Ying-Xue Yuan | Chemistry | Best Researcher Award

Prof. Dr. Ying-Xue Yuan | Chemistry | Best Researcher Award

Research Fellow from Zhengzhou University, China

Ying-Xue Yuan is a Research Fellow in the College of Chemistry at Zhengzhou University, specializing in the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She received her Ph.D. in Chemistry in 2020 from Huazhong University of Science and Technology (HUST). Following her Ph.D., she undertook postdoctoral research under the supervision of Professor Shuang-Quan Zang at Zhengzhou University from 2020 to 2022. Yuan’s work focuses on advancing the synthesis of coinage metal clusters with atomic precision and exploring their unique properties for various applications. Her research has the potential to revolutionize the fields of nanotechnology, materials science, and catalysis, with implications for both fundamental understanding and industrial applications. Yuan’s academic journey reflects a dedication to innovation and excellence, marked by her rising status as an independent researcher in the field of chemistry.

Professional Profile

Education

Ying-Xue Yuan completed her Ph.D. in Chemistry at Huazhong University of Science and Technology (HUST) in 2020. Throughout her doctoral studies, she focused on developing advanced methods for synthesizing metal clusters and exploring their supramolecular assembly. Her research at HUST laid a strong foundation in understanding the fundamental principles of molecular and materials chemistry. After earning her Ph.D., she pursued postdoctoral research at Zhengzhou University under the guidance of Professor Shuang-Quan Zang from 2020 to 2022. During this period, she expanded her research to include the practical applications of coinage metal clusters in catalysis and materials design. Her academic training has equipped her with a strong theoretical and practical understanding of chemistry, and she continues to build on this knowledge as she progresses in her career.

Professional Experience

Ying-Xue Yuan is currently serving as a Research Fellow in the College of Chemistry at Zhengzhou University. Before her current role, she gained invaluable experience as a postdoctoral researcher from 2020 to 2022, collaborating with Professor Shuang-Quan Zang. During her postdoctoral work, she contributed to several projects focusing on atomically-precise coinage metal clusters, enhancing her research portfolio and establishing her as an expert in the field. Yuan’s professional trajectory has shown significant promise, quickly advancing through research roles and collaborating with prominent academics in chemistry. Her postdoctoral experience also included working on high-impact publications, exploring applications for metal clusters in advanced materials and catalysis. This experience has provided her with a solid foundation for leading independent research projects and contributing to the advancement of her field.

Research Interests

Ying-Xue Yuan’s research interests lie at the intersection of materials chemistry, nanotechnology, and supramolecular chemistry. Her primary focus is on the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She investigates the unique properties of these clusters, such as their size-dependent behavior, and explores their potential applications in fields such as catalysis, energy storage, and material science. Yuan is particularly interested in understanding the self-assembly processes that lead to the formation of highly ordered, stable, and functional materials from coinage metal clusters. Her work aims to push the boundaries of how atomic-level precision can be harnessed for designing novel materials with tailored properties for specific applications, making significant contributions to both fundamental research and industrial development.

Research Skills

Ying-Xue Yuan possesses a strong set of research skills, which are critical to her success in the field of chemistry. Her expertise includes the synthesis and characterization of metal clusters, with an emphasis on precision and supramolecular assembly. She is skilled in various techniques such as X-ray diffraction, spectroscopy, and electron microscopy, which are essential for the analysis and characterization of materials at the atomic level. Yuan has also developed advanced skills in computational chemistry and modeling, allowing her to predict and optimize the properties of metal clusters before they are synthesized. Furthermore, her ability to collaborate with other researchers and contribute to interdisciplinary projects showcases her communication and teamwork skills, making her a versatile and effective researcher in both academic and applied settings.

Awards and Honors

As of now, Ying-Xue Yuan has not yet accumulated a long list of major awards and honors, which is understandable given that she is an early-career researcher. However, her work in the field of atomically-precise coinage metal clusters holds significant potential, and she is well-positioned for recognition in the future. Her postdoctoral work and current research as a Research Fellow suggest that she is on a promising trajectory to receive awards and honors in the coming years. As her research contributions gain further recognition, it is likely that her efforts will be acknowledged through prestigious awards in the fields of chemistry and nanotechnology, particularly for her innovative work in materials chemistry and catalysis.

Conclusion

Ying-Xue Yuan is a promising early-career researcher who has made significant strides in the field of chemistry, particularly in the preparation and application of atomically-precise coinage metal clusters. While her independent research career is still in the early stages, her academic background, postdoctoral experience, and specialized research interests indicate that she has a strong potential for future breakthroughs in nanotechnology and materials science. Yuan’s work demonstrates a deep understanding of complex chemistry principles and a passion for exploring new applications of atomic-level precision in material design. With a growing body of work and increasing recognition in her field, she is poised for continued success and potential future accolades as she advances her career.

Publications Top Notes

  1. Title: In-Situ Surface Repair of FAPbBr₃ Quantum Dots toward High-Performance Pure-Green Perovskite Light-Emitting Diodes
    Authors: Zhang, Jibin; Zhang, Dandan; Zhou, Xin; Hou, Lintao; Yuan, Yingxue
    Journal: Nano Letters
    Year: 2024
    Citations: 6

  2. Title: Chiral silver cluster-based light-harvesting systems: Enantioselective chirality transfer and amplified circularly polarized luminescence
    Authors: Yuan, Yingxue; Zhang, Jiani; Wang, Junru; Li, Kai; Zang, Shuangquan
    Journal: Chem
    Year: 2024
    Citations: 14

Yaojia Jiang | Organic Chemistry | Best Researcher Award

Mr. Yaojia Jiang | Organic Chemistry | Best Researcher Award

Professor from Guizhou University, China

Yaojia Jiang is an accomplished chemist with a strong academic and research background in radical chemistry, carbene and nitrene chemistry, and biological sciences. His academic journey showcases steady growth under the mentorship of highly respected scholars and at leading institutions. After earning his Master’s degree at Soochow University in 2010, he pursued a Ph.D. at Nanyang Technological University, completing it in 2014. During his doctoral studies, he specialized in carbene and nitrene transformations, a highly significant area of research with broad applications in organic synthesis. Jiang then expanded his expertise through postdoctoral work in biological sciences, which added a multidisciplinary dimension to his research profile. His independent career began in 2015 at Nanjing Tech University, focusing on carbene transformations, and later advanced at Guizhou University, where his work centers on modular single-carbon insertion reactions and sustainable pesticide development. His research combines fundamental chemistry with applications that address real-world problems, particularly in agriculture and green chemistry. Yaojia Jiang’s career path highlights not only technical expertise but also innovation, adaptability, and an ongoing commitment to sustainability and atom-economical processes. His diverse experiences position him as a leading figure in advancing chemical sciences in environmentally conscious ways.

Professional Profile

Education

Yaojia Jiang’s educational journey reflects strong academic foundations and strategic specialization in areas of growing scientific importance. He earned his Master’s degree in 2010 from Soochow University under the supervision of Professor Jian-Ping Zou, specializing in radical chemistry. This early focus provided him with a rigorous understanding of reactive intermediates and set the stage for his future contributions to the field. In 2014, he completed his Ph.D. at Nanyang Technological University (NTU) in Singapore, one of Asia’s leading research institutions. His doctoral research, supervised by Professors Cheol-Min Park and Teck-Peng Loh, delved into the chemistry of carbenes and nitrenes, reactive species crucial in modern organic synthesis. His Ph.D. work significantly enhanced his expertise in reaction mechanisms and synthetic methods, skills essential for high-level chemical innovation. Jiang’s educational experiences at two prominent institutions, combined with mentorship from globally respected scientists, provided him with both theoretical depth and practical skills. His academic background was further diversified through postdoctoral research in biological sciences, broadening his interdisciplinary knowledge and positioning him well for independent research that bridges chemistry and applied life sciences.

Professional Experience

Yaojia Jiang began his independent academic career shortly after completing his postdoctoral studies. In 2015, he joined Nanjing Tech University, where he focused on carbene transformations, contributing important research on highly reactive intermediates and their controlled manipulation for synthetic applications. His early years as an independent researcher showcased a rapid transition from trainee to research leader, reflecting his ability to design, lead, and execute complex chemical research projects. Subsequently, Jiang moved to Guizhou University, a rising hub for scientific research in China. At Guizhou University, he expanded his research portfolio by focusing on modular single-carbon insertion reactions and their applications in pesticide design. His work at Guizhou emphasizes green chemistry principles and atom-economical strategies, aligning his research with global calls for sustainable innovation. Over the course of his professional career, Jiang has demonstrated a unique combination of deep technical expertise and practical application, consistently pushing the boundaries of synthetic chemistry. His progression from graduate student to a respected academic researcher in a relatively short span reflects both his scientific excellence and leadership capabilities.

Research Interest

Yaojia Jiang’s research interests center around reactive intermediates, especially carbenes and nitrenes, and their controlled transformations for synthetic applications. His early work in radical chemistry laid the foundation for a deep understanding of highly reactive species, leading to advanced exploration of carbene and nitrene chemistries during his Ph.D. training. Jiang is particularly fascinated by modular single-carbon insertion reactions, which offer precise control over molecular architecture and have significant implications in developing functional molecules. His current research aims to apply these reactions toward the design of new, environmentally friendly pesticides using green and atom-economical processes. This focus bridges fundamental organic chemistry with real-world applications in agriculture and environmental protection. His interdisciplinary approach, integrating organic synthesis with biological insights from his postdoctoral experience, allows him to pursue research topics that are both intellectually challenging and socially impactful. In an era where sustainable chemical processes are increasingly vital, Jiang’s research direction positions him at the forefront of green innovation in synthetic chemistry. His ongoing projects reflect a balance of fundamental scientific curiosity and a commitment to contributing solutions to pressing global challenges.

Research Skills

Yaojia Jiang possesses an extensive range of research skills that make him highly effective as a synthetic chemist and innovator. His expertise in radical, carbene, and nitrene chemistry provides him with a strong foundation in handling reactive intermediates and understanding complex reaction mechanisms. He is skilled in the design and execution of multi-step organic synthesis, employing both classical methods and cutting-edge techniques. His experience with biological sciences during his postdoctoral training broadened his technical capabilities to include interdisciplinary methods, blending chemistry with biological systems analysis. Jiang’s research emphasizes green chemistry and atom-economical strategies, requiring a keen understanding of reaction efficiency, catalyst design, and sustainable process development. His work also demonstrates strong skills in experimental planning, data analysis, and scientific writing, evidenced by his successful transition into independent research leadership. Jiang has shown proficiency in mentoring younger researchers and managing laboratory activities, essential skills for building and maintaining a productive research team. His methodological rigor, creativity in problem-solving, and adaptability to new research challenges underscore his profile as a highly skilled and versatile researcher ready for larger international scientific collaborations and leadership roles.

Award and Honors

Although specific awards and honors for Yaojia Jiang were not listed in the provided information, his career progression itself is a testament to his excellence. Successfully obtaining a Ph.D. from a prestigious institution such as Nanyang Technological University under the mentorship of world-renowned scientists is a strong indicator of his academic and research capabilities. Securing independent research positions at respected universities like Nanjing Tech University and Guizhou University reflects institutional recognition of his potential and contributions. His rapid transition to an independent career and his ability to sustain and develop research programs in competitive environments suggest that he has earned professional respect in the field of synthetic and green chemistry. In future stages of his career, additional formal recognitions such as international awards, research grants, or leadership appointments in scientific societies could further highlight his achievements. Overall, Yaojia Jiang’s track record positions him well for future honors as he continues to contribute significantly to the advancement of chemical sciences and sustainable technologies.

Conclusion

Yaojia Jiang exemplifies the qualities of a forward-thinking and highly capable researcher in the field of synthetic and green chemistry. His strong academic background, diverse research experiences, and focus on addressing real-world challenges through innovative chemical processes make him a standout figure in modern scientific research. His work on carbene transformations and modular single-carbon insertion reactions, with applications in sustainable pesticide development, reflects a rare combination of deep scientific understanding and social responsibility. While his profile would be further strengthened by greater international recognition and large-scale collaborations, his current achievements already demonstrate significant excellence and impact. Yaojia Jiang is on a clear path toward becoming a global leader in green chemistry and synthetic innovation. His ongoing dedication to sustainable chemical solutions and his ability to adapt and expand his research interests mark him as an ideal candidate for future prestigious awards and broader academic leadership roles.

Publications Top Notes

  1. Title: Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety

    • Authors: Zou Yue, Zhu Mei, Zhu Zongnan, Jiang Yaojia, Chen Jixiang

    • Year: 2025

  2. Title: Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System

    • Authors: Han Jiabin, Fan Yaxin, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

    • Citations: 1

  3. Title: Pd(II) Auxiliary Assembling and Diverse Transformations via Inert C(sp³)-H Bond Activation

    • Authors: Luo Jiangbin, Chen Jie, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

  4. Title: Nickel-Catalyzed Multicomponent Assembly of Alkynes Toward α‑CF₃‑Alkenes

    • Authors: Li Ling, Li Yingmei, Yan Chongchong, Zhang Jian, Jiang Yaojia

    • Year: 2024

Bel Youssouf G. Mountessou | Chemistry | Best Researcher Award

Dr. Bel Youssouf G. Mountessou | Chemistry | Best Researcher Award

Humboldt Junior Researcher from Higher Teacher Training College, University of Yaoundé I, Cameroon

Dr. Bel Youssouf G. Mountessou is a distinguished Cameroonian chemist specializing in organic and theoretical chemistry, with a strong focus on natural product research. His academic journey is marked by a PhD in Organic Chemistry (2020) and a Master’s in Physical and Theoretical Chemistry (2022) from the University of Yaoundé I. Professionally, he has held various academic and research positions, including part-time lectureships and postdoctoral fellowships at renowned institutions such as the HEJ Research Institute of Chemistry in Pakistan and the Helmholtz Centre for Infection Research in Germany. Dr. Mountessou’s research interests encompass the isolation and characterization of biologically active natural compounds, particularly from fungi, and the application of computational tools to study their antimicrobial and cytotoxic properties. His contributions to the field are evidenced by numerous publications in reputable journals and active participation in international conferences and workshops. Recognized for his scientific excellence, he has received accolades such as the Best Researcher Award in Bioinorganic Chemistry. Dr. Mountessou’s dedication to advancing chemical sciences and his commitment to education and research make him a prominent figure in his field.

Professional Profile

Education

Dr. Mountessou’s educational background is rooted in the University of Yaoundé I, Cameroon, where he has achieved multiple degrees in chemistry. He earned his Bachelor of Science in Chemistry in 2011, followed by a Master’s degree in Organic Chemistry in 2013. Demonstrating a commitment to furthering his expertise, he obtained a PhD in Organic Chemistry in 2020. His academic pursuits continued with a Master’s degree in Physical and Theoretical Chemistry in 2022. This comprehensive educational foundation has equipped him with a robust understanding of chemical principles, both in theory and application, laying the groundwork for his subsequent research endeavors.

Professional Experience

Dr. Mountessou’s professional career encompasses a blend of academic teaching and research roles. Since 2018, he has served as a part-time lecturer at the Higher Institute of Chemistry and Management and the Higher Teacher Training College in Yaoundé, Cameroon. His research experience includes postdoctoral fellowships at the HEJ Research Institute of Chemistry in Pakistan (2023–2024) and the Helmholtz Centre for Infection Research in Germany (2021). Additionally, he has been actively involved with the Humboldt Research Hub-CECANAPROF at the University of Yaoundé I, contributing as a technical assistant and trainer. These roles have allowed him to engage in cutting-edge research while mentoring students and collaborating with international scientists.

Research Interests

Dr. Mountessou’s research interests are centered on the exploration of natural products, particularly those derived from fungi. He focuses on the isolation and characterization of biologically active compounds with potential antimicrobial and cytotoxic properties. His work integrates theoretical chemistry approaches, including quantum chemical modeling and spectroscopy, to understand the chemical reactivity and biological activity of these compounds. By combining experimental and computational methods, he aims to discover novel compounds that could contribute to the development of new therapeutic agents. His research is instrumental in addressing global health challenges through the discovery of natural bioactive molecules.

Research Skills

Dr. Mountessou possesses a diverse set of research skills that encompass both laboratory techniques and computational tools. His laboratory expertise includes the collection and identification of fungal strains, isolation and purification of natural products, and the use of spectroscopic methods for structural elucidation. On the computational front, he is proficient in molecular docking, molecular dynamics simulations, and quantum chemical calculations, utilizing software such as Gaussian and GaussView. His ability to integrate these skills allows for a comprehensive approach to studying the chemical and biological properties of natural compounds, facilitating the identification of potential drug candidates.

Awards and Honors

Dr. Mountessou’s contributions to the field of chemistry have been recognized through various awards and honors. Notably, he received the Best Researcher Award in Bioinorganic Chemistry, acknowledging his innovative work in natural product research. He is a member of esteemed professional organizations, including the Royal Society of Chemistry and the Society for Medicinal Plant and Natural Product Research. His involvement with the Humboldt Research Hub-CECANAPROF and collaboration with the Helmholtz Centre for Infection Research further highlight his commitment to advancing scientific knowledge and fostering international research partnerships.

Conclusion

Dr. Bel Youssouf G. Mountessou exemplifies the qualities of a dedicated and innovative researcher in the field of chemistry. His extensive educational background, coupled with a robust professional experience, underscores his commitment to scientific excellence. His research, which bridges experimental and computational chemistry, contributes significantly to the discovery of biologically active natural products with potential therapeutic applications. Recognized by his peers and professional organizations, Dr. Mountessou continues to impact the scientific community through his research, teaching, and collaborations. His work not only advances the field of chemistry but also holds promise for addressing pressing global health challenges.

Publications Top Notes​

  • Phytochemistry and pharmacology of Harungana madagascariensis: Mini review
    Authors: GM Happi, GLM Tiani, BYM Gbetnkom, H Hussain, IR Green, BT Ngadjui, BYG Mountessou, et al.
    Phytochemistry Letters, 35, 103–112 (2020)
    📚 Citations: 34

  • Two xanthones and two rotameric (3→8) biflavonoids from the Cameroonian medicinal plant Allanblackia floribunda Oliv. (Guttiferae)
    Authors: BYG Mountessou, J Tchamgoue, JP Dzoyem, RT Tchuenguem, F Surup, et al.
    Tetrahedron Letters, 59(52), 4545–4550 (2018)
    📚 Citations: 21

  • Crystal structure, spectroscopic analysis, electronic properties and molecular docking study of costunolide for inhibitor capacity against Onchocerca volvulus main protease
    Authors: BYG Mountessou, ASW Mbobda, HG Stammler, EO Akintemi, MB Mbah, et al.
    Journal of Molecular Structure, 1282, 135185 (2023)
    📚 Citations: 16

  • Simplicilones A and B isolated from the endophytic fungus Simplicillium subtropicum SPC3
    Authors: EGM Anoumedem, BYG Mountessou, SF Kouam, A Narmani, F Surup
    Antibiotics, 9(11), 753 (2020)
    📚 Citations: 16

  • Structural analysis and molecular docking study of pachypodostyflavone: A potent anti-onchocerca
    Authors: BYG Mountessou, AW Ngouonpe, ASW Mbobda, EO Akintemi, et al.
    Journal of Molecular Structure, 1291, 136003 (2023)
    📚 Citations: 12

  • Pachypodostyflavone, a new 3-methoxy flavone and other constituents with antifilarial activities from the stem bark of Duguetia staudtii
    Authors: ASW Mbobda, AW Ngouonpe, GM Happi, BYG Mountessou, E Monya, et al.
    Planta Medica International Open, 8(02), e56–e61 (2021)
    📚 Citations: 8

  • Chemical constituents of the medicinal plant Indigofera spicata Forsk (Fabaceae) and their chemophenetic significance
    Authors: IL Mouafon, GLM Tiani, BYG Mountessou, M Lateef, MS Ali, IR Green, et al.
    Biochemical Systematics and Ecology, 95, 104230 (2021)
    📚 Citations: 8

  • Virtual screening, MMGBSA, and molecular dynamics approaches for identification of natural products from South African biodiversity as potential Onchocerca volvulus pi-class inhibitors
    Authors: MB Maraf, BYG Mountessou, TFH Merlin, P Ariane, JNN Fekoua, et al.
    Heliyon, 10(9) (2024)
    📚 Citations: 6

  • Vibrational spectroscopic investigations, electronic properties, molecular structure and quantum mechanical study of an antifolate drug: pyrimethamine
    Authors: PMA Mekoung, BYG Mountessou, MB Mbah, M Signe, AAA Zintchem, et al.
    Computational Chemistry, 10(4), 157–185 (2022)
    📚 Citations: 4

  • Molecular structure, molecular docking, molecular dynamics simulation, and drug likeness evaluation of 3,7-dihydroxy-1,2-dimethoxyxanthone for its anticancer activity
    Authors: AO Oladimeji, BYG Mountessou, P Penta, DD Babatunde, EO Akintemi, et al.
    Journal of Molecular Structure, 1319, 139359 (2025)
    📚 Citations: 3

 

 

Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Assoc. Prof. Dr. Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Associate Professor in Chemical and polymer Engineering Department from Yazd University, Iran

Dr. Mitra Tavakoli Ardakani is an Associate Professor in the Chemical and Polymer Engineering Group at Yazd University, Iran. With a career spanning over two decades, she has made significant contributions to the field of polymer engineering, particularly in the development and characterization of polymer nanocomposites. Her research encompasses areas such as rubber blends, polymer processing, tissue engineering, and hydrogels. Dr. Tavakoli has published extensively in reputable journals and has presented her work at numerous national and international conferences. Her academic endeavors are complemented by her commitment to teaching and mentoring, having supervised several master’s theses. Through her research and academic activities, Dr. Tavakoli continues to advance the field of polymer science, contributing to both academic knowledge and practical applications.

Professional Profile

Education

Dr. Tavakoli’s academic journey in polymer engineering began with a Bachelor of Science degree from Amirkabir University, followed by a Master of Science and a Ph.D. in the same field from the same institution. Her doctoral research focused on the development of polymer nanocomposites, laying the groundwork for her future research endeavors. This strong educational foundation has equipped her with the theoretical knowledge and practical skills necessary to excel in her field.

Professional Experience

Throughout her tenure at Yazd University, Dr. Tavakoli has held various administrative and academic positions. She served as the Deputy in the Yazd Standard Office from 2015 to 2020, where she was involved in setting and maintaining academic standards. Between 2012 and 2014, she was the Director of Educational Affairs, overseeing curriculum development and academic policies. Earlier, from 2002 to 2005, she managed the university’s publishing department. In addition to these roles, Dr. Tavakoli has been actively involved in teaching, offering courses such as Chemistry and Polymerization Kinetics, Energy and Mass Balance, and Advanced Physical Chemistry of Polymers.

Research Interests

Dr. Tavakoli’s research interests are diverse and interdisciplinary, focusing on the synthesis and characterization of polymer nanocomposites, rubber blends, and the irradiation of polymers. She is particularly interested in the application of these materials in tissue engineering and food packaging. Her work on hydrogels and aerogels explores their potential in biomedical applications, while her studies on polymer processing aim to enhance material properties for industrial use. By integrating principles from chemistry, materials science, and engineering, Dr. Tavakoli seeks to develop innovative solutions to contemporary challenges in health and sustainability.

Research Skills

Dr. Tavakoli possesses a comprehensive skill set in polymer science, including expertise in polymer synthesis, characterization techniques, and material testing. She is proficient in various analytical methods such as spectroscopy, rheology, and microscopy, which she employs to investigate the structural and mechanical properties of polymeric materials. Her experience with irradiation techniques, including electron beam processing, allows her to modify polymer structures for specific applications. Additionally, her proficiency in experimental design and statistical analysis enables her to optimize material properties effectively.

Awards and Honors

Dr. Tavakoli’s contributions to polymer engineering have been recognized through her involvement in scientific committees and editorial boards. She has served as a member of the scientific committee and jury for the 7th National Polymer Conference of Iran in 2023. Her research has been published in high-impact journals, reflecting the significance and quality of her work. Through her academic and professional achievements, Dr. Tavakoli has established herself as a respected figure in the field of polymer science.

Conclusion

Dr. Mitra Tavakoli Ardakani’s extensive experience in polymer engineering, combined with her dedication to research and education, positions her as a valuable contributor to advancements in material science. Her work on polymer nanocomposites and their applications in health and environmental sectors demonstrates her commitment to addressing global challenges. By fostering interdisciplinary collaborations and mentoring the next generation of scientists, Dr. Tavakoli continues to influence the field positively. Her achievements reflect a career dedicated to scientific excellence and societal impact.

Publications Top Notes

  • Title: NR/SBR/organoclay nanocomposites: Effects of molecular interactions upon the clay microstructure and mechano‐dynamic properties
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2012
    Citations: 37

  • Title: Effectiveness of maleic anhydride grafted EPDM rubber (EPDM-g-MAH) as compatibilizer in NR/organoclay nanocomposites prepared by melt compounding
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2011
    Citations: 35

  • Title: Surface modification of polymers to enhance biocompatibility
    Authors: M. Tavakoli
    Year: 2005
    Citations: 27

  • Title: Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites
    Authors: S. Jahandideh, M.J.S. Shirazi, M. Tavakoli
    Year: 2017
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites containing nanoclay and carbon black as fillers for application in tire-tread compounds
    Authors: S. Ahmadi Shooli, M. Tavakoli
    Year: 2016
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber/carbon filler nanocomposites: microstructural development and cure characterization
    Authors: S. Khalifeh, M. Tavakoli
    Year: 2019
    Citations: 12

  • Title: A Comparative Study of the Dynamic-Mechanical Properties of Styrene Butadiene Rubber/Epoxidized Natural Rubber Dual Filler Nanocomposites Cured by Sulfur or Electron Beam
    Authors: S.A.S.M. Tavakoli
    Year: 2019
    Citations: 11

  • Title: Enhancement in the mechanical property of NBR/PVC nanocomposite by using sulfur and electron beam curing in the presence of Cloisite 30B nanoclay
    Authors: A.S. Rad, E. Aali, S. Hallajian, D. Zangeneh, M. Tavakoli, K. Ayub, M. Peyravi
    Year: 2020
    Citations: 8

  • Title: Coincident optimization of specific volume and tensile strength at acrylic high-bulked yarn using Taguchi method
    Authors: M. Sadeghi-Sadeghabad, M. Tavakoli, A. Alamdar-Yazdia, H. Mashroteha
    Year: 2015
    Citations: 8

Behnam Rezvani | Chemical Engineering | Best Researcher Award

Mr. Behnam Rezvani | Chemical Engineering | Best Researcher Award

Laboratory Operator from University of Tehran, Iran 

Behnam (Benjamin) Rezvani is a promising chemical engineer whose academic and research credentials place him among the top emerging scientists in the field of sustainable energy and environmental engineering. With a strong foundation in chemical engineering from Hakim Sabzevari University and advanced specialization in separation processes from the University of Tehran—Iran’s top-ranked university—Rezvani has built an interdisciplinary research portfolio that integrates bio-oil production, biodiesel synthesis, and wastewater treatment technologies. His ability to blend experimental proficiency with software modeling and data-driven methods such as machine learning demonstrates his versatility and innovation in tackling global environmental challenges. He has authored multiple peer-reviewed articles in high-impact journals and presented research at international congresses. His projects span from catalyst optimization to advanced adsorption techniques using biochar, emphasizing his commitment to sustainable and scalable chemical engineering solutions. Beyond research, he has served as a teaching assistant in various laboratory courses and holds editorial and review positions in reputable scientific platforms. With awards from national competitions and a growing number of publications, Rezvani stands out as a dynamic contributor to scientific advancement. His passion for clean energy and sustainable technologies marks him as a strong contender for the Best Researcher Award.

Professional Profile

Education

Behnam Rezvani’s educational journey reflects a progressive commitment to excellence in chemical engineering, particularly in areas tied to sustainability, green chemistry, and process optimization. He earned his Bachelor of Science degree in Chemical Engineering from Hakim Sabzevari University, where he developed a solid foundation in core chemical engineering principles. He then pursued his Master of Science degree in Chemical Engineering with a specialization in Separation Processes at the prestigious University of Tehran, Iran’s leading academic institution. During his graduate studies, he maintained a commendable GPA of 3.65/4.00 and undertook significant research, including his thesis on the removal of Alizarine Red S from wastewater using a biochar composite derived from rice husk and sewage sludge pyrolysis. His advanced education involved both experimental and computational modeling, allowing him to blend theoretical knowledge with practical skills. In addition to core engineering courses, he engaged in interdisciplinary projects incorporating design of experiments, process simulation, and environmental remediation. His language proficiency, demonstrated by an IELTS score of 7, further qualifies him for international collaboration and academic endeavors. This robust academic background, enriched by hands-on lab work and innovative research, has positioned Rezvani as a capable and globally aware chemical engineering researcher.

Professional Experience

Behnam Rezvani has amassed a diverse range of professional experiences that reflect his technical acumen, interdisciplinary expertise, and proactive engagement with industry challenges. He served as a teaching assistant at the University of Tehran in courses such as Thermodynamics, Heat Transfer Laboratory, Processes Control Laboratory, and Unit Operations Laboratory. These roles underscore his hands-on proficiency and teaching capabilities in key engineering disciplines. Additionally, Rezvani has contributed to research and development initiatives across several companies, including AMPER INNOVATION Center, Pishgam Rooyesh Espadana Company, Payafan Yakhteh Alborz Company, and Arfa Iron and Steel Company. His work has spanned a variety of applied domains, from interface thermal materials and fertilizer development to wastewater treatment system design for industrial facilities. He has also served as a laboratory specialist at Gemizdar Petrorefinery, reinforcing his practical skills in a petrochemical setting. His experience with simulation software such as HYSYS, MATLAB, and Design-Expert, alongside programming in Python and C++, has enabled him to lead data-driven and computational modeling projects. Whether designing biodiesel production processes, simulating complex chemical reactions, or developing machine learning models for medical applications, Rezvani consistently demonstrates an ability to integrate scientific innovation with real-world solutions.

Research Interests

Behnam Rezvani’s research interests center around sustainable energy technologies, environmental remediation, and advanced chemical process engineering. His academic and experimental focus lies in bio-oil and biodiesel production through pyrolysis and transesterification, particularly using agricultural and industrial waste biomass. He is keenly interested in developing innovative adsorbents from biochar and activated carbon for water treatment and pollution mitigation, employing chemical modifications and modern pyrolysis techniques to enhance efficiency. His research also explores catalytic systems for oxidation processes and eco-friendly indigo dye synthesis, indicating a broader commitment to green chemistry. Rezvani’s interest in adsorption and biosorption extends to electrospun bio-nanocomposites, such as chitosan/Chlorella vulgaris, for heavy metal removal from wastewater. Additionally, he is invested in techno-economic analyses and design of experiments (DOE), aiming to bridge laboratory innovation with industrial scalability. His emerging work in machine learning, particularly in predicting medical outcomes from biochemical data, adds a computational edge to his experimental profile. Through these multidisciplinary interests, Rezvani seeks to develop sustainable, cost-effective, and technologically advanced solutions for global environmental challenges. His ongoing research contributions not only address critical environmental concerns but also aim to advance circular economy principles and resource recovery from waste materials.

Research Skills

Behnam Rezvani possesses a wide range of research skills that make him a well-rounded and capable chemical engineering researcher. His expertise spans both experimental and computational methodologies, allowing him to bridge theory and practice effectively. In the laboratory, he has conducted extensive work on pyrolysis for bio-oil and biochar production, biodiesel synthesis from halophytic plants, catalyst development, and wastewater treatment through biosorption and advanced adsorption methods. He is proficient in various analytical and fabrication techniques, including electrospinning, FTIR spectroscopy, and SEM imaging. Rezvani is also skilled in using MATLAB for modeling partial differential equations and performing advanced statistical analyses via Minitab and Design-Expert for experimental optimization. His software skills include HYSYS for chemical process simulations, ChemDraw for chemical structure design, and Python for machine learning applications, achieving high-accuracy predictive models in healthcare analytics. Additionally, he has conducted techno-economic assessments and scaling feasibility studies to ensure practical applicability of his research. His strong technical communication is evidenced by published journal articles, conference presentations, and experience as an editor and reviewer for scientific journals. These combined skills equip him to tackle complex, interdisciplinary problems in chemical engineering, particularly in the pursuit of cleaner energy, efficient resource recovery, and sustainable industrial processes.

Awards and Honors

Behnam Rezvani has earned numerous distinctions that highlight his scientific excellence, innovation, and leadership in chemical engineering. His notable achievements include securing 1st place in the prestigious Rah Neshan National Competition in Iran by proposing a novel indigo synthesis method using a microflow reactor—an innovative take on the traditional Heumann & Pfleger process. He also placed 3rd in the Rahisho National Competition for a pioneering wastewater treatment and reuse proposal tailored to steel manufacturing processes. Rezvani’s editorial contributions further exemplify his leadership; he served as an editor and editorial board member of the student-led ‘Farayand’ scientific journal for over two years, promoting scientific literacy in chemical engineering. His academic engagement extended internationally through his role as a peer reviewer for the International Journal of Biological Macromolecules (IF: 7.7), demonstrating his analytical acumen and contribution to global research. Additionally, his published research in high-impact journals like Bioresource Technology Reports, Canadian Journal of Chemical Engineering, and Journal of the Energy Institute has garnered professional recognition. With several accepted conference papers, under-review articles, and two registered inventions, Rezvani’s award record showcases his innovation, productivity, and impact on sustainable technologies and environmental remediation.

Conclusion

In conclusion, Behnam Rezvani exemplifies the qualities of a dedicated, innovative, and impactful researcher. With a multidisciplinary approach rooted in chemical engineering and sustainability, he has consistently demonstrated the ability to convert complex scientific ideas into practical and scalable solutions. His contributions to bio-oil and biodiesel production, waste-to-resource conversion, and water treatment technologies address some of the most urgent environmental challenges of our time. He skillfully integrates experimental research with computational modeling, simulation, and data analysis, embodying a modern and systems-thinking perspective. His achievements, including national awards, editorial roles, and international publications, reflect his commitment to excellence and advancement in his field. Furthermore, his engagement in teaching, industry collaboration, and ongoing innovation—through registered inventions and cutting-edge research—underscores his leadership potential. Behnam Rezvani’s well-rounded profile, global mindset, and dedication to sustainable development make him an outstanding candidate for the Best Researcher Award. With continued support and recognition, he is poised to make lasting contributions to science, industry, and society at large.

Publications Top Notes

  1. Title: Enhanced bio-oil production from Co-pyrolysis of cotton seed and polystyrene waste; fuel upgrading by metal-doped activated carbon catalysts
    Authors: Mahshid Vaghar Mousavi, Behnam Rezvani, Ahmad Hallajisani
    Year: 2025

  2. Title: Super-effective biochar adsorbents from Co-pyrolysis of rice husk and sewage sludge: Adsorption performance, advanced regeneration, and economic analysis
    Authors: Behnam Rezvani, Ahmad Hallajisani, Omid Tavakoli
    Year: 2025

  3. Title: Novel techniques in bio‐oil production through catalytic pyrolysis of waste biomass: Effective parameters, innovations, and techno‐economic analysis
    Authors: Behnam Rezvani
    Year: 2025

  4. Title: Canola, Camelina, and Linseed Biodiesel: A Sustainable Pathway for Renewable Energy
    Authors: Behnam Rezvani
    Year: 2024

  5. Title: Exploring the Potential of Biosorption By Algae: A Sustainable Solution for Water Treatment
    Authors: Behnam Rezvani
    Year: 2024

  6. Title: Mercury Removal by Biochar and Activated Carbon: An Effective Approach for Environmental Remediation
    Authors: Behnam Rezvani
    Year: 2024

  7. Title: Safflower, Moringa, and Salicornia Biodiesel: A Comparative Analysis of Sustainable Fuel Alternatives
    Authors: Behnam Rezvani
    Year: 2024

 

 

Denise Fungaro | Chemistry | Distinguished Scientist Award

Prof. Dr. Denise Fungaro | Chemistry | Distinguished Scientist Award

Researcher from Institute of Energy and Nuclear Research, Brazil

Dr. Denise Alves Fungaro is a distinguished researcher in environmental chemistry with a strong focus on sustainable materials and waste valorization. She is currently a researcher at the Nuclear and Energy Research Institute in São Paulo, Brazil. Her work has significantly contributed to the development of innovative materials from industrial and agricultural waste, particularly in the synthesis of zeolites and silica-based materials. Over the years, she has established herself as a leading scientist in environmental sustainability, with a strong publication record, numerous patents, and an extensive history of mentoring students. Her contributions have been recognized both nationally and internationally, earning her several prestigious awards. Dr. Fungaro’s research not only advances scientific knowledge but also provides practical solutions for waste management, water treatment, and environmental conservation. With over 80 publications and multiple industry partnerships, she has successfully combined scientific innovation with real-world applications. Her leadership in academic initiatives, including the Planetary Health Ambassadors Program at the University of São Paulo, further underscores her commitment to education and sustainability. Through her extensive research, mentorship, and industry collaborations, Dr. Fungaro has demonstrated excellence in her field, making her a well-respected figure in environmental research and material science.

Professional Profile

Education

Dr. Fungaro has an extensive academic background in chemistry, specializing in analytical and environmental chemistry. She obtained her Bachelor’s degree in Chemistry from the University of São Paulo in 1983, followed by a Master’s degree in Analytical Chemistry from the same institution in 1987. Her commitment to advancing scientific knowledge led her to pursue a PhD in Analytical Chemistry at the University of São Paulo, which she completed in 1994. Her doctoral research focused on innovative chemical analysis techniques that laid the foundation for her later work in environmental applications. To further expand her expertise, she completed a postdoctoral fellowship at Coimbra University in Portugal in 1998, where she deepened her knowledge of sustainable materials and advanced analytical methods. This diverse academic background provided her with a strong foundation in both theoretical and applied chemistry, equipping her with the skills necessary to tackle pressing environmental challenges. Her education has been instrumental in shaping her research direction, enabling her to bridge the gap between chemistry and environmental sustainability.

Professional Experience

Dr. Fungaro has built an impressive career as a researcher, primarily focusing on environmental chemistry and material science. She is currently a researcher at the Nuclear and Energy Research Institute (IPEN) in São Paulo, Brazil, where she has worked for several years. In this role, she has led multiple research projects aimed at developing sustainable solutions for waste management and environmental remediation. Throughout her career, she has actively collaborated with academic institutions, governmental organizations, and industry partners to advance research in sustainable materials. Her expertise has also led her to serve as a mentor, having supervised 17 master’s students and 6 PhD candidates. She has also been an active participant in scientific committees, editorial boards, and international conferences. As the coordinator of the Planetary Health Ambassadors Program at the Institute of Advanced Studies of the University of São Paulo, she has played a key role in promoting environmental awareness and sustainability initiatives. Her professional experience is marked by a combination of research excellence, mentorship, and leadership, making her a respected figure in both academic and industrial scientific communities.

Research Interests

Dr. Fungaro’s primary research interests lie in environmental chemistry, waste valorization, and sustainable materials development. She is particularly focused on the synthesis of zeolites from industrial byproducts, such as coal fly ash, to be used in environmental applications, including wastewater treatment and air pollution control. Her work also extends to the development of high-purity silica gel and nanosilica from sugarcane biomass ash, which has significant potential for commercialization. Another key area of her research involves bioplastics and biodegradable films, where she investigates the role of renewable silica powder in improving the properties of starch-based plastics. Additionally, she has explored the use of mesoporous materials for removing contaminants like pharmaceuticals and heavy metals from water sources. Her research is deeply interdisciplinary, integrating analytical chemistry, environmental science, and material engineering to address global sustainability challenges. Through her work, Dr. Fungaro aims to provide practical, scalable solutions that contribute to environmental conservation and resource efficiency.

Research Skills

Dr. Fungaro possesses a diverse and advanced skill set in analytical chemistry, materials science, and environmental engineering. She is highly proficient in synthesizing and characterizing advanced materials, particularly zeolites and silica-based compounds derived from industrial waste. Her expertise in waste valorization has enabled her to develop sustainable materials with applications in water treatment, pollution control, and eco-friendly construction. She is skilled in advanced spectroscopic and chromatographic techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GC-MS), which are essential for analyzing material properties. Dr. Fungaro also has significant experience in chemical process development, from laboratory-scale experimentation to pilot-scale implementation. Additionally, she has strong research project management skills, successfully leading multi-institutional collaborations and industry partnerships. Her ability to combine theoretical research with practical applications demonstrates her innovative approach to addressing environmental challenges.

Awards and Honors

Dr. Fungaro has received numerous national and international awards in recognition of her contributions to environmental chemistry and sustainable materials research. Some of her most notable accolades include the Kurt Politzer Award for Technology (2016), awarded for her groundbreaking work on high-purity silica gel and nanosilica from sugarcane biomass ash. She also won the International Cannes Water Great Prize (2006) for her research on using synthesized zeolites for wastewater decontamination. In 2023, she was honored with the USP Alumni Award for her contributions to human relations and social inclusion. Other significant awards include the Fernando Cerviño Lopez Award for Recycling Techniques (2007 & 2005) and the Yes to Racial Equality Award (2021). Her research has also earned recognition at international conferences, including the SETAC Australasia Congress (2013), where her supervised doctoral work won the best student research poster in ecotoxicology. These awards highlight her dedication to scientific excellence, sustainability, and societal impact.

Conclusion

Dr. Denise Alves Fungaro is an accomplished researcher with a strong track record in environmental sustainability, waste valorization, and materials science. Her extensive academic background, professional experience, and pioneering research have earned her national and international recognition. She has significantly contributed to the development of sustainable solutions for industrial waste management, including the synthesis of zeolites, biodegradable materials, and innovative water treatment methods. Her research impact is reflected in her numerous publications, patents, and mentorship of graduate students. Beyond her scientific achievements, she has demonstrated a commitment to promoting sustainability through her leadership in academic and environmental initiatives. While increasing global collaborations and commercializing her patented technologies could further elevate her impact, her existing contributions make her a highly deserving candidate for the Distinguished Scientist Award. Her work exemplifies the fusion of scientific innovation and real-world application, reinforcing her status as a leader in environmental research and sustainable materials development.

Publications Top Notes

  1. Title: Effect of wood sawdust-derived biochar as a substrate component on leachate water quality
    Authors: Daniele de Andrade Villarim Lima; Thamiris Brandino Stellato; Joao Cristiano Ulrich; Danilo Lopes Costa e Silva; Fabiana Abreu de Rezende; Denise Alves Fungaro
    Year: 2025

  2. Title: Thermal evaluation of a Cs-loaded waste vitrification
    Authors: Danilo Lopes Costa e Silva; Mariana Silva Araújo; Denise Alves Fungaro; Sonia Mello-Castanho
    Year: 2025

  3. Title: Byproduct-based zeolite type A as absorbent material for decontamination of simulated radioactive wastewater
    Authors: M.S. Araujo; D.L. Costa-Silva; S.R. Mello Castanho; D.A. Fungaro
    Year: 2025

  4. Title: Assessing immobilization matrices for nuclear effluent treatment: Cs case study
    Authors: Danilo Lopes Costa e Silva; Denise Alves Fungaro; Alexandre Las Casas; Paulo Sergio Cardoso da Silva; Roberto Vicente; Mariana Silva de Araujo; Juliana Carvalho Izidoro; Sonia Mello-Castanho
    Year: 2025

  5. Title: Zeolite Synthesized from Solid Waste for Eco-System Remediation: Selective Adsorption in Wastewater
    Authors: Mariana S. Araujo; Danilo Costa-Silva; Juliana C. Izidoro; Denise A. Fungaro; Sonia Mello Castanho
    Year: 2024

  6. Title: The Flue Gas Desulfurization Gypsum Applications in Production of Eco-Friendly Cementitious Matrices
    Authors: R. H. N. Bibiano; Juliana de Carvalho Izidoro; Denise Alves Fungaro
    Year: 2023

  7. Title: Optimization of Pelleting Parameters for Producing Composite Pellets Using Zeolitic Material From Fly Ash
    Authors: Denise Alves Fungaro; Tharcila Bertolini
    Year: 2023

  8. Title: The influence of separately and combined bentonite and kaolinite as binders for pelletization of NaA zeolite from coal fly ash
    Authors: T. C. R. Bertolini; D. A. Fungaro; A. E. D. Mahmoud
    Year: 2022

  9. Title: Brine sludge waste from a Chlor-alkali industry: characterization and its application for non-structural and structural construction materials
    Authors: Juliana De Carvalho Izidoro; Denise Alves Fungaro; Luciana Cristina Viviani; Rogério Da Costa Silva
    Year: 2021

  10. Title: Aluminium Tertiary Industry Waste and Ashes Samples for Development of Zeolitic Material Synthesis
    Authors: Denise Alves Fungaro; Kátia Cruz Silva; Alaa El Din Mahmoud
    Year: 2021

Dr. Radwan Ali | Organic Chemistry | Young Scientist Award

Dr. Radwan Ali | Organic Chemistry | Young Scientist Award

Assistant Lecturer from University of Al-Qadisiyah, Iraq

Radwan Ali is a dedicated researcher and academic specializing in organic chemistry. Born in Al-Qadisiyah, Iraq, he has pursued an extensive academic career, culminating in a PhD in Organic Chemistry from Ilam University, Iran. His expertise lies in organic synthesis, heterocyclic chemistry, and catalysis, with a particular focus on multicomponent reactions and synthetic methodologies. Currently, he serves as an Assistant Lecturer at the University of Al-Qadisiyah, where he balances teaching responsibilities with active research. His work aims to develop innovative and sustainable chemical processes, contributing to advancements in organic and analytical chemistry. Through his academic journey, Radwan Ali has developed a strong foundation in research, demonstrated leadership in education, and explored new frontiers in chemistry. His contributions to the field are evident through his focus on natural product synthesis and the application of nanocatalysts. As a researcher, he aspires to bridge the gap between theoretical chemistry and real-world applications, ensuring that his work has both scientific and practical significance. His commitment to continuous learning and research innovation positions him as a promising candidate for recognition in the field of young scientists.

Professional Profile

Education

Radwan Ali has pursued a comprehensive education in chemistry, specializing in organic and analytical chemistry. He earned his Bachelor of Science (BSc) in Chemistry from the University of Al-Qadisiyah, Iraq, in 2018. His undergraduate studies provided a strong foundation in chemical principles, laboratory techniques, and research methodologies. Following his BSc, he pursued a Master of Science (MSc) in Analytical Chemistry at Azad University, Mashhad, Iran, completing his degree in 2020. His MSc research involved advanced analytical techniques, contributing to his expertise in chemical analysis and methodology. Building on his previous studies, he began his Doctor of Philosophy (PhD) in Organic Chemistry at Ilam University, Iran, which he is set to complete in 2025. His doctoral research focuses on organic synthesis, heterocyclic compounds, and catalytic applications in multicomponent reactions. Through his educational journey, Radwan Ali has acquired an extensive understanding of both theoretical and practical chemistry, positioning him as a skilled researcher and educator. His academic achievements have prepared him to make meaningful contributions to the scientific community and advance research in organic chemistry.

Professional Experience

Radwan Ali is currently an Assistant Lecturer at the University of Al-Qadisiyah, Iraq. In this role, he teaches undergraduate chemistry courses, supervises laboratory sessions, and mentors students in their academic and research pursuits. His teaching responsibilities include fundamental and advanced chemistry courses, ensuring that students gain a comprehensive understanding of chemical principles and laboratory techniques. Beyond teaching, he is actively involved in research, contributing to advancements in organic synthesis and catalysis. His professional experience extends beyond academia, as he collaborates on research projects that explore new synthetic methodologies and the application of nanocatalysts in chemical reactions. Through his role as a lecturer, he has developed strong leadership and communication skills, effectively bridging the gap between research and education. His ability to integrate research findings into teaching enriches the learning experience for his students. Additionally, his involvement in laboratory supervision ensures that students gain hands-on experience with modern analytical and synthetic techniques. His professional journey reflects a commitment to both education and research, positioning him as a valuable contributor to the field of organic chemistry.

Research Interests

Radwan Ali’s research interests lie in the field of organic chemistry, particularly in organic synthesis and catalytic applications. His work focuses on the development of novel synthetic methodologies, including multicomponent reactions and asymmetric synthesis. He has a strong interest in heterocyclic synthesis, exploring the design and application of heterocyclic compounds in medicinal and industrial chemistry. Additionally, he is actively involved in the synthesis of natural products, aiming to develop environmentally friendly and efficient synthetic pathways. His research extends to the use of catalysts, including magnetic nanocatalysts, in organic transformations. These catalysts offer advantages in green chemistry, enhancing reaction efficiency while minimizing waste. His interest in analytical chemistry further supports his research, allowing him to develop advanced techniques for chemical characterization and reaction optimization. Through his research, he aims to contribute to sustainable and innovative approaches in organic synthesis, addressing challenges in pharmaceutical, agricultural, and materials science applications. His interdisciplinary approach ensures that his findings have both scientific and practical significance, reinforcing his commitment to advancing the field of organic chemistry.

Research Skills

Radwan Ali has developed a strong set of research skills in organic chemistry, analytical chemistry, and catalysis. His expertise in organic synthesis enables him to design and execute complex chemical reactions, including heterocyclic and asymmetric synthesis. He is proficient in various synthetic methodologies, particularly multicomponent reactions, which offer efficient and innovative approaches to chemical synthesis. His work with catalysts, including magnetic nanocatalysts, has provided him with experience in optimizing reaction conditions for enhanced efficiency and sustainability. Additionally, he has expertise in analytical techniques such as chromatography (HPLC, GC), spectroscopy (NMR, FTIR, UV-Vis), and mass spectrometry, allowing him to characterize and analyze chemical compounds effectively. His laboratory skills extend to experimental design, reaction optimization, and data interpretation, ensuring accuracy and reproducibility in his research. His ability to integrate synthetic and analytical chemistry techniques enhances the depth and applicability of his research. Furthermore, he has experience in scientific writing, publishing, and presenting research findings, which strengthens his ability to communicate complex scientific concepts to academic and professional audiences.

Awards and Honors

Radwan Ali’s contributions to chemistry research and education have earned him recognition in academia. While specific awards and honors are not mentioned, his selection as an Assistant Lecturer at the University of Al-Qadisiyah reflects his academic excellence and teaching capabilities. His involvement in advanced research on organic synthesis and catalysts suggests potential for future recognition, particularly in the areas of innovation and sustainable chemistry. Participation in international conferences, research collaborations, and publication in high-impact journals would further enhance his academic profile. Achieving funding grants, research fellowships, or best paper awards would also strengthen his standing as a leading young scientist. As he progresses in his academic and research career, his contributions to organic chemistry may lead to prestigious honors from scientific organizations, universities, or government institutions. Recognition for his work would not only validate his research impact but also open doors for further collaborations and professional growth.

Conclusion

Radwan Ali is a dedicated researcher and educator with a strong academic background in organic chemistry. His expertise in organic synthesis, heterocyclic chemistry, and catalyst applications positions him as a valuable contributor to scientific advancements. Through his role as an Assistant Lecturer, he combines research and teaching, ensuring that students receive high-quality education while also advancing his research in sustainable chemical methodologies. While he has demonstrated significant potential, enhancing his publication record, securing research grants, and engaging in international collaborations would further solidify his status as a leading young scientist. His interdisciplinary approach and commitment to green chemistry make his research highly relevant to modern scientific and industrial challenges. With continued contributions and recognition, he has the potential to achieve excellence in his field and make a lasting impact on organic and analytical chemistry. His dedication to innovation and education ensures that he will continue to play a crucial role in the advancement of scientific knowledge and sustainable chemical practices.

Publications Top Notes

  1. Title: Titanium Dioxide Nanoparticles in Dentistry: Multifaceted Applications and Innovations
    Authors: R. No, A.H. Alwan
    Year: 2023
    Citations: 5

  2. Title: Research on Ecofriendly Synthesis of Quinolin-4(1H)-Ones Using Fe3O4@SiO2-Diol-Phen-Pd(0) Nanocomposites as a Novel and Reusable Catalyst: Catalysis
    Authors: A.M. Amshawee, R. Ali, M.A. Hussain, M. Kazemi
    Year: 2025
    Citations: 3

  3. Title: Monolithic Zirconia in Dentistry: Evolving Aesthetics, Durability, and Cementation Techniques–An In-depth Review
    Authors: H.N. Jabber, R. Ali, M.N. Al-Delfi
    Year: 2023
    Citations: 3

  4. Title: Applications of Nano Magnesium Ferrite as a Catalyst in the Preparation of Heterocyclic Compounds: A Short Review
    Authors: R. Ali, S.A. Hussein, M.R. Znad, M.N. Al-Delfi
    Year: 2025
    Citations: 1

  5. Title: Probiotic Supplementation: A Promising Preventive Strategy for Dental Caries
    Authors: Z.F.A.L. Radwan Ali, Ali H. Murad
    Year: 2024
    Citations: 1

  6. Title: Fe3O4@SiO2-DHB/DI (S-NH)-Pd(0) Nanocomposite: A Novel, Efficient, and Reusable Heterogeneous Catalyst for Carbonylative Preparation of N-Aryl Amides
    Authors: A.M.H. Abudken, L. Saadi, R. Ali, M. Kazemi
    Year: 2025

  7. Title: Synthesis of Tetrahydrobenzo[𝑏]pyran Derivatives Using Reusable CoFe₂O₄@SiO₂-CPTES-Melamine-Cu Nanocatalyst
    Authors: R. Ali, L. Shiri
    Year: 2025

  8. Title: Magnetic Nanoparticles in the Treatment of Dental and Oral Diseases: A Brief Review of Their Use as Drug Carriers
    Authors: R. Ali, Z.F.A.L. Sultani, M.N. Al-Delfi
    Year: 2024

  9. Title: Determination of Trace Levels of Cu²⁺ Using Ultrasonicated Dispersive Liquid Phase Microextraction Based on Deep Eutectic Solvents Followed by Flame Atomic Absorption Spectrometry
    Authors: M. Shahinfar, R. Alsaeedi, Z. Ahmadabadi, M. Masrournia
    Year: Not provided

Nadezhda Markova | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Nadezhda Markova | Chemistry | Best Researcher Award

Theoretical chemistry at Institute of Organic Chemistry with Centre of Phytochemistry (IOCCP), Bulgarian 

Nadezhda Vasileva Markova is a distinguished Bulgarian scientist specializing in theoretical chemistry. She currently holds the position of Associate Professor at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. With a rich academic and professional background, she is renowned for her expertise in quantum chemical calculations, tautomerism, and the application of theoretical models to elucidate the structure and biological activity of plant-derived compounds. Throughout her career, she has demonstrated a strong commitment to advancing scientific knowledge through extensive research, mentoring, and collaboration with international scientific partners. Markova has co-authored 44 published and 2 accepted scientific articles, receiving over 600 citations. Her impactful research focuses on proton transfer reactions, solvent effects, and the molecular modeling of biologically active compounds. She is also recognized for her collaborative spirit and organizational skills in leading scientific projects. Her notable achievements include winning first place in the competition for high scientific achievements by the Union of Scientists in Bulgaria in 2011. Markova’s contributions continue to shape the field of theoretical and quantum chemistry, making her a leading figure in the Bulgarian scientific community.

Professional Profile

Education

Nadezhda Markova has a strong educational background in chemistry, with a focus on theoretical and organic chemistry. She earned her PhD in Theoretical Chemistry from the Bulgarian Academy of Sciences’ Institute of Organic Chemistry with Centre of Phytochemistry, where she honed her expertise in quantum chemical calculations and molecular modeling. Prior to her doctoral studies, she completed her Master of Science in Organic Chemistry at Shoumen University “Konstantin Preslavsky” between 1995 and 2000. Her master’s studies equipped her with a solid foundation in organic synthesis, analytical methods, and computational chemistry. Markova’s academic training emphasized both experimental and theoretical approaches, enabling her to develop skills in applying quantum chemical models to real-world molecular challenges. Her education has been instrumental in her ability to explore complex chemical processes, particularly in the areas of tautomerism, proton transfer reactions, and the interaction of biological molecules. With a robust academic foundation, she has continued to build on her expertise, contributing significantly to scientific research and publications in the field of theoretical chemistry.

Professional Experience

Nadezhda Markova’s professional career spans nearly two decades, during which she has held various academic and research positions at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. Since 2020, she has served as an Associate Professor, where she leads research projects, supervises doctoral students, and conducts cutting-edge studies in theoretical chemistry. From 2006 to 2020, she worked as an Assistant Professor, actively engaging in research focused on quantum chemical modeling, solvent effects, and the molecular structure of biologically active compounds. During her early career (2005–2006), she held the position of Chemist at the same institute, gaining hands-on experience in experimental and computational chemistry. Throughout her career, Markova has excelled in applying specialized software for quantum chemical calculations, such as GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her professional journey highlights her dedication to advancing theoretical chemistry through meticulous research, scientific publications, and collaborative projects.

Research Interest

Nadezhda Markova’s research interests center around theoretical and quantum chemistry, with a particular focus on molecular modeling, proton transfer reactions, and solvent effects. She is deeply engaged in the study of tautomerism and its impact on the biological activity of various chemical compounds. Her work frequently explores the application of quantum chemical calculations in phytochemistry to elucidate the structure and biological action of plant-derived compounds. Additionally, Markova investigates the interactions of biologically significant molecules with nucleic acids, exploring their potential as fluorescent probes and antiviral agents. Her recent studies include the quantum chemical and metabolomic characterization of plant compounds against SARS-CoV-2 and Herpes Simplex Virus DNA polymerase, showcasing her contribution to medicinal chemistry. She is also interested in the effects of external electric fields on molecular tautomeric equilibrium, highlighting her innovative approach to molecular dynamics. Through her research, Markova aims to bridge the gap between computational models and experimental validation, offering valuable insights into molecular behavior and drug development.

Research Skills

Nadezhda Markova possesses an extensive set of research skills, particularly in the field of quantum chemical modeling and computational chemistry. She is highly proficient in utilizing specialized software for quantum chemical calculations, including GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her expertise lies in conducting complex simulations to study proton transfer reactions, solvent effects, and tautomeric equilibria. Markova is skilled in applying hybrid statistical mechanics and quantum chemical models to investigate molecular interactions, making her a leader in the field of theoretical chemistry. Additionally, she is adept at using molecular docking and metabolomic profiling techniques to explore the inhibitory potential of natural compounds against viral enzymes. Her research skills extend to scientific writing, data analysis, and result interpretation, as evidenced by her numerous peer-reviewed publications. Furthermore, she excels in collaborating with multidisciplinary teams, organizing research projects, and mentoring doctoral students. Her technical proficiency and analytical capabilities have contributed to significant advancements in the study of molecular structure and biological activity.

Awards and Honors

Nadezhda Markova’s scientific excellence has been recognized through various awards and honors. In 2011, she achieved first place in the competition for high scientific achievements organized by the Union of Scientists in Bulgaria. This prestigious accolade highlighted her impactful contributions to the field of theoretical chemistry. Additionally, Markova’s extensive publication record—comprising 44 published and 2 accepted scientific articles—has received over 600 citations, underscoring the influence and recognition of her research within the scientific community. Her collaborative work with international research teams and participation in high-impact scientific projects further demonstrate her reputation as a leading figure in her field. Through her dedication to scientific innovation and knowledge dissemination, Markova has earned respect and recognition from peers and institutions alike. Her contributions continue to inspire and drive advancements in quantum chemical research and its applications in medicinal and organic chemistry.

Conclusion

Nadezhda Markova is a highly accomplished scientist whose expertise in theoretical chemistry has made a significant impact on the scientific community. Her academic background, extensive research experience, and proficiency in quantum chemical calculations have positioned her as a leading figure in her field. With a strong focus on molecular modeling, proton transfer reactions, and phytochemistry, she continues to push the boundaries of scientific knowledge. Markova’s dedication is reflected in her numerous publications, collaborations, and mentoring of young researchers. Her innovative work has earned her prestigious awards and widespread recognition, highlighting her role as a pioneer in quantum chemistry. As she continues to contribute to the advancement of scientific research, Markova’s legacy of excellence will undoubtedly inspire future generations of scientists and researchers.

Publications Top Notes

  1. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model

    • Authors: Shweta Sinha, Bikash Medhi, B. D. Radotra, Daniela Batovska, Nadezhda Markova, Rakesh
    • Year: 2023
  2. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting herpes simplex virus DNA polymerase – metabolome profiling, molecular docking, and quantum-chemical analysis

    • Authors: Nadezhda Todorova, Miroslav Rangelov, Ivayla Dincheva, Ilian Badjakov, Venelin Enchev, Nadezhda Markova
    • Year: 2022
  3. Potential of Hydroxybenzoic Acids From Graptopetalum paraguayense for Inhibiting Herpes Simplex Virus DNA Polymerase – Metabolome Profiling, Molecular Docking and Quantum-chemical Analysis

    • Authors: Nadezhda Hristova Todorova, Miroslav Angelov Rangelov, Ivayla Nedyalkova Dincheva, Ilian Kostadinov Badjakov, Venelin Georgiev Enchev, Nadezhda Vasileva Markova
    • Year: 2021
  4. Binding Expedient of 2‐carbamido‐1,3‐indandione to Nucleic Acids: Potential Fluorescent Probe

    • Authors: Nina Stoyanova, Nadezhda Markova, Ivan Angelov, Irena Philipova, Venelin Enchev
    • Year: 2021
  5. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives

    • Authors: Shweta Sinha, B.D. Radotra, Bikash Medhi, Daniela Batovska, Nadezhda Markova, Rakesh Sehgal
    • Year: 2020
  6. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study

    • Authors: Margarita Zaharieva, Penka Genova-Kalоu, Ivayla Dincheva, Ilian Badjakov, Svetla Krumova, Venelin Enchev, Hristo Najdenski, Nadezhda Markova
    • Year: 2019
  7. Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold

    • Authors: Nadezhda V. Markova, Milen I. Rogojerov, Valentina T. Angelova, Nikolay G. Vassilev
    • Year: 2019
  8. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes

    • Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B.D. Radotra, Anil Bhalla, Nadezhda Markova, Rakesh Sehgal
    • Year: 2019
  9. Synthesis, characterization, quantum-chemical calculations, and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids

    • Authors: Ekaterina D. Naydenova, Milen N. Marinov, Georgi T. Momekov, Ralitsa Y. Prodanova, Nadezhda V. Markova, Yavor T. Voynikov, Nikolay M. Stoyanov
    • Year: 2019
  10. Tautomerism of Inosine in Water: Is It Possible?

  • Authors: Nadezhda Markova, Venelin Enchev
  • Year: 2019
  1. 2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution
  • Authors: Venelin Enchev, Nadezhda Markova, Milen Marinov, Nikolay Stoyanov, Milen Rogojerov, Aleksandr Ugrinov, Ireneusz Wawer, Dorota M. Pisklak
  • Year: 2017
  1. Green synthesis, structure and fluorescence spectra of new azacyanine dyes
  • Authors: Venelin Enchev, Nikolay Gadjev, Ivan Angelov, Stefka Minkovska, Atanas Kurutos, Nadezhda Markova, Todor Deligeorgiev
  • Year: 2017
  1. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir
  • Authors: Nadezhda Markova, Ljupco Pejov, Nina Stoyanova, Venelin Enchev
  • Year: 2017
  1. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides – Structural characterization and antimicrobial evaluation
  • Authors: Borislava Stoykova, Mariya Chochkova, Gergana Ivanova, Nadezhda Markova, Venelin Enchev, Ivanka Tsvetkova, Hristo Najdenski, Miloslav Štícha, Tatiana Milkova
  • Year: 2017
  1. 2-Carbamido-1,3-indandione – A Fluorescent Molecular Probe and Sunscreen Candidate
  • Authors: Venelin Enchev, Ivan Angelov, Violeta Mantareva, Nadezhda Markova
  • Year: 2015
  1. A hybrid statistical mechanics – Quantum chemical model for proton transfer in 5-azauracil and 6-azauracil in water solution
  • Authors: Nadezhda Markova, Ljupco Pejov, Venelin Enchev
  • Year: 2015
  1. Synthesis of 3′,4′-Dihydro-2H,2′H,5H-spiro [imidazolidine-4,1′-naphthalene]-2,5-dione and its Derivatives
  • Authors: Milen Marinov, Plamena Marinova, Nikolay Stoyanov, Nadezhda Markova, Venelin Enchev
  • Year: 2014
  1. A model system with intramolecular hydrogen bonding: Effect of external electric field on the tautomeric conversion and electronic structures
  • Authors: Venelin Enchev, Vasil Monev, Nadezhda Markova, Milen Rogozherov, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Excited state proton transfer in 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1, 2-diol
  • Authors: Venelin Enchev, Nadezhda Markova, Milena Stoyanova, Plamen Petrov, Milen Rogozherov, Natalia Kuchukova, Ivanka Timtcheva, Vasil Monev, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Tautomeric equilibria of 5-fluorouracil anionic species in water
  • Authors: Nadezhda Markova, Venelin Enchev, Gergana Ivanova
  • Year: 2010
  1. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles
  • Authors: Maria Simeonova, Gergana Ivanova, Venelin Enchev, Nadezhda Markova, Milen Kamburov, Chavdar Petkov, Aidan Devery, Rod O’Connor, Declan Brougham
  • Year: 2009
  1. Ab initio and DFT study of the structure of metal ion complexes with N-benzalaniline-15-crown-5
  • Authors: Venelin Enchev, Snezhina Angelova, Nadezhda Markova, Ireneusz Wawer, Evgenia Stanoeva, Mariana Mitewa
  • Year: 2008
  1. Ab initio study of 2,4-substituted azolidines. II. Amino-imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution
  • Authors: Venelin Enchev, Nadezhda Markova, Snezhina Angelova
  • Year: 2005

Dan Yang | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Dan Yang | Chemical Engineering | Best Researcher Award

School of Chemistry and Molecular Engineering, Nanjing Tech University, China

Dan Yang is an accomplished associate professor at Nanjing Tech University, specializing in chemistry and molecular engineering. With a strong academic foundation and extensive research experience, she focuses on the synthesis of metal nanoclusters and their applications in photoelectrocatalysis and electrocatalysis. Her research aims to develop innovative solutions for CO2 reduction and biomass conversion, contributing to sustainable chemical processes. Throughout her career, she has made significant contributions to the field, authoring multiple high-impact publications in renowned scientific journals. Dan Yang has successfully secured competitive research grants, demonstrating her expertise in securing funding for cutting-edge projects. With her deep-rooted knowledge in physical chemistry and material science, she continues to make impactful strides in catalysis research, earning recognition and respect in her field.

Professional Profile

ORCID Profile

Education

Dan Yang has an extensive academic background in chemistry and material science. She earned her doctoral degree in physical chemistry from Nanjing University (2017–2020) under the supervision of Professors Weiping Ding and Yan Zhu. During her doctoral studies, she focused on the catalytic conversion of C1 molecules using metal clusters. Prior to this, she obtained a master’s degree in material science from Sun Yat-sen University (2012–2014), where she worked under Professor Yuezhong Meng, specializing in the development of advanced materials. Her educational journey began at Northwest Normal University, where she completed her bachelor’s degree in chemistry (2008–2012), building a strong foundation in chemical principles and laboratory techniques. This diverse and robust educational background has equipped Dan Yang with the expertise to conduct innovative research in electrocatalysis and sustainable chemical processes.

Professional Experience

Dan Yang’s professional career reflects her dedication to advancing chemical research. She is currently an associate professor at Nanjing Tech University (2023–present), where she leads research on metal nanocluster synthesis and their applications in photoelectrocatalysis and electrocatalysis of C1 molecules and biomass conversion. Prior to her current role, she served as a postdoctoral researcher at the same university (2021–2022), where she worked on electrocatalytic CO2 reduction reactions (CO2RR) and the conversion of biomass derivatives into valuable chemical products. From 2014 to 2016, she was an assistant research fellow at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. There, she contributed to the development of fine chemicals, including phase-change materials, epoxide plasticizers, and bio-based polyols. Her diverse professional experience underscores her expertise in catalysis, sustainable chemical synthesis, and material science.

Research Interests

Dan Yang’s research interests revolve around catalysis and sustainable chemistry. She specializes in the synthesis of metal nanoclusters and their catalytic applications in photoelectrocatalysis and electrocatalysis. Her current focus includes CO2 reduction reactions (CO2RR) to produce carbon monoxide (CO) and formic acid (HCOOH), offering potential solutions for carbon capture and utilization. She also explores the electrocatalytic transformation of biomass-derived molecules, such as glycerol and glucose, into valuable carboxylic acid products. Additionally, her work investigates the evolution of metal-ligand interfaces in nanoclusters and their impact on catalytic performance. Through her research, Dan Yang aims to develop efficient and sustainable catalytic systems that address environmental challenges and promote green chemical processes.

Research Skills

Dan Yang possesses a diverse set of research skills in the fields of catalysis and material science. She is highly proficient in the synthesis and characterization of metal nanoclusters, utilizing techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) to analyze cluster structures. Her expertise extends to electrochemical methods, including cyclic voltammetry and chronoamperometry, for evaluating catalytic performance. Additionally, she has experience in biomass conversion processes, utilizing electrocatalysis and photoelectrocatalysis techniques. Her analytical skills include advanced data interpretation and the use of computational tools for modeling catalytic reactions. Dan Yang’s technical proficiency enables her to design and optimize catalytic systems for efficient and selective chemical transformations.

Awards and Honors

Dan Yang has received several prestigious awards and research grants in recognition of her contributions to catalysis research. She was awarded the Young Scientists Fund of the National Natural Science Foundation of China (NSFC) for her project on the evolution of metal-ligand interfaces in gold clusters for CO2 reduction (2025–2027). She also leads a sub-project of the NSFC International Cooperation and Exchanges Program, focusing on new catalysts and materials for CO2 capture and conversion (2024–2026). Additionally, she secured funding from the Jiangsu Natural Science Foundation of China for her work on glycerol carbonate synthesis through electrochemical CO2 conversion (2023–2026). Dan Yang previously received support from the China Postdoctoral Science Foundation for her research on electrolyte-regulated CO2RR using gold clusters (2022–2023). These accolades highlight her innovative research and scientific impact.

Conclusion

Dan Yang is a distinguished researcher and associate professor with a profound expertise in catalysis, material science, and sustainable chemical processes. Her academic journey, spanning from physical chemistry to material science, has equipped her with the skills and knowledge to tackle complex challenges in CO2 reduction and biomass conversion. With a prolific publication record and multiple research grants, she continues to make significant contributions to the field. Her commitment to advancing sustainable catalytic processes reflects her dedication to addressing pressing environmental challenges. Through her innovative research, Dan Yang remains at the forefront of scientific discovery, driving advancements in electrocatalysis and green chemistry.

Publications Top Notes

  1. Metal-ligand interfaces for well-defined gold nanoclusters
    Authors: Yang, Dan; Wu, Yating; Yuan, Zhaotong; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Zhu, Yan; Yang, Yanhui
    Journal: Science China Chemistry
  2. Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application
    Authors: Yan, Qian; Yuan, Zhaotong; Wu, Yating; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Yang, Dan; Liu, Xu; Xue, Nianhua; Zhu, Yan
    Journal: Precision Chemistry

  3. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites
    Authors: Long, Jiangping; Tian, Suyang; Wei, Sheng; Lin, Hongqiao; Shi, Guiwen; Zong, Xupeng; Yang, Yanhui; Yang, Dan; Tang, Yu; Dai, Yihu
    Journal: Applied Surface Science

  4. Metal-carbonate interface promoted activity of Ag/MgCO3 catalyst for aqueous-phase formaldehyde reforming into hydrogen
    Authors: Wang, Qiaojuan; Wang, Jianyue; Rui, Wenjuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Li, Renhong; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  5. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption
    Authors: Wei, Sheng; Dai, Hua; Long, Jiangping; Lin, Hongqiao; Gu, Junkun; Zong, Xupeng; Yang, Dan; Tang, Yu; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  6. Investigation into the coking-related key reaction steps in dry reforming of methane over NiMgOx catalyst
    Authors: Wang, Jianyue; Wang, Jiawei; Wei, Sheng; Zhang, Yiwen; Tian, Fuhou; Yang, Dan; Kustov, Leonid M.; Yang, Yanhui; Dai, Yihu
    Journal: Molecular Catalysis

  7. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst
    Authors: Luo, Pan; Wang, Jianyue; Rui, Wenjuan; Xu, Ruilin; Kuai, Zhiyuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  8. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters (vol 4, pg 66, 2022)
    Authors: Not listed
    Journal: CCS Chemistry

  9. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity
    Authors: Wu, Yueqi; Long, Jiangping; Wei, Sheng; Gao, Yating; Yang, Dan; Dai, Yihu; Yang, Yanhui
    Journal: Microporous and Mesoporous Materials

  10. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone
    Authors: Gao, Xing; Ding, Yingying; Peng, Lilin; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  11. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters
    Authors: Yang, Dan; Liu, Xu; Dai, Yihu; Zhu, Yan; Yang, Yanhui
    Journal: Chemical Journal of Chinese Universities

  12. Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands
    Authors: Yang, Dan; Wang, Jiawei; Wang, Qiaojuan; Yuan, Zhaotong; Dai, Yihu; Zhou, Chunmei; Wan, Xiaoyue; Zhang, Qichun; Yang, Yanhui
    Journal: ACS Nano

  13. Chemoselective Oxidation of Glycerol over Platinum‐Based Catalysts: Toward the Role of Oxide Promoter
    Authors: Not listed
    Journal: ChemCatChem

  14. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters
    Authors: Not listed
    Journal: CCS Chemistry

  15. Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters
    Authors: Yang, Dan; Song, Yu; Yang, Fang; Sun, Yongnan; Li, Shuohao; Liu, Xu; Zhu, Yan; Yang, Yanhui
    Journal: The Journal of Chemical Physics

  16. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals
    Authors: Not listed
    Journal: EcoMat

  17. Selective CO2 conversion tuned by periodicities in Au8n+4(TBBT)4n+8 nanoclusters
    Authors: Not listed
    Journal: Nano Research

  18. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores
    Authors: Not listed
    Journal: Chinese Journal of Catalysis

  19. Ligand-protected Au4Ru2 and Au5Ru2 nanoclusters: distinct structures and implications for site-cooperation catalysis
    Authors: Not listed
    Journal: Chemical Communications

  20. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity
    Authors: Not listed
    Journal: Journal of the American Chemical Society

  21. Controllable Conversion of CO2 on Non‐Metallic Gold Clusters
    Authors: Not listed
    Journal: Angewandte Chemie International Edition

  22. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
    Authors: Chen, Limin; Feng, Jie; Yang, Dan; Tian, Falin; Ye, Xiaomin; Qian, Qiuping; Wei, Shuai; Zhou, Yunlong
    Journal: Chemical Science

  23. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles
    Authors: Chen, Limin; Yang, Dan; Feng, Jie; Zhang, Min; Qian, Qiuping; Zhou, Yunlong
    Journal: Journal of Materials Chemistry B

  24. The Evolution in Catalytic Activity Driven by Periodic Transformation in the Inner Sites of Gold Clusters
    Authors: Sun, Yongnan; Wang, Endong; Ren, Yujing; Xiao, Kang; Liu, Xu; Yang, Dan; Gao, Yi; Ding, Weiping; Zhu, Yan
    Journal: Advanced Functional Materials

Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Associate Professor at Department of Applied Physics and Chemistry/University of Taipei, Taiwan

Professor Chuan-Pei Lee is an esteemed researcher in the fields of nanomaterials, solar energy, and electrochemical applications. Currently serving as an Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, he has made significant contributions to renewable energy research. With a Ph.D. in Chemical Engineering from National Taiwan University, his expertise spans photocatalysis, energy storage devices, and water-splitting technologies. Prof. Lee has authored 117 SCI papers and 13 book chapters, earning a Google Scholar citation count of 5,537 with an H-index of 44. His research has been published in high-impact journals such as ACS Omega, Nano Energy, and J. Mater. Chem. A. Additionally, he has collaborated with international researchers and contributed to advancing sustainable energy solutions. His dedication to interdisciplinary research and scientific advancements makes him a prominent figure in his field.

Professional Profile

Education

Prof. Chuan-Pei Lee received his Ph.D. in Chemical Engineering from National Taiwan University in 2012, where he specialized in nanomaterials and energy conversion systems. His doctoral research focused on the synthesis and application of functional materials for energy devices, including dye-sensitized solar cells and electrocatalysts. Prior to his Ph.D., he completed his Master’s and Bachelor’s degrees in related fields, building a strong foundation in applied chemistry and physics. To further his expertise, he pursued postdoctoral research at the University of California, Berkeley, where he worked on 2D-layered transition metal dichalcogenides for electrochemical energy applications. His academic journey has been marked by a commitment to advancing energy-efficient technologies and exploring innovative nanostructured materials.

Professional Experience

Prof. Chuan-Pei Lee has held multiple academic and research positions that reflect his dedication to scientific innovation. Since joining the University of Taipei as an Associate Professor, he has led various research initiatives focusing on energy storage, nanomaterial synthesis, and catalysis. Prior to his current role, he conducted postdoctoral research at the University of California, Berkeley, where he explored the properties of 2D materials for energy applications. Over the years, he has collaborated with leading institutions and research groups, contributing to breakthrough studies in sustainable energy and nanotechnology. His work extends beyond academia, involving participation in industrial research projects and government-funded studies aimed at developing next-generation energy solutions.

Research Interests

Prof. Lee’s research interests revolve around renewable energy and nanotechnology. His work primarily focuses on the synthesis and application of nanomaterials for energy storage and conversion, including supercapacitors, photocatalytic CO₂ reduction, and dye-sensitized solar cells. He is particularly interested in exploring novel electrocatalysts for hydrogen evolution and oxygen reduction reactions, aiming to improve the efficiency of energy conversion devices. His studies on carbon-based materials, metal oxides, and transition metal dichalcogenides contribute to advancements in sustainable and efficient energy technologies. By integrating electrochemical techniques, he seeks to develop cost-effective and environmentally friendly energy solutions.

Research Skills

Prof. Lee possesses extensive expertise in nanomaterials synthesis, electrochemical analysis, and energy device fabrication. He is proficient in advanced characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for material analysis. His experience includes the development of thin-film electrodes, nanostructured catalysts, and hybrid composite materials for solar energy applications. Additionally, he specializes in electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate the performance of energy storage systems. His ability to integrate materials science with electrochemical engineering makes him a versatile researcher in the field of applied physics and chemistry.

Awards and Honors

Prof. Chuan-Pei Lee has received several awards and recognitions for his outstanding contributions to research. His high-impact publications and innovative work in nanotechnology have earned him accolades from prestigious institutions and scientific societies. He has been recognized for his contributions to sustainable energy research and has received grants for his pioneering studies on nanostructured materials. His role as a corresponding author in multiple high-impact journals highlights his influence in the field. Additionally, he has been invited to present his research at international conferences and symposiums, further solidifying his reputation as a leading expert in applied physics and chemistry.

Conclusion

Prof. Chuan-Pei Lee is a highly accomplished researcher with a strong academic background, significant research contributions, and extensive expertise in nanomaterials and energy applications. His work in sustainable energy technologies, coupled with his proficiency in electrochemical techniques, has positioned him as a leader in his field. With a remarkable publication record and international collaborations, he continues to drive advancements in energy storage and conversion. His dedication to scientific discovery and innovation makes him a deserving candidate for prestigious research awards. Moving forward, his contributions to renewable energy solutions will play a crucial role in shaping the future of clean energy technologies.

Publications Top Notes

  1. Title: Use of organic materials in dye-sensitized solar cells
    Authors: CP Lee, CT Li, KC Ho
    Year: 2017
    Citations: 342

  2. Title: Recent progress in organic sensitizers for dye-sensitized solar cells
    Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    Year: 2015
    Citations: 270

  3. Title: Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties
    Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    Year: 2014
    Citations: 200

  4. Title: A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells
    Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    Year: 2017
    Citations: 163

  5. Title: Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte
    Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    Year: 2011
    Citations: 142

  6. Title: Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black
    Authors: CP Lee, PY Chen, R Vittal, KC Ho
    Year: 2010
    Citations: 135

  7. Title: Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells
    Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    Year: 2010
    Citations: 109

  8. Title: 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties
    Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    Year: 2011
    Citations: 108

  9. Title: Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis
    Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    Year: 2016
    Citations: 98

  10. Title: Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells
    Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
    Year: 2015
    Citations: 95