, H Sun, Y Pei, C Guo, H Liang
    Year: 2024
    Citations: 3

  7. Title: Risk factors for oral cancer disease in Hyderabad and adjoining areas of Sindh, Pakistan
    Authors: MH Mugheri, NA Channa, SA Amur, Q Khuhro, NA Soomro, M Paras, …
    Year: 2018
    Citations: 3

  8. Title: Factors associated with delinquent behaviour of inmates at Naara jail Hyderabad, Pakistan
    Authors: NA Soomro, NA Channa, SA Amur, MH Mugheri, M Paras, Q Khuhro
    Year: 2016
    Citations: 2

  9. Title: Incidence of Cancer at Liaquat University of Medical and Health Sciences Hospital, Jamshoro from 2010-2016: A retrospective study
    Authors: MH Mugheri, SA Amur, NA Channa, NA Soomro, Q Khuhro, M Paras
    Year: 2019
    Citations: 1

  10. Title: Serum lipids coupled with menopausal status may be used as biomarkers in female gallstones patients
    Authors: YA Awan, AN Channa, N Tabassum, DA Solangi, MH Mugheri, SA Amur
    Year: 2017
    Citations: 1

  11. Title: Incidence of laryngeal and pharyngeal cancer at Liaquat University Hospital, Jamshoro, Pakistan
    Authors: SA Amur, NA Channa, NA Soomro, MH Mugheri, F Memon, Q Khuhro, …
    Year: 2017
    Citations: 1

 

Dan Yang | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Dan Yang | Chemical Engineering | Best Researcher Award

School of Chemistry and Molecular Engineering, Nanjing Tech University, China

Dan Yang is an accomplished associate professor at Nanjing Tech University, specializing in chemistry and molecular engineering. With a strong academic foundation and extensive research experience, she focuses on the synthesis of metal nanoclusters and their applications in photoelectrocatalysis and electrocatalysis. Her research aims to develop innovative solutions for CO2 reduction and biomass conversion, contributing to sustainable chemical processes. Throughout her career, she has made significant contributions to the field, authoring multiple high-impact publications in renowned scientific journals. Dan Yang has successfully secured competitive research grants, demonstrating her expertise in securing funding for cutting-edge projects. With her deep-rooted knowledge in physical chemistry and material science, she continues to make impactful strides in catalysis research, earning recognition and respect in her field.

Professional Profile

ORCID Profile

Education

Dan Yang has an extensive academic background in chemistry and material science. She earned her doctoral degree in physical chemistry from Nanjing University (2017–2020) under the supervision of Professors Weiping Ding and Yan Zhu. During her doctoral studies, she focused on the catalytic conversion of C1 molecules using metal clusters. Prior to this, she obtained a master’s degree in material science from Sun Yat-sen University (2012–2014), where she worked under Professor Yuezhong Meng, specializing in the development of advanced materials. Her educational journey began at Northwest Normal University, where she completed her bachelor’s degree in chemistry (2008–2012), building a strong foundation in chemical principles and laboratory techniques. This diverse and robust educational background has equipped Dan Yang with the expertise to conduct innovative research in electrocatalysis and sustainable chemical processes.

Professional Experience

Dan Yang’s professional career reflects her dedication to advancing chemical research. She is currently an associate professor at Nanjing Tech University (2023–present), where she leads research on metal nanocluster synthesis and their applications in photoelectrocatalysis and electrocatalysis of C1 molecules and biomass conversion. Prior to her current role, she served as a postdoctoral researcher at the same university (2021–2022), where she worked on electrocatalytic CO2 reduction reactions (CO2RR) and the conversion of biomass derivatives into valuable chemical products. From 2014 to 2016, she was an assistant research fellow at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. There, she contributed to the development of fine chemicals, including phase-change materials, epoxide plasticizers, and bio-based polyols. Her diverse professional experience underscores her expertise in catalysis, sustainable chemical synthesis, and material science.

Research Interests

Dan Yang’s research interests revolve around catalysis and sustainable chemistry. She specializes in the synthesis of metal nanoclusters and their catalytic applications in photoelectrocatalysis and electrocatalysis. Her current focus includes CO2 reduction reactions (CO2RR) to produce carbon monoxide (CO) and formic acid (HCOOH), offering potential solutions for carbon capture and utilization. She also explores the electrocatalytic transformation of biomass-derived molecules, such as glycerol and glucose, into valuable carboxylic acid products. Additionally, her work investigates the evolution of metal-ligand interfaces in nanoclusters and their impact on catalytic performance. Through her research, Dan Yang aims to develop efficient and sustainable catalytic systems that address environmental challenges and promote green chemical processes.

Research Skills

Dan Yang possesses a diverse set of research skills in the fields of catalysis and material science. She is highly proficient in the synthesis and characterization of metal nanoclusters, utilizing techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) to analyze cluster structures. Her expertise extends to electrochemical methods, including cyclic voltammetry and chronoamperometry, for evaluating catalytic performance. Additionally, she has experience in biomass conversion processes, utilizing electrocatalysis and photoelectrocatalysis techniques. Her analytical skills include advanced data interpretation and the use of computational tools for modeling catalytic reactions. Dan Yang’s technical proficiency enables her to design and optimize catalytic systems for efficient and selective chemical transformations.

Awards and Honors

Dan Yang has received several prestigious awards and research grants in recognition of her contributions to catalysis research. She was awarded the Young Scientists Fund of the National Natural Science Foundation of China (NSFC) for her project on the evolution of metal-ligand interfaces in gold clusters for CO2 reduction (2025–2027). She also leads a sub-project of the NSFC International Cooperation and Exchanges Program, focusing on new catalysts and materials for CO2 capture and conversion (2024–2026). Additionally, she secured funding from the Jiangsu Natural Science Foundation of China for her work on glycerol carbonate synthesis through electrochemical CO2 conversion (2023–2026). Dan Yang previously received support from the China Postdoctoral Science Foundation for her research on electrolyte-regulated CO2RR using gold clusters (2022–2023). These accolades highlight her innovative research and scientific impact.

Conclusion

Dan Yang is a distinguished researcher and associate professor with a profound expertise in catalysis, material science, and sustainable chemical processes. Her academic journey, spanning from physical chemistry to material science, has equipped her with the skills and knowledge to tackle complex challenges in CO2 reduction and biomass conversion. With a prolific publication record and multiple research grants, she continues to make significant contributions to the field. Her commitment to advancing sustainable catalytic processes reflects her dedication to addressing pressing environmental challenges. Through her innovative research, Dan Yang remains at the forefront of scientific discovery, driving advancements in electrocatalysis and green chemistry.

Publications Top Notes

  1. Metal-ligand interfaces for well-defined gold nanoclusters
    Authors: Yang, Dan; Wu, Yating; Yuan, Zhaotong; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Zhu, Yan; Yang, Yanhui
    Journal: Science China Chemistry
  2. Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application
    Authors: Yan, Qian; Yuan, Zhaotong; Wu, Yating; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Yang, Dan; Liu, Xu; Xue, Nianhua; Zhu, Yan
    Journal: Precision Chemistry

  3. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites
    Authors: Long, Jiangping; Tian, Suyang; Wei, Sheng; Lin, Hongqiao; Shi, Guiwen; Zong, Xupeng; Yang, Yanhui; Yang, Dan; Tang, Yu; Dai, Yihu
    Journal: Applied Surface Science

  4. Metal-carbonate interface promoted activity of Ag/MgCO3 catalyst for aqueous-phase formaldehyde reforming into hydrogen
    Authors: Wang, Qiaojuan; Wang, Jianyue; Rui, Wenjuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Li, Renhong; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  5. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption
    Authors: Wei, Sheng; Dai, Hua; Long, Jiangping; Lin, Hongqiao; Gu, Junkun; Zong, Xupeng; Yang, Dan; Tang, Yu; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  6. Investigation into the coking-related key reaction steps in dry reforming of methane over NiMgOx catalyst
    Authors: Wang, Jianyue; Wang, Jiawei; Wei, Sheng; Zhang, Yiwen; Tian, Fuhou; Yang, Dan; Kustov, Leonid M.; Yang, Yanhui; Dai, Yihu
    Journal: Molecular Catalysis

  7. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst
    Authors: Luo, Pan; Wang, Jianyue; Rui, Wenjuan; Xu, Ruilin; Kuai, Zhiyuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  8. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters (vol 4, pg 66, 2022)
    Authors: Not listed
    Journal: CCS Chemistry

  9. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity
    Authors: Wu, Yueqi; Long, Jiangping; Wei, Sheng; Gao, Yating; Yang, Dan; Dai, Yihu; Yang, Yanhui
    Journal: Microporous and Mesoporous Materials

  10. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone
    Authors: Gao, Xing; Ding, Yingying; Peng, Lilin; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  11. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters
    Authors: Yang, Dan; Liu, Xu; Dai, Yihu; Zhu, Yan; Yang, Yanhui
    Journal: Chemical Journal of Chinese Universities

  12. Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands
    Authors: Yang, Dan; Wang, Jiawei; Wang, Qiaojuan; Yuan, Zhaotong; Dai, Yihu; Zhou, Chunmei; Wan, Xiaoyue; Zhang, Qichun; Yang, Yanhui
    Journal: ACS Nano

  13. Chemoselective Oxidation of Glycerol over Platinum‐Based Catalysts: Toward the Role of Oxide Promoter
    Authors: Not listed
    Journal: ChemCatChem

  14. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters
    Authors: Not listed
    Journal: CCS Chemistry

  15. Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters
    Authors: Yang, Dan; Song, Yu; Yang, Fang; Sun, Yongnan; Li, Shuohao; Liu, Xu; Zhu, Yan; Yang, Yanhui
    Journal: The Journal of Chemical Physics

  16. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals
    Authors: Not listed
    Journal: EcoMat

  17. Selective CO2 conversion tuned by periodicities in Au8n+4(TBBT)4n+8 nanoclusters
    Authors: Not listed
    Journal: Nano Research

  18. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores
    Authors: Not listed
    Journal: Chinese Journal of Catalysis

  19. Ligand-protected Au4Ru2 and Au5Ru2 nanoclusters: distinct structures and implications for site-cooperation catalysis
    Authors: Not listed
    Journal: Chemical Communications

  20. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity
    Authors: Not listed
    Journal: Journal of the American Chemical Society

  21. Controllable Conversion of CO2 on Non‐Metallic Gold Clusters
    Authors: Not listed
    Journal: Angewandte Chemie International Edition

  22. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
    Authors: Chen, Limin; Feng, Jie; Yang, Dan; Tian, Falin; Ye, Xiaomin; Qian, Qiuping; Wei, Shuai; Zhou, Yunlong
    Journal: Chemical Science

  23. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles
    Authors: Chen, Limin; Yang, Dan; Feng, Jie; Zhang, Min; Qian, Qiuping; Zhou, Yunlong
    Journal: Journal of Materials Chemistry B

  24. The Evolution in Catalytic Activity Driven by Periodic Transformation in the Inner Sites of Gold Clusters
    Authors: Sun, Yongnan; Wang, Endong; Ren, Yujing; Xiao, Kang; Liu, Xu; Yang, Dan; Gao, Yi; Ding, Weiping; Zhu, Yan
    Journal: Advanced Functional Materials

Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Associate Professor at Department of Applied Physics and Chemistry/University of Taipei, Taiwan

Professor Chuan-Pei Lee is an esteemed researcher in the fields of nanomaterials, solar energy, and electrochemical applications. Currently serving as an Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, he has made significant contributions to renewable energy research. With a Ph.D. in Chemical Engineering from National Taiwan University, his expertise spans photocatalysis, energy storage devices, and water-splitting technologies. Prof. Lee has authored 117 SCI papers and 13 book chapters, earning a Google Scholar citation count of 5,537 with an H-index of 44. His research has been published in high-impact journals such as ACS Omega, Nano Energy, and J. Mater. Chem. A. Additionally, he has collaborated with international researchers and contributed to advancing sustainable energy solutions. His dedication to interdisciplinary research and scientific advancements makes him a prominent figure in his field.

Professional Profile

Education

Prof. Chuan-Pei Lee received his Ph.D. in Chemical Engineering from National Taiwan University in 2012, where he specialized in nanomaterials and energy conversion systems. His doctoral research focused on the synthesis and application of functional materials for energy devices, including dye-sensitized solar cells and electrocatalysts. Prior to his Ph.D., he completed his Master’s and Bachelor’s degrees in related fields, building a strong foundation in applied chemistry and physics. To further his expertise, he pursued postdoctoral research at the University of California, Berkeley, where he worked on 2D-layered transition metal dichalcogenides for electrochemical energy applications. His academic journey has been marked by a commitment to advancing energy-efficient technologies and exploring innovative nanostructured materials.

Professional Experience

Prof. Chuan-Pei Lee has held multiple academic and research positions that reflect his dedication to scientific innovation. Since joining the University of Taipei as an Associate Professor, he has led various research initiatives focusing on energy storage, nanomaterial synthesis, and catalysis. Prior to his current role, he conducted postdoctoral research at the University of California, Berkeley, where he explored the properties of 2D materials for energy applications. Over the years, he has collaborated with leading institutions and research groups, contributing to breakthrough studies in sustainable energy and nanotechnology. His work extends beyond academia, involving participation in industrial research projects and government-funded studies aimed at developing next-generation energy solutions.

Research Interests

Prof. Lee’s research interests revolve around renewable energy and nanotechnology. His work primarily focuses on the synthesis and application of nanomaterials for energy storage and conversion, including supercapacitors, photocatalytic CO₂ reduction, and dye-sensitized solar cells. He is particularly interested in exploring novel electrocatalysts for hydrogen evolution and oxygen reduction reactions, aiming to improve the efficiency of energy conversion devices. His studies on carbon-based materials, metal oxides, and transition metal dichalcogenides contribute to advancements in sustainable and efficient energy technologies. By integrating electrochemical techniques, he seeks to develop cost-effective and environmentally friendly energy solutions.

Research Skills

Prof. Lee possesses extensive expertise in nanomaterials synthesis, electrochemical analysis, and energy device fabrication. He is proficient in advanced characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for material analysis. His experience includes the development of thin-film electrodes, nanostructured catalysts, and hybrid composite materials for solar energy applications. Additionally, he specializes in electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate the performance of energy storage systems. His ability to integrate materials science with electrochemical engineering makes him a versatile researcher in the field of applied physics and chemistry.

Awards and Honors

Prof. Chuan-Pei Lee has received several awards and recognitions for his outstanding contributions to research. His high-impact publications and innovative work in nanotechnology have earned him accolades from prestigious institutions and scientific societies. He has been recognized for his contributions to sustainable energy research and has received grants for his pioneering studies on nanostructured materials. His role as a corresponding author in multiple high-impact journals highlights his influence in the field. Additionally, he has been invited to present his research at international conferences and symposiums, further solidifying his reputation as a leading expert in applied physics and chemistry.

Conclusion

Prof. Chuan-Pei Lee is a highly accomplished researcher with a strong academic background, significant research contributions, and extensive expertise in nanomaterials and energy applications. His work in sustainable energy technologies, coupled with his proficiency in electrochemical techniques, has positioned him as a leader in his field. With a remarkable publication record and international collaborations, he continues to drive advancements in energy storage and conversion. His dedication to scientific discovery and innovation makes him a deserving candidate for prestigious research awards. Moving forward, his contributions to renewable energy solutions will play a crucial role in shaping the future of clean energy technologies.

Publications Top Notes

  1. Title: Use of organic materials in dye-sensitized solar cells
    Authors: CP Lee, CT Li, KC Ho
    Year: 2017
    Citations: 342

  2. Title: Recent progress in organic sensitizers for dye-sensitized solar cells
    Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    Year: 2015
    Citations: 270

  3. Title: Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties
    Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    Year: 2014
    Citations: 200

  4. Title: A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells
    Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    Year: 2017
    Citations: 163

  5. Title: Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte
    Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    Year: 2011
    Citations: 142

  6. Title: Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black
    Authors: CP Lee, PY Chen, R Vittal, KC Ho
    Year: 2010
    Citations: 135

  7. Title: Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells
    Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    Year: 2010
    Citations: 109

  8. Title: 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties
    Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    Year: 2011
    Citations: 108

  9. Title: Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis
    Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    Year: 2016
    Citations: 98

  10. Title: Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells
    Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
    Year: 2015
    Citations: 95