Safdar Ali Amur | Chemical Engineering | Best Researcher Award

Mr. Safdar Ali Amur | Chemical Engineering | Best Researcher Award

Beijing University of Chemical Technology, China

Safdar Ali Amur is a dedicated researcher in the fields of chemical engineering, biochemistry, and microbiology. With a strong academic foundation and international research exposure, he has contributed significantly to biomedical applications, focusing on metal-organic frameworks for antibacterial applications. He is currently pursuing a Ph.D. in Chemical Engineering & Technology at Beijing University of Chemical Technology, China. His expertise spans analytical chemistry, molecular modeling, and microbiological testing, making him a valuable contributor to scientific advancements. In addition to his research pursuits, he has experience in teaching, administrative roles, and laboratory management. His technical proficiency includes advanced scientific software and instrumentation techniques, supporting his innovative approach to scientific inquiries. With multiple research publications indexed in Google Scholar, ORCID, and Web of Science, Safdar demonstrates an ongoing commitment to expanding knowledge in his field. His background in biochemistry, microbiology, and vaccine supply management through WHO also highlights his ability to work in interdisciplinary research environments. Despite his achievements, he continues to seek opportunities for collaborative research and professional growth. His aspirations include furthering biomedical applications through nanotechnology-based innovations, aiming to bridge fundamental research with practical applications in healthcare and industry.

Professional Profile

Education

Safdar Ali Amur has pursued a rigorous academic journey that reflects his dedication to research and scientific exploration. Currently, he is a Ph.D. candidate in Chemical Engineering & Technology at Beijing University of Chemical Technology, China, where he is working on bioactive material encapsulation for antibacterial applications. His Ph.D. research integrates chemical sciences, biochemistry, and biomedical engineering, showcasing interdisciplinary expertise. Before his doctoral studies, he earned a Master of Philosophy (M.Phil.) in Biochemistry from the University of Sindh, Pakistan. His thesis focused on epidemiology and serum lipid alterations in laryngeal and pharyngeal cancer patients, contributing to understanding cancer biomarkers. His bachelor’s degree in Biochemistry, also from the University of Sindh, provided him with a solid foundation in biological sciences, chemistry, and analytical techniques. In addition to formal education, he has completed various certifications and internships, including analytical instrumentation training at the Pakistan Council of Scientific & Industrial Research. His training in nutritional sciences, microbiology, and scientific software applications further complements his academic profile. With strong academic credentials and diverse scientific training, he continues to develop innovative solutions in chemical and biological research, contributing to both fundamental and applied sciences.

Professional Experience

Safdar Ali Amur has gained multifaceted professional experience, contributing to both academia and industry. His expertise extends from microbiological testing and vaccine supply management to teaching and administrative roles. He worked as a microbiology tester for fish food, ensuring the quality and safety of food products through microbial analysis and test reporting. Additionally, he has been actively involved in maintaining scientific records and laboratory documentation. In academia, he served as a Biology & Chemistry Subject Teacher at Mehran Skills Development Centre, where he taught core scientific subjects and managed laboratory operations. His role in education strengthened his ability to mentor students and conduct scientific demonstrations. Beyond research and teaching, he worked as an Administrative Support Person for WHO, playing a key role in team monitoring, vaccine supply distribution, and daily documentation of immunization programs. His contributions to vaccine management reflect his ability to work in global health initiatives. Currently, as a Ph.D. researcher, he continues to contribute to cutting-edge research in chemical and biological sciences, aiming to develop advanced biomedical materials with enhanced antibacterial properties. His diverse experience makes him a valuable asset in both research and applied scientific fields.

Research Interests

Safdar Ali Amur’s research interests revolve around chemical engineering, biochemistry, nanotechnology, and biomedical applications. His current focus is on metal-organic frameworks (MOFs) for drug delivery and antibacterial applications, an area that has significant potential in pharmaceutical and medical industries. His previous research explored cancer biomarkers and serum lipid alterations in laryngeal and pharyngeal cancer patients, providing valuable insights into disease progression and risk factors. His work in analytical instrumentation, hematology, and lipid profiling aligns with his passion for disease diagnostics and biomolecular interactions. Beyond disease studies, he has a strong interest in microbiology, food safety, and vaccine technology. His work in microbiological testing of food and his administrative role in WHO’s vaccine supply chain reflect his contributions to public health and safety. In the future, he aims to explore advanced nanomaterials for targeted drug delivery, biosensors, and antimicrobial coatings. His interdisciplinary approach integrates biochemistry, material science, and computational modeling, ensuring practical and impactful contributions to healthcare and industry. His research is driven by the goal of developing innovative, sustainable, and cost-effective biomedical solutions.

Research Skills

Safdar Ali Amur possesses a diverse range of research skills, making him a well-rounded scientist. His expertise includes molecular modeling, analytical instrumentation, microbiological testing, and drug delivery system development. He is proficient in spectrophotometric analysis, chromatography (GC, TLC), and hematology techniques, essential for biochemical and chemical research. His work in metal-organic frameworks (MOFs) has provided him with hands-on experience in nanotechnology-based drug encapsulation and controlled release studies. He is also skilled in computational chemistry and molecular modeling, using software such as Density-functional theory (DFT), ChemDraw, and X’pert Highscore. His technical proficiency extends to scientific illustrations (BioRender), research management tools (EndNote, Mendeley), and plagiarism detection systems (Turnitin). Beyond laboratory skills, he is experienced in team management, scientific documentation, and teaching methodologies. His role in microbiology testing, vaccine supply chain management, and cancer biomarker research further enriches his research expertise. His ability to integrate analytical techniques, biomedical engineering, and public health applications positions him as a leading researcher in chemical and biological sciences.

Awards and Honors

Safdar Ali Amur has received various academic and professional recognitions for his contributions to research and scientific innovation. He has been acknowledged for his participation in the Anatomical Art Gallery of BSN-Generic (2021-2022), showcasing his involvement in biomedical visualization and anatomical studies. He also earned a Starter Nutrition Course certification from The Health Sciences Academy (UK), emphasizing his expertise in health sciences and nutrition. His academic internship certificate from the Pakistan Council of Scientific & Industrial Research (PCSIR) highlights his training in analytical techniques, chromatography, and pharmaceutical testing. This early exposure to industrial and academic research laid the foundation for his expertise in biological and chemical sciences. Throughout his career, he has actively participated in research collaborations, scientific conferences, and training programs, gaining international recognition for his work. His research contributions in cancer biomarkers, antimicrobial materials, and biochemical applications continue to enhance his academic and professional reputation.

Conclusion

Safdar Ali Amur is an accomplished researcher, educator, and scientist with a strong background in biochemistry, chemical engineering, and microbiology. His research spans drug delivery systems, cancer biomarkers, food safety, and vaccine distribution, reflecting his interdisciplinary expertise. His academic journey, from M.Phil. in Biochemistry to a Ph.D. in Chemical Engineering & Technology, demonstrates his dedication to advancing scientific knowledge. His proficiency in analytical techniques, computational modeling, and biomedical applications has made him a valuable contributor to global research initiatives. Despite his achievements, he continues to seek opportunities for collaborative research, industry partnerships, and technological innovation. His aspiration is to develop advanced nanomaterials for biomedical applications, bridging the gap between fundamental research and real-world solutions. With an impressive track record of academic excellence, professional experience, and technical skills, Safdar Ali Amur stands as a leading candidate for research awards and scientific recognition. His contributions will continue to shape the future of biomedical science and nanotechnology-based solutions.

Publications Top Notes

  1. Title: Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent
    Authors: NA Soomro, Q Wu, SA Amur, H Liang, AU Rahman, Q Yuan, Y Wei
    Year: 2019
    Citations: 81

  2. Title: Encapsulation of natural drug gentiopicroside into zinc based Zeolitic Imidazolate Frameworks (ZIF-8): In-vitro drug release and improved antibacterial activity
    Authors: SA Amur, NA Soomro, Q Khuhro, Y Wei, H Liang, Q Yuan
    Year: 2023
    Citations: 17

  3. Title: A new and effective evaluation method for Radix Gentianae Macrophyllae herbs based on 2‐phenylethyl β‐d‐glucopyranoside, 2‐methoxyanofinic acid and …
    Authors: H Liu, H Zhao, R Huang, AS Ali, X Wang, S Meng, G Chen
    Year: 2021
    Citations: 6

  4. Title: Facile Grafting of Silver Nanoparticles into Copper and Guanosine 5′-Monophosphate Metal Organic Frameworks (AgNPs@ Cu/GMP): Characterization and Antimicrobial Activity
    Authors: NA Soomro, SA Amur, Y Wei, AH Shah, M Jiao, H Liang, Q Yuan
    Year: 2021
    Citations: 4

  5. Title: Synthesis, Characterization, Density Functional Theory Study, Antibacterial Activity and Molecular Docking of Zeolitic Imidazolate Framework‐8
    Authors: SA Amur, BP Sharma, NA Soomro, Q Khuhro, M Tariq, H Liang, M Kazi, …
    Year: 2025
    Citations: 3

  6. Title: Endogenous crude Scutellaria baicalensis polysaccharide robustly enhances one-pot extraction and deglycosylation of baicalin
    Authors: Y Yan, SA Amur, H Liu, R Shen, H Sun, Y Pei, C Guo, H Liang
    Year: 2024
    Citations: 3

  7. Title: Risk factors for oral cancer disease in Hyderabad and adjoining areas of Sindh, Pakistan
    Authors: MH Mugheri, NA Channa, SA Amur, Q Khuhro, NA Soomro, M Paras, …
    Year: 2018
    Citations: 3

  8. Title: Factors associated with delinquent behaviour of inmates at Naara jail Hyderabad, Pakistan
    Authors: NA Soomro, NA Channa, SA Amur, MH Mugheri, M Paras, Q Khuhro
    Year: 2016
    Citations: 2

  9. Title: Incidence of Cancer at Liaquat University of Medical and Health Sciences Hospital, Jamshoro from 2010-2016: A retrospective study
    Authors: MH Mugheri, SA Amur, NA Channa, NA Soomro, Q Khuhro, M Paras
    Year: 2019
    Citations: 1

  10. Title: Serum lipids coupled with menopausal status may be used as biomarkers in female gallstones patients
    Authors: YA Awan, AN Channa, N Tabassum, DA Solangi, MH Mugheri, SA Amur
    Year: 2017
    Citations: 1

  11. Title: Incidence of laryngeal and pharyngeal cancer at Liaquat University Hospital, Jamshoro, Pakistan
    Authors: SA Amur, NA Channa, NA Soomro, MH Mugheri, F Memon, Q Khuhro, …
    Year: 2017
    Citations: 1

 

Geraldine Merle | Chemical Engineering | Best Researcher Award

Prof. Geraldine Merle | Chemical Engineering | Best Researcher Award

Professor from Polytechnique Montreal, Canada

Dr. Geraldine Merle is a distinguished researcher and academic with extensive expertise in her field. Over the years, she has contributed significantly to advancing knowledge through groundbreaking research, innovative methodologies, and dedicated teaching. She has worked in prestigious institutions and collaborated with various researchers to develop impactful solutions. Her research spans multiple disciplines, demonstrating her ability to integrate interdisciplinary approaches to address complex challenges. Dr. Merle is known for her strong leadership, mentorship, and commitment to academic excellence. Through her publications, lectures, and research projects, she continues to influence her field and inspire future scholars. She has received numerous accolades for her work and remains dedicated to pushing the boundaries of scientific discovery.

Professional Profile

Education

Dr. Geraldine Merle holds an impressive academic background, earning degrees from top-tier universities. She completed her undergraduate studies with outstanding performance, followed by a master’s degree where she specialized in advanced research methodologies. Her doctoral studies focused on a groundbreaking topic that contributed to the academic community. She has also pursued postdoctoral research at leading institutions, refining her expertise in specialized areas. Additionally, she has participated in various professional development programs and workshops to stay updated with the latest advancements in her field. Her academic journey showcases her dedication to lifelong learning and scholarly excellence.

Professional Experience

With a wealth of experience in academia and industry, Dr. Geraldine Merle has held several influential positions. She has served as a professor, researcher, and consultant in various esteemed organizations. Her teaching experience includes mentoring undergraduate and graduate students, developing curricula, and leading research projects. In addition, she has worked with government and private institutions on collaborative research initiatives aimed at solving real-world problems. Her contributions extend to editorial boards, advisory committees, and conference panels, highlighting her active role in shaping the future of her discipline. Her professional journey reflects a balance between research, teaching, and leadership.

Research Interests

Dr. Geraldine Merle’s research interests encompass a wide range of topics within her field. She is particularly passionate about exploring emerging trends, developing innovative solutions, and applying interdisciplinary approaches to problem-solving. Her work has addressed pressing societal issues, leveraging data-driven methods and cutting-edge technologies. Additionally, she is interested in policy implications, ethics, and the societal impact of research. She collaborates with scholars from different backgrounds to enhance the depth and breadth of her studies. Her research interests continue to evolve, reflecting her adaptability and curiosity in an ever-changing academic landscape.

Research Skills

Dr. Geraldine Merle possesses a robust set of research skills that make her a leader in her field. She is proficient in data analysis, experimental design, and qualitative and quantitative research methodologies. Her expertise extends to statistical modeling, software applications, and advanced laboratory techniques. She has a strong ability to synthesize complex information, write compelling research papers, and present findings at conferences. Additionally, she has experience securing research grants and managing large-scale projects. Her collaborative approach and problem-solving skills have contributed to numerous successful research endeavors. These skills have been instrumental in her contributions to academia and industry.

Awards and Honors

Dr. Geraldine Merle has received numerous awards and honors in recognition of her contributions to research and academia. Her accolades include prestigious research fellowships, best paper awards, and distinguished teaching recognitions. She has been invited as a keynote speaker at international conferences, further solidifying her reputation as an expert in her field. Her work has been acknowledged by professional organizations and funding agencies, reflecting her influence and impact. Additionally, she has received grants and scholarships that have enabled her to pursue high-impact research. Her dedication and achievements continue to inspire students, colleagues, and aspiring researchers.

Conclusion

Dr. Geraldine Merle’s career is a testament to her dedication, innovation, and passion for research and education. With a strong academic foundation, extensive professional experience, and a commitment to knowledge advancement, she has made significant contributions to her field. Her research interests and skills demonstrate her ability to address complex challenges and provide valuable insights. The numerous awards and honors she has received highlight the impact of her work. As she continues her journey, she remains committed to fostering intellectual growth, mentoring future scholars, and shaping the future of research. Dr. Merle’s contributions leave a lasting legacy in academia and beyond.

Publications Top Notes

  1. Anion exchange membranes for alkaline fuel cells: A review

    • Authors: G Merle, M Wessling, K Nijmeijer

    • Year: 2011

    • Citations: 2057

  2. New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells

    • Authors: G Merle, SS Hosseiny, M Wessling, K Nijmeijer

    • Year: 2012

    • Citations: 159

  3. Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications

    • Authors: E van de Ven, A Chairuna, G Merle, SP Benito, Z Borneman, K Nijmeijer

    • Year: 2013

    • Citations: 157

  4. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts

    • Authors: Z Sheikh, YL Zhang, L Grover, GE Merle, F Tamimi, J Barralet

    • Year: 2015

    • Citations: 122

  5. Concentric glucose/O2 biofuel cell

    • Authors: A Habrioux, G Merle, K Servat, KB Kokoh, C Innocent, M Cretin, S Tingry

    • Year: 2008

    • Citations: 98

  6. Top-down bottom-up graphene synthesis

    • Authors: Z Zhang, A Fraser, S Ye, G Merle, J Barralet

    • Year: 2019

    • Citations: 82

  7. Hydrocaffeic acid–chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties

    • Authors: GM Soliman, YL Zhang, G Merle, M Cerruti, J Barralet

    • Year: 2014

    • Citations: 81

  8. Simulation of a full fuel cell membrane electrode assembly using pore network modeling

    • Authors: M Aghighi, MA Hoeh, W Lehnert, G Merle, J Gostick

    • Year: 2016

    • Citations: 71

  9. Exploring the impact of electrode microstructure on redox flow battery performance using a multiphysics pore network model

    • Authors: MA Sadeghi, M Aganou, M Kok, M Aghighi, G Merle, J Barralet, J Gostick

    • Year: 2019

    • Citations: 69

 

Nadezhda Markova | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Nadezhda Markova | Chemistry | Best Researcher Award

Theoretical chemistry at Institute of Organic Chemistry with Centre of Phytochemistry (IOCCP), Bulgarian 

Nadezhda Vasileva Markova is a distinguished Bulgarian scientist specializing in theoretical chemistry. She currently holds the position of Associate Professor at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. With a rich academic and professional background, she is renowned for her expertise in quantum chemical calculations, tautomerism, and the application of theoretical models to elucidate the structure and biological activity of plant-derived compounds. Throughout her career, she has demonstrated a strong commitment to advancing scientific knowledge through extensive research, mentoring, and collaboration with international scientific partners. Markova has co-authored 44 published and 2 accepted scientific articles, receiving over 600 citations. Her impactful research focuses on proton transfer reactions, solvent effects, and the molecular modeling of biologically active compounds. She is also recognized for her collaborative spirit and organizational skills in leading scientific projects. Her notable achievements include winning first place in the competition for high scientific achievements by the Union of Scientists in Bulgaria in 2011. Markova’s contributions continue to shape the field of theoretical and quantum chemistry, making her a leading figure in the Bulgarian scientific community.

Professional Profile

Education

Nadezhda Markova has a strong educational background in chemistry, with a focus on theoretical and organic chemistry. She earned her PhD in Theoretical Chemistry from the Bulgarian Academy of Sciences’ Institute of Organic Chemistry with Centre of Phytochemistry, where she honed her expertise in quantum chemical calculations and molecular modeling. Prior to her doctoral studies, she completed her Master of Science in Organic Chemistry at Shoumen University “Konstantin Preslavsky” between 1995 and 2000. Her master’s studies equipped her with a solid foundation in organic synthesis, analytical methods, and computational chemistry. Markova’s academic training emphasized both experimental and theoretical approaches, enabling her to develop skills in applying quantum chemical models to real-world molecular challenges. Her education has been instrumental in her ability to explore complex chemical processes, particularly in the areas of tautomerism, proton transfer reactions, and the interaction of biological molecules. With a robust academic foundation, she has continued to build on her expertise, contributing significantly to scientific research and publications in the field of theoretical chemistry.

Professional Experience

Nadezhda Markova’s professional career spans nearly two decades, during which she has held various academic and research positions at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. Since 2020, she has served as an Associate Professor, where she leads research projects, supervises doctoral students, and conducts cutting-edge studies in theoretical chemistry. From 2006 to 2020, she worked as an Assistant Professor, actively engaging in research focused on quantum chemical modeling, solvent effects, and the molecular structure of biologically active compounds. During her early career (2005–2006), she held the position of Chemist at the same institute, gaining hands-on experience in experimental and computational chemistry. Throughout her career, Markova has excelled in applying specialized software for quantum chemical calculations, such as GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her professional journey highlights her dedication to advancing theoretical chemistry through meticulous research, scientific publications, and collaborative projects.

Research Interest

Nadezhda Markova’s research interests center around theoretical and quantum chemistry, with a particular focus on molecular modeling, proton transfer reactions, and solvent effects. She is deeply engaged in the study of tautomerism and its impact on the biological activity of various chemical compounds. Her work frequently explores the application of quantum chemical calculations in phytochemistry to elucidate the structure and biological action of plant-derived compounds. Additionally, Markova investigates the interactions of biologically significant molecules with nucleic acids, exploring their potential as fluorescent probes and antiviral agents. Her recent studies include the quantum chemical and metabolomic characterization of plant compounds against SARS-CoV-2 and Herpes Simplex Virus DNA polymerase, showcasing her contribution to medicinal chemistry. She is also interested in the effects of external electric fields on molecular tautomeric equilibrium, highlighting her innovative approach to molecular dynamics. Through her research, Markova aims to bridge the gap between computational models and experimental validation, offering valuable insights into molecular behavior and drug development.

Research Skills

Nadezhda Markova possesses an extensive set of research skills, particularly in the field of quantum chemical modeling and computational chemistry. She is highly proficient in utilizing specialized software for quantum chemical calculations, including GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her expertise lies in conducting complex simulations to study proton transfer reactions, solvent effects, and tautomeric equilibria. Markova is skilled in applying hybrid statistical mechanics and quantum chemical models to investigate molecular interactions, making her a leader in the field of theoretical chemistry. Additionally, she is adept at using molecular docking and metabolomic profiling techniques to explore the inhibitory potential of natural compounds against viral enzymes. Her research skills extend to scientific writing, data analysis, and result interpretation, as evidenced by her numerous peer-reviewed publications. Furthermore, she excels in collaborating with multidisciplinary teams, organizing research projects, and mentoring doctoral students. Her technical proficiency and analytical capabilities have contributed to significant advancements in the study of molecular structure and biological activity.

Awards and Honors

Nadezhda Markova’s scientific excellence has been recognized through various awards and honors. In 2011, she achieved first place in the competition for high scientific achievements organized by the Union of Scientists in Bulgaria. This prestigious accolade highlighted her impactful contributions to the field of theoretical chemistry. Additionally, Markova’s extensive publication record—comprising 44 published and 2 accepted scientific articles—has received over 600 citations, underscoring the influence and recognition of her research within the scientific community. Her collaborative work with international research teams and participation in high-impact scientific projects further demonstrate her reputation as a leading figure in her field. Through her dedication to scientific innovation and knowledge dissemination, Markova has earned respect and recognition from peers and institutions alike. Her contributions continue to inspire and drive advancements in quantum chemical research and its applications in medicinal and organic chemistry.

Conclusion

Nadezhda Markova is a highly accomplished scientist whose expertise in theoretical chemistry has made a significant impact on the scientific community. Her academic background, extensive research experience, and proficiency in quantum chemical calculations have positioned her as a leading figure in her field. With a strong focus on molecular modeling, proton transfer reactions, and phytochemistry, she continues to push the boundaries of scientific knowledge. Markova’s dedication is reflected in her numerous publications, collaborations, and mentoring of young researchers. Her innovative work has earned her prestigious awards and widespread recognition, highlighting her role as a pioneer in quantum chemistry. As she continues to contribute to the advancement of scientific research, Markova’s legacy of excellence will undoubtedly inspire future generations of scientists and researchers.

Publications Top Notes

  1. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model

    • Authors: Shweta Sinha, Bikash Medhi, B. D. Radotra, Daniela Batovska, Nadezhda Markova, Rakesh
    • Year: 2023
  2. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting herpes simplex virus DNA polymerase – metabolome profiling, molecular docking, and quantum-chemical analysis

    • Authors: Nadezhda Todorova, Miroslav Rangelov, Ivayla Dincheva, Ilian Badjakov, Venelin Enchev, Nadezhda Markova
    • Year: 2022
  3. Potential of Hydroxybenzoic Acids From Graptopetalum paraguayense for Inhibiting Herpes Simplex Virus DNA Polymerase – Metabolome Profiling, Molecular Docking and Quantum-chemical Analysis

    • Authors: Nadezhda Hristova Todorova, Miroslav Angelov Rangelov, Ivayla Nedyalkova Dincheva, Ilian Kostadinov Badjakov, Venelin Georgiev Enchev, Nadezhda Vasileva Markova
    • Year: 2021
  4. Binding Expedient of 2‐carbamido‐1,3‐indandione to Nucleic Acids: Potential Fluorescent Probe

    • Authors: Nina Stoyanova, Nadezhda Markova, Ivan Angelov, Irena Philipova, Venelin Enchev
    • Year: 2021
  5. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives

    • Authors: Shweta Sinha, B.D. Radotra, Bikash Medhi, Daniela Batovska, Nadezhda Markova, Rakesh Sehgal
    • Year: 2020
  6. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study

    • Authors: Margarita Zaharieva, Penka Genova-Kalоu, Ivayla Dincheva, Ilian Badjakov, Svetla Krumova, Venelin Enchev, Hristo Najdenski, Nadezhda Markova
    • Year: 2019
  7. Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold

    • Authors: Nadezhda V. Markova, Milen I. Rogojerov, Valentina T. Angelova, Nikolay G. Vassilev
    • Year: 2019
  8. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes

    • Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B.D. Radotra, Anil Bhalla, Nadezhda Markova, Rakesh Sehgal
    • Year: 2019
  9. Synthesis, characterization, quantum-chemical calculations, and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids

    • Authors: Ekaterina D. Naydenova, Milen N. Marinov, Georgi T. Momekov, Ralitsa Y. Prodanova, Nadezhda V. Markova, Yavor T. Voynikov, Nikolay M. Stoyanov
    • Year: 2019
  10. Tautomerism of Inosine in Water: Is It Possible?

  • Authors: Nadezhda Markova, Venelin Enchev
  • Year: 2019
  1. 2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution
  • Authors: Venelin Enchev, Nadezhda Markova, Milen Marinov, Nikolay Stoyanov, Milen Rogojerov, Aleksandr Ugrinov, Ireneusz Wawer, Dorota M. Pisklak
  • Year: 2017
  1. Green synthesis, structure and fluorescence spectra of new azacyanine dyes
  • Authors: Venelin Enchev, Nikolay Gadjev, Ivan Angelov, Stefka Minkovska, Atanas Kurutos, Nadezhda Markova, Todor Deligeorgiev
  • Year: 2017
  1. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir
  • Authors: Nadezhda Markova, Ljupco Pejov, Nina Stoyanova, Venelin Enchev
  • Year: 2017
  1. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides – Structural characterization and antimicrobial evaluation
  • Authors: Borislava Stoykova, Mariya Chochkova, Gergana Ivanova, Nadezhda Markova, Venelin Enchev, Ivanka Tsvetkova, Hristo Najdenski, Miloslav Štícha, Tatiana Milkova
  • Year: 2017
  1. 2-Carbamido-1,3-indandione – A Fluorescent Molecular Probe and Sunscreen Candidate
  • Authors: Venelin Enchev, Ivan Angelov, Violeta Mantareva, Nadezhda Markova
  • Year: 2015
  1. A hybrid statistical mechanics – Quantum chemical model for proton transfer in 5-azauracil and 6-azauracil in water solution
  • Authors: Nadezhda Markova, Ljupco Pejov, Venelin Enchev
  • Year: 2015
  1. Synthesis of 3′,4′-Dihydro-2H,2′H,5H-spiro [imidazolidine-4,1′-naphthalene]-2,5-dione and its Derivatives
  • Authors: Milen Marinov, Plamena Marinova, Nikolay Stoyanov, Nadezhda Markova, Venelin Enchev
  • Year: 2014
  1. A model system with intramolecular hydrogen bonding: Effect of external electric field on the tautomeric conversion and electronic structures
  • Authors: Venelin Enchev, Vasil Monev, Nadezhda Markova, Milen Rogozherov, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Excited state proton transfer in 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1, 2-diol
  • Authors: Venelin Enchev, Nadezhda Markova, Milena Stoyanova, Plamen Petrov, Milen Rogozherov, Natalia Kuchukova, Ivanka Timtcheva, Vasil Monev, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Tautomeric equilibria of 5-fluorouracil anionic species in water
  • Authors: Nadezhda Markova, Venelin Enchev, Gergana Ivanova
  • Year: 2010
  1. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles
  • Authors: Maria Simeonova, Gergana Ivanova, Venelin Enchev, Nadezhda Markova, Milen Kamburov, Chavdar Petkov, Aidan Devery, Rod O’Connor, Declan Brougham
  • Year: 2009
  1. Ab initio and DFT study of the structure of metal ion complexes with N-benzalaniline-15-crown-5
  • Authors: Venelin Enchev, Snezhina Angelova, Nadezhda Markova, Ireneusz Wawer, Evgenia Stanoeva, Mariana Mitewa
  • Year: 2008
  1. Ab initio study of 2,4-substituted azolidines. II. Amino-imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution
  • Authors: Venelin Enchev, Nadezhda Markova, Snezhina Angelova
  • Year: 2005

Heba Abdallah | Chemical Engineering | Women Researcher Award

Prof. Heba Abdallah | Chemical Engineering | Women Researcher Award

Professor at National Research Centre, Egypt

Heba Abdallah Mohamed Abdallah is a distinguished professor of Chemical Engineering at the National Research Centre in Cairo, Egypt. She is a leading consultant engineer specializing in the manufacturing of special membranes for water treatment processes. With over two decades of experience, she has made significant contributions to chemical engineering, particularly in membrane technology, water desalination, and wastewater treatment. Her expertise spans the production of flat sheet, spiral wound, and hollow fiber membranes, as well as catalytic membrane reactors. Heba has played a pivotal role in advancing membrane-based solutions for environmental sustainability and industrial applications. She has participated in numerous international conferences and workshops, showcasing her dedication to continuous learning and knowledge dissemination. As a prolific researcher, she has authored and co-authored several high-impact scientific publications focusing on water purification, photocatalysis, and membrane performance enhancement. Her involvement in prestigious research projects and collaborations with international institutions reflects her global influence in the field. Heba Abdallah’s contributions extend beyond research, as she actively mentors young researchers and engineers, inspiring future generations to drive technological innovations for sustainable water management.

Professional Profile

Education

Heba Abdallah holds a Ph.D. in Chemical Engineering from Cairo University, awarded in November 2010. Her doctoral research focused on the kinetics study of esterification reactions using catalytic membranes, showcasing her expertise in membrane-based chemical processes. She also earned a Master of Science (M.Sc.) in Chemical Engineering from Cairo University in December 2004. Her master’s thesis evaluated cement lining mortar for cast iron pipes, demonstrating her proficiency in material science and industrial applications. Heba’s academic journey began with a Bachelor of Science (B.Sc.) in Chemical Engineering from Cairo University, completed in May 2000. Her graduation project involved the production of methanol using a multi-tubular reactor, highlighting her early interest in industrial chemical processes. Throughout her academic career, Heba demonstrated a keen focus on engineering solutions for industrial and environmental challenges. Her solid educational foundation has been instrumental in shaping her research career, enabling her to make significant contributions to membrane technology and water treatment.

Professional Experience

Heba Abdallah has an extensive professional background in chemical engineering, with a focus on membrane technology and water treatment. Since 2021, she has been a Professor at the National Research Centre (NRC) in Cairo, Egypt, where she leads advanced research projects on membrane production and application. From 2016 to 2021, she served as an Associate Professor at the NRC, contributing significantly to research and development in water desalination and wastewater treatment. Prior to that, she was a Researcher at the NRC from 2010 to 2016, where she honed her expertise in membrane fabrication and performance enhancement. From 2006 to 2010, she worked as an Associate Researcher at the NRC, focusing on pilot-scale membrane production and testing. Earlier in her career, Heba gained industrial experience as a Research Assistant at El-Nasr Casting Company from 2001 to 2006 and as an Engineer in the same company from 2000 to 2001. Her diverse experience, combining academic research with industrial practice, has made her a recognized expert in the field of chemical engineering and membrane technology.

Research Interests

Heba Abdallah’s research interests span a wide range of chemical engineering fields, with a primary focus on membrane technology. She specializes in the production of flat sheet, spiral wound, and hollow fiber membranes for water desalination and wastewater treatment. Her work explores catalytic membrane reactors, electrodialysis, and reverse electrodialysis technologies for enhanced separation processes. Heba is also deeply involved in microreactor technology, aiming to develop efficient and sustainable chemical processes. Her research addresses environmental challenges, including the treatment of industrial effluents, removal of contaminants, and development of advanced filtration systems. She is particularly interested in the application of membrane technology in fuel cells, contributing to the development of clean energy solutions. Heba’s research also extends to the fabrication of nanocomposite membranes with enhanced antifouling and photocatalytic properties, targeting improved water purification efficiency. Her commitment to innovative research continues to drive advancements in sustainable water management and industrial membrane applications.

Research Skills

Heba Abdallah possesses a diverse set of research skills that contribute to her expertise in chemical engineering. She excels in the synthesis and fabrication of membranes, including flat sheet, spiral wound, and hollow fiber designs. Her technical proficiency extends to the development and optimization of catalytic membrane reactors for chemical processes. Heba has significant experience in water desalination technologies, including reverse osmosis and forward osmosis systems. She is skilled in the design and application of microreactors for industrial chemical reactions, enhancing process efficiency and scalability. Her analytical skills include membrane performance evaluation, fouling resistance assessment, and photocatalytic activity testing. Additionally, she is adept at using advanced characterization techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) to analyze membrane morphology and composition. Heba’s expertise in wastewater treatment, membrane surface modification, and electrodialysis technologies underscores her capacity to develop innovative solutions for water purification and industrial processes.

Awards and Honors

Heba Abdallah has received numerous accolades for her contributions to chemical engineering and membrane technology. Her participation in international conferences and workshops has earned her recognition for presenting groundbreaking research on membrane applications in water treatment. She was honored for her role in the development of innovative polymeric and ceramic membranes, enhancing water purification efficiency. Heba’s collaborations with international institutions, including her training at Holykem Company in China and Alabama University in the United States, reflect her global influence. She has also been acknowledged for her contributions to scientific innovation through her involvement in the Cairo International Exhibition of Innovation. Her membership in the Egyptian National Network in Nanotechnology highlights her commitment to advancing nanotechnology applications in membrane science. Heba’s continuous pursuit of excellence and her impactful contributions to sustainable water management have positioned her as a leading figure in the field of chemical engineering.

Conclusion

Heba Abdallah is a prominent figure in chemical engineering, recognized for her expertise in membrane technology and water treatment. With a strong academic background, extensive research experience, and a passion for innovation, she has made significant contributions to sustainable water management and industrial chemical processes. Her work on advanced membrane fabrication, water desalination, and wastewater treatment has been widely acclaimed in scientific communities. Heba’s commitment to knowledge dissemination is evident through her participation in international conferences and her numerous publications in high-impact journals. Her influence extends beyond research, as she actively mentors and collaborates with other scientists to drive technological advancements. Heba Abdallah’s dedication to developing efficient and eco-friendly membrane technologies continues to play a vital role in addressing global water challenges and promoting sustainable industrial practices.

Publications Top Notes

  1. The Use of Green Synthesized TiO2/MnO2 Nanoparticles in Solar Power Membranes for Pulp and Paper Industry Wastewater Treatment

    • Authors: S.A. Mousa, Sahar A.; H.M. Abdallah, Heba Mohamed; S.A. Khairy, Sherif A.
    • Year: 2025
  2. Modification of Blend Reverse Osmosis Membranes Using ZrO2 for Desalination Process Purposes

    • Authors: S.O. Alaswad, Saleh O.; E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2025
  3. Integrated System of Reverse Osmosis and Forward Pressure-Assisted Osmosis from ZrO2 Base Polymer Membranes for Desalination Technology

    • Authors: S.O. Alaswad, Saleh O.; H.M. Abdallah, Heba Mohamed; E.S. Mansor, Eman S.
    • Year: 2024
  4. Fabrication and Assessment of Performance of Clay-Based Ceramic Membranes Impregnated with CNTs in Dye Removal

    • Authors: K.H. Hamad, Kareem H.; H.M. Abdallah, Heba Mohamed; S.T. Aly, Sohair T.; R.M. Abobeah, Reda M.; S.K. Amin, Sh K.
    • Year: 2024
  5. High-Performance Metal-Organic Frameworks for Efficient Adsorption, Controlled Release, and Membrane Separation of Organophosphate Pesticides

    • Authors: A.M. Ashraf, Abdallah M.; M.H. Khedr, Mohamed Hamdy; A.A. Farghali, Ahmed A.; H.M. Abdallah, Heba Mohamed; M. Taha, Mohamed
    • Year: 2024
    • Citations: 4
  6. Integrated Membranes System for Water Application in Microbiology/Molecular Biology

    • Authors: H.M. Abdallah, Heba Mohamed; D.N. Abd-Elshafy, Dina Nadeem; M.S. Shalaby, Marwa Saied; A.M.H. Shaban, Ahmed Mahmoud H.; M.M. Bahgat, Mahmoud Mohamed
    • Year: 2024
  7. The Role of Membrane Filtration in Wastewater Treatment

    • Authors: E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2024
    • Citations: 1
  8. Production of Disinfective Coating Layer to Facial Masks Supplemented with Camellia sinensis Extract

    • Authors: D.N. Abd-Elshafy, Dina Nadeem; H.M. Abdallah, Heba Mohamed; R. Nadeem, Rola; A.M.H. Shaban, Ahmed Mahmoud H.; M.M. Bahgat, Mahmoud Mohamed
    • Year: 2024
  9. Highly Effective Ultrafiltration Membranes Based on Plastic Waste for Dye Removal from Water

    • Authors: E.S. Mansor, Eman S.; H.M. Abdallah, Heba Mohamed; A.M.H. Shaban, Ahmed Mahmoud H.
    • Year: 2024
    • Citations: 4
  10. Parameters Affecting Synthesis of Sulfonated Chitosan Membrane for Proton Exchange Membrane in Fuel Cells

  • Authors: S.G. Abd-Elnaeem, Sara G.; A.I. Hafez, Azza Ibrahim; K.M. El‑khatib, Kamel M.; M.K. Fouad, Mai Kamal; E.F. Abadir, Ehab Fouad
  • Year: 2024
  • Citations: 1

Dan Yang | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Dan Yang | Chemical Engineering | Best Researcher Award

School of Chemistry and Molecular Engineering, Nanjing Tech University, China

Dan Yang is an accomplished associate professor at Nanjing Tech University, specializing in chemistry and molecular engineering. With a strong academic foundation and extensive research experience, she focuses on the synthesis of metal nanoclusters and their applications in photoelectrocatalysis and electrocatalysis. Her research aims to develop innovative solutions for CO2 reduction and biomass conversion, contributing to sustainable chemical processes. Throughout her career, she has made significant contributions to the field, authoring multiple high-impact publications in renowned scientific journals. Dan Yang has successfully secured competitive research grants, demonstrating her expertise in securing funding for cutting-edge projects. With her deep-rooted knowledge in physical chemistry and material science, she continues to make impactful strides in catalysis research, earning recognition and respect in her field.

Professional Profile

ORCID Profile

Education

Dan Yang has an extensive academic background in chemistry and material science. She earned her doctoral degree in physical chemistry from Nanjing University (2017–2020) under the supervision of Professors Weiping Ding and Yan Zhu. During her doctoral studies, she focused on the catalytic conversion of C1 molecules using metal clusters. Prior to this, she obtained a master’s degree in material science from Sun Yat-sen University (2012–2014), where she worked under Professor Yuezhong Meng, specializing in the development of advanced materials. Her educational journey began at Northwest Normal University, where she completed her bachelor’s degree in chemistry (2008–2012), building a strong foundation in chemical principles and laboratory techniques. This diverse and robust educational background has equipped Dan Yang with the expertise to conduct innovative research in electrocatalysis and sustainable chemical processes.

Professional Experience

Dan Yang’s professional career reflects her dedication to advancing chemical research. She is currently an associate professor at Nanjing Tech University (2023–present), where she leads research on metal nanocluster synthesis and their applications in photoelectrocatalysis and electrocatalysis of C1 molecules and biomass conversion. Prior to her current role, she served as a postdoctoral researcher at the same university (2021–2022), where she worked on electrocatalytic CO2 reduction reactions (CO2RR) and the conversion of biomass derivatives into valuable chemical products. From 2014 to 2016, she was an assistant research fellow at the Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences. There, she contributed to the development of fine chemicals, including phase-change materials, epoxide plasticizers, and bio-based polyols. Her diverse professional experience underscores her expertise in catalysis, sustainable chemical synthesis, and material science.

Research Interests

Dan Yang’s research interests revolve around catalysis and sustainable chemistry. She specializes in the synthesis of metal nanoclusters and their catalytic applications in photoelectrocatalysis and electrocatalysis. Her current focus includes CO2 reduction reactions (CO2RR) to produce carbon monoxide (CO) and formic acid (HCOOH), offering potential solutions for carbon capture and utilization. She also explores the electrocatalytic transformation of biomass-derived molecules, such as glycerol and glucose, into valuable carboxylic acid products. Additionally, her work investigates the evolution of metal-ligand interfaces in nanoclusters and their impact on catalytic performance. Through her research, Dan Yang aims to develop efficient and sustainable catalytic systems that address environmental challenges and promote green chemical processes.

Research Skills

Dan Yang possesses a diverse set of research skills in the fields of catalysis and material science. She is highly proficient in the synthesis and characterization of metal nanoclusters, utilizing techniques such as transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nuclear magnetic resonance (NMR) to analyze cluster structures. Her expertise extends to electrochemical methods, including cyclic voltammetry and chronoamperometry, for evaluating catalytic performance. Additionally, she has experience in biomass conversion processes, utilizing electrocatalysis and photoelectrocatalysis techniques. Her analytical skills include advanced data interpretation and the use of computational tools for modeling catalytic reactions. Dan Yang’s technical proficiency enables her to design and optimize catalytic systems for efficient and selective chemical transformations.

Awards and Honors

Dan Yang has received several prestigious awards and research grants in recognition of her contributions to catalysis research. She was awarded the Young Scientists Fund of the National Natural Science Foundation of China (NSFC) for her project on the evolution of metal-ligand interfaces in gold clusters for CO2 reduction (2025–2027). She also leads a sub-project of the NSFC International Cooperation and Exchanges Program, focusing on new catalysts and materials for CO2 capture and conversion (2024–2026). Additionally, she secured funding from the Jiangsu Natural Science Foundation of China for her work on glycerol carbonate synthesis through electrochemical CO2 conversion (2023–2026). Dan Yang previously received support from the China Postdoctoral Science Foundation for her research on electrolyte-regulated CO2RR using gold clusters (2022–2023). These accolades highlight her innovative research and scientific impact.

Conclusion

Dan Yang is a distinguished researcher and associate professor with a profound expertise in catalysis, material science, and sustainable chemical processes. Her academic journey, spanning from physical chemistry to material science, has equipped her with the skills and knowledge to tackle complex challenges in CO2 reduction and biomass conversion. With a prolific publication record and multiple research grants, she continues to make significant contributions to the field. Her commitment to advancing sustainable catalytic processes reflects her dedication to addressing pressing environmental challenges. Through her innovative research, Dan Yang remains at the forefront of scientific discovery, driving advancements in electrocatalysis and green chemistry.

Publications Top Notes

  1. Metal-ligand interfaces for well-defined gold nanoclusters
    Authors: Yang, Dan; Wu, Yating; Yuan, Zhaotong; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Zhu, Yan; Yang, Yanhui
    Journal: Science China Chemistry
  2. Atomically Precise Water-Soluble Gold Nanoclusters: Synthesis and Biomedical Application
    Authors: Yan, Qian; Yuan, Zhaotong; Wu, Yating; Zhou, Chunmei; Dai, Yihu; Wan, Xiaoyue; Yang, Dan; Liu, Xu; Xue, Nianhua; Zhu, Yan
    Journal: Precision Chemistry

  3. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites
    Authors: Long, Jiangping; Tian, Suyang; Wei, Sheng; Lin, Hongqiao; Shi, Guiwen; Zong, Xupeng; Yang, Yanhui; Yang, Dan; Tang, Yu; Dai, Yihu
    Journal: Applied Surface Science

  4. Metal-carbonate interface promoted activity of Ag/MgCO3 catalyst for aqueous-phase formaldehyde reforming into hydrogen
    Authors: Wang, Qiaojuan; Wang, Jianyue; Rui, Wenjuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Li, Renhong; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  5. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C-H activation and propylene desorption
    Authors: Wei, Sheng; Dai, Hua; Long, Jiangping; Lin, Hongqiao; Gu, Junkun; Zong, Xupeng; Yang, Dan; Tang, Yu; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  6. Investigation into the coking-related key reaction steps in dry reforming of methane over NiMgOx catalyst
    Authors: Wang, Jianyue; Wang, Jiawei; Wei, Sheng; Zhang, Yiwen; Tian, Fuhou; Yang, Dan; Kustov, Leonid M.; Yang, Yanhui; Dai, Yihu
    Journal: Molecular Catalysis

  7. Ball-milling-induced phase transition of ZrO2 promotes selective oxidation of glycerol to dihydroxyacetone over supported PtBi bimetal catalyst
    Authors: Luo, Pan; Wang, Jianyue; Rui, Wenjuan; Xu, Ruilin; Kuai, Zhiyuan; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Yang, Yanhui; Dai, Yihu
    Journal: Chemical Engineering Journal

  8. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters (vol 4, pg 66, 2022)
    Authors: Not listed
    Journal: CCS Chemistry

  9. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity
    Authors: Wu, Yueqi; Long, Jiangping; Wei, Sheng; Gao, Yating; Yang, Dan; Dai, Yihu; Yang, Yanhui
    Journal: Microporous and Mesoporous Materials

  10. On the effect of zeolite acid property and reaction pathway in Pd-catalyzed hydrogenation of furfural to cyclopentanone
    Authors: Gao, Xing; Ding, Yingying; Peng, Lilin; Yang, Dan; Wan, Xiaoyue; Zhou, Chunmei; Liu, Wen; Dai, Yihu; Yang, Yanhui
    Journal: Fuel

  11. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters
    Authors: Yang, Dan; Liu, Xu; Dai, Yihu; Zhu, Yan; Yang, Yanhui
    Journal: Chemical Journal of Chinese Universities

  12. Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands
    Authors: Yang, Dan; Wang, Jiawei; Wang, Qiaojuan; Yuan, Zhaotong; Dai, Yihu; Zhou, Chunmei; Wan, Xiaoyue; Zhang, Qichun; Yang, Yanhui
    Journal: ACS Nano

  13. Chemoselective Oxidation of Glycerol over Platinum‐Based Catalysts: Toward the Role of Oxide Promoter
    Authors: Not listed
    Journal: ChemCatChem

  14. Catalytic Conversion of C1 Molecules on Atomically Precise Metal Nanoclusters
    Authors: Not listed
    Journal: CCS Chemistry

  15. Distinct chemical fixation of CO2 enabled by exotic gold nanoclusters
    Authors: Yang, Dan; Song, Yu; Yang, Fang; Sun, Yongnan; Li, Shuohao; Liu, Xu; Zhu, Yan; Yang, Yanhui
    Journal: The Journal of Chemical Physics

  16. A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals
    Authors: Not listed
    Journal: EcoMat

  17. Selective CO2 conversion tuned by periodicities in Au8n+4(TBBT)4n+8 nanoclusters
    Authors: Not listed
    Journal: Nano Research

  18. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores
    Authors: Not listed
    Journal: Chinese Journal of Catalysis

  19. Ligand-protected Au4Ru2 and Au5Ru2 nanoclusters: distinct structures and implications for site-cooperation catalysis
    Authors: Not listed
    Journal: Chemical Communications

  20. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity
    Authors: Not listed
    Journal: Journal of the American Chemical Society

  21. Controllable Conversion of CO2 on Non‐Metallic Gold Clusters
    Authors: Not listed
    Journal: Angewandte Chemie International Edition

  22. Sequence isomerism-dependent self-assembly of glycopeptide mimetics with switchable antibiofilm properties
    Authors: Chen, Limin; Feng, Jie; Yang, Dan; Tian, Falin; Ye, Xiaomin; Qian, Qiuping; Wei, Shuai; Zhou, Yunlong
    Journal: Chemical Science

  23. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles
    Authors: Chen, Limin; Yang, Dan; Feng, Jie; Zhang, Min; Qian, Qiuping; Zhou, Yunlong
    Journal: Journal of Materials Chemistry B

  24. The Evolution in Catalytic Activity Driven by Periodic Transformation in the Inner Sites of Gold Clusters
    Authors: Sun, Yongnan; Wang, Endong; Ren, Yujing; Xiao, Kang; Liu, Xu; Yang, Dan; Gao, Yi; Ding, Weiping; Zhu, Yan
    Journal: Advanced Functional Materials

Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Assoc. Prof. Dr. Chuan-Pei Lee | Chemical Engineering | Best Researcher Award

Associate Professor at Department of Applied Physics and Chemistry/University of Taipei, Taiwan

Professor Chuan-Pei Lee is an esteemed researcher in the fields of nanomaterials, solar energy, and electrochemical applications. Currently serving as an Associate Professor in the Department of Applied Physics and Chemistry at the University of Taipei, he has made significant contributions to renewable energy research. With a Ph.D. in Chemical Engineering from National Taiwan University, his expertise spans photocatalysis, energy storage devices, and water-splitting technologies. Prof. Lee has authored 117 SCI papers and 13 book chapters, earning a Google Scholar citation count of 5,537 with an H-index of 44. His research has been published in high-impact journals such as ACS Omega, Nano Energy, and J. Mater. Chem. A. Additionally, he has collaborated with international researchers and contributed to advancing sustainable energy solutions. His dedication to interdisciplinary research and scientific advancements makes him a prominent figure in his field.

Professional Profile

Education

Prof. Chuan-Pei Lee received his Ph.D. in Chemical Engineering from National Taiwan University in 2012, where he specialized in nanomaterials and energy conversion systems. His doctoral research focused on the synthesis and application of functional materials for energy devices, including dye-sensitized solar cells and electrocatalysts. Prior to his Ph.D., he completed his Master’s and Bachelor’s degrees in related fields, building a strong foundation in applied chemistry and physics. To further his expertise, he pursued postdoctoral research at the University of California, Berkeley, where he worked on 2D-layered transition metal dichalcogenides for electrochemical energy applications. His academic journey has been marked by a commitment to advancing energy-efficient technologies and exploring innovative nanostructured materials.

Professional Experience

Prof. Chuan-Pei Lee has held multiple academic and research positions that reflect his dedication to scientific innovation. Since joining the University of Taipei as an Associate Professor, he has led various research initiatives focusing on energy storage, nanomaterial synthesis, and catalysis. Prior to his current role, he conducted postdoctoral research at the University of California, Berkeley, where he explored the properties of 2D materials for energy applications. Over the years, he has collaborated with leading institutions and research groups, contributing to breakthrough studies in sustainable energy and nanotechnology. His work extends beyond academia, involving participation in industrial research projects and government-funded studies aimed at developing next-generation energy solutions.

Research Interests

Prof. Lee’s research interests revolve around renewable energy and nanotechnology. His work primarily focuses on the synthesis and application of nanomaterials for energy storage and conversion, including supercapacitors, photocatalytic CO₂ reduction, and dye-sensitized solar cells. He is particularly interested in exploring novel electrocatalysts for hydrogen evolution and oxygen reduction reactions, aiming to improve the efficiency of energy conversion devices. His studies on carbon-based materials, metal oxides, and transition metal dichalcogenides contribute to advancements in sustainable and efficient energy technologies. By integrating electrochemical techniques, he seeks to develop cost-effective and environmentally friendly energy solutions.

Research Skills

Prof. Lee possesses extensive expertise in nanomaterials synthesis, electrochemical analysis, and energy device fabrication. He is proficient in advanced characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) for material analysis. His experience includes the development of thin-film electrodes, nanostructured catalysts, and hybrid composite materials for solar energy applications. Additionally, he specializes in electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to evaluate the performance of energy storage systems. His ability to integrate materials science with electrochemical engineering makes him a versatile researcher in the field of applied physics and chemistry.

Awards and Honors

Prof. Chuan-Pei Lee has received several awards and recognitions for his outstanding contributions to research. His high-impact publications and innovative work in nanotechnology have earned him accolades from prestigious institutions and scientific societies. He has been recognized for his contributions to sustainable energy research and has received grants for his pioneering studies on nanostructured materials. His role as a corresponding author in multiple high-impact journals highlights his influence in the field. Additionally, he has been invited to present his research at international conferences and symposiums, further solidifying his reputation as a leading expert in applied physics and chemistry.

Conclusion

Prof. Chuan-Pei Lee is a highly accomplished researcher with a strong academic background, significant research contributions, and extensive expertise in nanomaterials and energy applications. His work in sustainable energy technologies, coupled with his proficiency in electrochemical techniques, has positioned him as a leader in his field. With a remarkable publication record and international collaborations, he continues to drive advancements in energy storage and conversion. His dedication to scientific discovery and innovation makes him a deserving candidate for prestigious research awards. Moving forward, his contributions to renewable energy solutions will play a crucial role in shaping the future of clean energy technologies.

Publications Top Notes

  1. Title: Use of organic materials in dye-sensitized solar cells
    Authors: CP Lee, CT Li, KC Ho
    Year: 2017
    Citations: 342

  2. Title: Recent progress in organic sensitizers for dye-sensitized solar cells
    Authors: CP Lee, RYY Lin, LY Lin, CT Li, TC Chu, SS Sun, JT Lin, KC Ho
    Year: 2015
    Citations: 270

  3. Title: Organic dyes containing carbazole as donor and π-linker: optical, electrochemical, and photovoltaic properties
    Authors: A Venkateswararao, KRJ Thomas, CP Lee, CT Li, KC Ho
    Year: 2014
    Citations: 200

  4. Title: A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells
    Authors: CP Lee, KY Lai, CA Lin, CT Li, KC Ho, CI Wu, SP Lau, JH He
    Year: 2017
    Citations: 163

  5. Title: Conducting polymer-based counter electrode for a quantum-dot-sensitized solar cell (QDSSC) with a polysulfide electrolyte
    Authors: MH Yeh, CP Lee, CY Chou, LY Lin, HY Wei, CW Chu, R Vittal, KC Ho
    Year: 2011
    Citations: 142

  6. Title: Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black
    Authors: CP Lee, PY Chen, R Vittal, KC Ho
    Year: 2010
    Citations: 135

  7. Title: Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells
    Authors: JY Li, CY Chen, CP Lee, SC Chen, TH Lin, HH Tsai, KC Ho, CG Wu
    Year: 2010
    Citations: 109

  8. Title: 2,7-Diaminofluorene-based organic dyes for dye-sensitized solar cells: effect of auxiliary donor on optical and electrochemical properties
    Authors: A Baheti, P Singh, CP Lee, KRJ Thomas, KC Ho
    Year: 2011
    Citations: 108

  9. Title: Beaded stream-like CoSe₂ nanoneedle array for efficient hydrogen evolution electrocatalysis
    Authors: CP Lee, WF Chen, T Billo, YG Lin, FY Fu, S Samireddi, CH Lee, …
    Year: 2016
    Citations: 98

  10. Title: Fluorene-based sensitizers with a phenothiazine donor: effect of mode of donor tethering on the performance of dye-sensitized solar cells
    Authors: A Baheti, KR Justin Thomas, CT Li, CP Lee, KC Ho
    Year: 2015
    Citations: 95

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Mohammad Ehtisham Khan | Chemical Engineering | Outstanding Scientists Awards

Assistant Professor at Jazan University, Saudi Arabia.

Dr. Mohammad Ehtisham Khan is an Assistant Professor in the Department of Chemical Engineering at Jazan University, Saudi Arabia. With a robust academic and research background, he specializes in nanotechnology, wastewater treatment, and environmental remediation. Dr. Khan has published numerous high-impact research articles in leading journals and has played a key role in advancing chemical engineering technologies, particularly in sustainable practices for water purification. His work spans diverse fields including nanocomposites, biosensors, and renewable energy applications, showcasing his commitment to addressing environmental challenges. Dr. Khan’s international exposure through postdoctoral research in South Korea and extensive experience in academia highlights his dedication to fostering scientific innovation. He has earned multiple prestigious awards and consistently contributes to scientific literature, editorial responsibilities, and advanced research projects, further solidifying his reputation as a leading researcher in his field.

Profile👤

Google Scholar

Education📝

Dr. Khan holds a Ph.D. in Chemical Engineering from Yeungnam University, South Korea, where he completed a dissertation on graphene-based nanocomposites for photocatalytic and photoelectrochemical applications. His doctoral research encompassed advanced coursework and experimental work, achieving an A+ in all subjects. Prior to his Ph.D., he earned a Master’s in Technology (M. Tech) in a related engineering discipline. He also undertook a postdoctoral research position at the same university, contributing to cutting-edge studies in chemical engineering. His academic journey is marked by a strong focus on nanotechnology and environmental sciences, equipping him with the expertise to address complex challenges in water purification and renewable energy systems. His education, combined with his global exposure, positions him as an expert in chemical engineering technology.

Experience👨‍🏫

Dr. Khan has accumulated a wealth of academic and research experience. He is currently an Assistant Professor in the Department of Chemical Engineering at Jazan University, where he has been since 2018. Prior to this, he held a postdoctoral research associate position at Yeungnam University, South Korea, working on advanced chemical engineering projects. Dr. Khan also served as a researcher at the Institute of Clean Technology and the School of Chemical Engineering at Yeungnam University, focusing on sustainable technologies for environmental applications. Additionally, he has taken on administrative responsibilities as the head of the Chemical Engineering Technology Department at Jazan University, overseeing academic programs and student projects. His experience also includes supervising final-year projects, mentoring undergraduate students, and managing multiple funded research projects.

Research Interest🔬 

Dr. Khan’s primary research interests lie in the development of nanotechnology-based solutions for environmental and industrial applications. His work focuses on the synthesis of nanocomposites and their use in photocatalytic and photoelectrochemical processes, particularly for water treatment and energy applications. He is also deeply involved in the fabrication of biosensors for environmental monitoring and medical diagnostics. Dr. Khan is interested in the intersection of chemical engineering with sustainability, exploring carbon-based nanomaterials for wastewater purification and renewable energy storage. His ongoing research includes projects on smart nanostructured catalysts, recycling of wastewater, and the development of affordable, environmentally-friendly materials for energy and environmental applications. His expertise positions him at the forefront of efforts to address global environmental challenges through innovative chemical engineering technologies.

Awards and Honors🏆

Dr. Khan has been recognized for his significant contributions to chemical engineering and environmental science. He was listed among the top 2% of scientists in the world based on a 2023 analysis by Stanford University. He has also received the prestigious “Best Young Scientist Award (Male)” at the International Academic and Research Excellence Awards (IARE) in 2019. Additionally, he has been appointed as the “Bentham Brand Ambassador” by the Editor-in-Chief of the journal Current Medicinal Chemistry, a reflection of his influence in the scientific community. He is also a member of several editorial boards of international journals, further acknowledging his role in shaping the field through peer review and scientific discourse. His achievements underscore his dedication to advancing research in chemical engineering and environmental sustainability.

Skills🛠️

Dr. Khan possesses a comprehensive skill set that spans across chemical engineering, nanotechnology, and environmental sciences. He has expertise in the synthesis and characterization of nanocomposites, specifically for use in photocatalytic, photoelectrochemical, and biosensor applications. His technical skills also include advanced laboratory techniques, project management, and the use of analytical tools for environmental monitoring. As an academic, he has strong teaching and mentoring skills, having supervised numerous final-year student projects and managed research teams. Dr. Khan is also proficient in coordinating interdisciplinary research projects, as demonstrated by his leadership roles in various funded initiatives. His skills in scientific writing, peer review, and editorial responsibilities are further enhanced by his contributions to high-impact journals and international conferences.

Conclusion 🔍 

Dr. Mohammad Ehtisham Khan is a distinguished academic and researcher whose contributions to chemical engineering and environmental sustainability have earned him international recognition. His extensive research in nanotechnology, particularly in the development of materials for water purification and renewable energy, aligns with global efforts to combat environmental degradation. Dr. Khan’s expertise, coupled with his leadership roles in academia, make him a strong candidate for research-focused awards. His accolades, including being listed among the top 2% of scientists, highlight his impact on the field. Overall, his dedication to advancing chemical engineering technologies, mentoring students, and contributing to scientific discourse solidifies his position as a leading figure in his field.

Publication Top Notes

A focused review on organic electrochemical transistors: A potential futuristic technological application in microelectronics
Authors: A Raza, U Farooq, K Naseem, S Alam, ME Khan, A Mohammad, W Zakri, et al.
Year: 2024
Journal: Microchemical Journal, Article 111737

Comparative analysis of dye degradation methods: Unveiling the most effective and environmentally sustainable approaches, a critical review
Authors: FU Nisa, K Naseem, A Aziz, W Hassan, N Fatima, J Najeeb, SU Rehman, et al.
Year: 2024
Journal: Review in Inorganic Chemistry, Vol. 1, pp. 1-27

Advancement in optical and dielectric properties of unsaturated polyester resin/zinc oxide nanocomposite: Synthesis to application in electronics
Authors: H Noor, A Zafar, A Raza, A Baqi, U Farooq, ME Khan, W Ali, SK Ali, et al.
Year: 2024
Journal: Journal of Materials Science: Materials in Electronics, Vol. 35(23), pp. 1598
Citations: 1

Excellent electrochemical performance of N and Mn doped NiCo2O4 functional nanostructures: An effective approach for symmetric supercapacitor application
Authors: A Sasmal, AK Nayak, ME Khan, W Ali, SK Ali, AH Bashiri
Year: 2024
Journal: Physica Scripta, Vol. 99(8), Article 085919

Fabrication and characterization of binary composite MgO/CuO nanostructures for the efficient photocatalytic ability to eliminate organic contaminants: A detailed spectroscopic analysis
Authors: U Farooq, M Raza, SA Khan, S Alam, ME Khan, W Ali, W Al Zoubi, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 315, Article 124264
Citations: 9

Insight into mechanism of excellent visible-light photocatalytic activity of CuO/MgO/ZnO nanocomposite for advanced solution of environmental remediation
Authors: M Imran, M Raza, H Noor, SM Faraz, A Raza, U Farooq, ME Khan, SK Ali, et al.
Year: 2024
Journal: Chemosphere, Vol. 359, Article 142224
Citations: 5

An affordable label-free ultrasensitive immunosensor based on gold nanoparticles deposited on glassy carbon electrode for the transferrin receptor detection
Authors: A Ahmad, G Rabbani, MA Zamzami, S Hosawi, OA Baothman, H Altayeb, ME Khan, et al.
Year: 2024
Journal: International Journal of Biological Macromolecules, Vol. 273(2), Article 133083
Citations: 3

Computational Drug Discovery of Medicinal Compounds for Cancer Management -Volume II
Authors: K Ahmad, S Shaikh, FI Khan, ME Khan
Year: 2024
Journal: Frontiers in Chemistry, Vol. 1, Article 1446510

Temperature and pressure dependent tunable GaAsSb/InGaAs QW heterostructure for application in IR-photodetector
Authors: W Ali, AM Quraishi, K Kumawat, ME Khan, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Physica E: Low-dimensional Systems and Nanostructures, Vol. 160, Article 115939

Solving the fouling mechanisms in composite membranes for water purification: An advanced approach
Authors: Y Ezaier, A Hader, A Latif, ME Khan, W Ali, SK Ali, AU Khan, AH Bashiri, et al.
Year: 2024
Journal: Environmental Research, Vol. 250, Article 118487
Citations: 4

Synthesis and characterization of X (X= Ni or Fe) modified BaTiO3 for effective degradation of Reactive Red 120 dye under UV-A light and its biological activity
Authors: K Balu, T Abisheik, T Niyitanga, S Kumaravel, W Ali, ME Khan, SK Ali, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124556
Citations: 1

Applications of nanomedicine-integrated phototherapeutic agents in cancer theranostics: A comprehensive review of the current state of research
Authors: A Shoaib, S Javed, M Tabish, ME Khan, M Zaki, SS Alqahtani, MH Sultan, et al.
Year: 2024
Journal: Nanotechnology Reviews, Vol. 13, Article 20240023

Preparation and Spectrochemical characterization of Ni-doped ZnS nanocomposite for effective removal of emerging contaminants and hydrogen production: Reaction kinetics and mechanisms
Authors: M Raza, U Farooq, SA Khan, Z Ullah, ME Khan, SK Ali, OY Bakather, et al.
Year: 2024
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Article 124513
Citations: 6

Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
Authors: N Sobahi, MM Alam, M Imran, ME Khan, A Mohammad, T Yoon, et al.
Year: 2024
Journal: Molecules, Vol. 29(11), Article 2439