Olga Vodyankina | Chemistry | Best Researcher Award

Prof. Olga Vodyankina | Chemistry | Best Researcher Award

Head of Department from Head of Department, Russia

Vodyankina Olga Vladimirovna is a distinguished chemist and professor at Tomsk State University, Russia. With over three decades of dedicated research, she has established herself as a leading expert in catalysis, photocatalysis, surface science, and green chemistry. She has published extensively, with 161 articles indexed in Scopus, an h-index of 23, and over 2,000 citations, reflecting the significant impact of her work on the scientific community. Throughout her career, she has demonstrated exceptional leadership in both academic and industrial collaborations, managing numerous national and international research projects. As the Head of the Department of Physical and Colloidal Chemistry, she has contributed immensely to advancing chemical education and research infrastructure at Tomsk State University. Professor Vodyankina is also recognized for her strong commitment to mentoring young scientists, having supervised 12 PhD dissertations and one Doctor of Science thesis. Her research focuses on the development of catalysts for environmentally friendly and energy-efficient chemical processes. With multiple prestigious awards to her name, including the D.I. Mendeleev Medal and the national “Professor of the Year” award, she remains a highly respected figure in her field. Her work continues to contribute to solving pressing environmental challenges and advancing sustainable chemical technologies.

Professional Profile

Education

Vodyankina Olga Vladimirovna’s educational journey has been deeply rooted in Tomsk State University, where she pursued all her higher education degrees in chemistry. She completed her specialist degree in chemistry in 1990 with an outstanding GPA of 5.0, showcasing her academic excellence from the outset. Between 1991 and 1996, she was a postgraduate student at the Department of Chemistry, where she successfully defended her PhD thesis on the “Physical-chemical investigation of ethylene glycol oxidation process.” Her doctoral research contributed to the early foundations of her later work in catalysis and oxidation processes. Furthering her academic pursuits, she enrolled in the Doctorate program at Tomsk State University from 1998 to 2002. Her DSc thesis, titled “The partial oxidation of ethylene glycol into glyoxal on Ag and Cu catalysts,” demonstrated her deepening specialization in heterogeneous catalysis and surface reactions. This advanced research earned her a Doctor of Science degree, solidifying her expertise and positioning her for leadership roles in the scientific community. Professor Vodyankina’s educational progression reflects her long-term dedication to chemical research and her consistent academic success within one of Russia’s most reputable scientific institutions.

Professional Experience

Vodyankina Olga Vladimirovna’s professional career spans over three decades at Tomsk State University, where she has served in various influential roles. She began as a researcher in the Laboratory of Catalytic Research in 1996, quickly advancing to senior researcher by 1997. Her dedication and research excellence led her to become a professor at the Chair of Physical and Colloidal Chemistry from 2003 to 2013. Since 2010, she has held the prestigious Full Professor position in the Faculty of Chemistry. In addition to her professorship, she has been the Head of the Department of Physical and Colloidal Chemistry since 2013, leading the department’s educational and research missions. Simultaneously, she continues her active role as a leading researcher at the Laboratory of Catalytic Research. Throughout her career, she has successfully combined teaching, mentoring, and pioneering research. Her extensive leadership experience includes managing large-scale projects funded by national and international organizations, as well as coordinating research collaborations with industry giants such as OJSC “Sibur-Holding” and Lyondell Basell (USA). Her professional journey reflects not only her scientific capability but also her ability to foster academic excellence, manage research teams, and contribute significantly to her university’s scientific standing.

Research Interests

Professor Vodyankina Olga Vladimirovna’s research interests lie predominantly in the areas of catalysis, photocatalysis, surface science, and green chemical processes. She has developed a particular expertise in the preparation and functionalization of catalysts for oxidation reactions, including the dry reforming of methane and the photocatalytic evolution of hydrogen. Her work extensively explores the oxidation of polyols and the design of active catalysts based on silver and platinum over cerium oxide supports, especially for environmental applications like the aftertreatment of diesel engine exhaust gases. She is deeply committed to solving modern challenges in energy efficiency and sustainable chemical production, with her research aligning closely with the principles of green chemistry. Professor Vodyankina’s interests also extend to understanding the synergistic interactions between metal nanoparticles and redox-active supports, aiming to control catalyst reactivity at the molecular level. Her current projects focus on resource-saving energy solutions, bio-renewable raw material processing, and emissions reduction. She actively collaborates with international partners, contributing to the advancement of global scientific knowledge in catalyst development. Her research is driven by both fundamental questions in physical chemistry and practical industrial applications, positioning her as a key contributor to environmentally friendly chemical innovations.

Research Skills

Professor Vodyankina Olga Vladimirovna possesses highly specialized research skills in the design, synthesis, and characterization of catalysts, particularly for oxidation processes and sustainable chemical conversions. She is adept at employing advanced catalytic techniques and surface science methodologies to develop catalysts with precise active site configurations. Her skills encompass catalyst preparation for dry reforming, photocatalysis, and hydrogen evolution reactions, with a strong ability to integrate these technologies into environmentally friendly processes. Additionally, she is experienced in leading complex, multi-partner research projects, managing laboratory operations, and supervising large research teams. Professor Vodyankina demonstrates excellent competence in interpreting physical-chemical reaction mechanisms and synergistic effects in heterogeneous catalysis. She has also organized scientific conferences, showcasing her skills in academic leadership and scientific community building. Her extensive knowledge of green chemistry and energy-efficient catalytic systems allows her to contribute to cutting-edge solutions for chemical manufacturing and pollution control. Moreover, her skills include guiding young researchers in developing their scientific capabilities, which strengthens the research capacity within her institution. Her technical proficiency, strategic project management, and collaborative approach make her a valuable asset to the international scientific community focused on sustainable catalysis.

Awards and Honors

Throughout her illustrious career, Professor Vodyankina Olga Vladimirovna has been recognized with numerous prestigious awards and honors that reflect her exceptional contributions to science, education, and mentorship. Notable among these is the national “Professor of the Year” award in 2022, bestowed by the Russian Professorial Assembly, and the highly esteemed D.I. Mendeleev Medal in 2013 for her major scientific and educational achievements. She has also been honored with multiple medals from the Russian Federation and the Tomsk regional government, including the “Honorary Mentor” medal in 2023 and the “For valiant labor in Tomsk State University” medal in 2020. Professor Vodyankina was a recipient of the Tomsk Region Government’s “Professor of the Year” award in 2021 and has won Tomsk State University’s science prize in the same year. Her consistent excellence has been acknowledged with the “Honorary Worker of Higher Professional Education” award from the Ministry of Education and Science of the Russian Federation. Additionally, she has twice won the prestigious Presidential Grant for young scientists with DSc degrees. These honors underscore her outstanding leadership, pioneering research, and enduring impact on the scientific and educational landscape in Russia.

Conclusion

Vodyankina Olga Vladimirovna’s extensive contributions to chemistry, particularly in the fields of catalysis and green chemical processes, position her as an exemplary candidate for the Best Researcher Award. Her impressive portfolio of over 160 publications, multiple national and international research projects, and substantial citation impact reflect the high quality and relevance of her work. Beyond her scientific achievements, her dedication to mentoring the next generation of chemists and leading academic departments showcases her commitment to the broader scientific community. She has successfully bridged the gap between fundamental research and industrial application, contributing to both scientific advancement and practical solutions for environmental sustainability. Her ability to secure significant research funding and her active role in international collaborations further highlight her dynamic approach to scientific leadership. Professor Vodyankina’s career is marked by continuous growth, innovation, and academic service, solidifying her as a key figure in her field. Her well-earned awards and recognitions further validate her influence and dedication. Overall, her extensive research excellence, leadership, mentorship, and societal contributions make her highly deserving of recognition through the Best Researcher Award.

Publications Top Notes

1. Synergistic Effects in Heterogeneous Catalysis: Status and Perspectives

  • Authors: Mikhail A. Salaev, Haifeng Xiong, Vicente Cortés Corberán, L. F. Liotta, Olga V. Vodyankina

2. Effect of Organic Linker Substituents on Properties of Metal-Organic Frameworks: A Review

  • Authors: Viktoriia V. Torbina, Yulia A. Belik, Olga V. Vodyankina

3. Design of Heterostructure Photocatalysts Based on Layered Perovskite-Like Bismuth Silicate

  • Authors: Yulia A. Belik, Roman Vergilessov, Evgenia A. Kovaleva, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2025

  • Citations: 1

4. Unravelling the Cu and Ce Effects in MnO₂-Based Catalysts for Low-Temperature CO Oxidation

  • Authors: Egor D. Blinov, Ekaterina V. Kulchakovskaya, Nikolai A. Sokovikov, Sergei A. Kulinich, Olga V. Vodyankina

  • Year: 2025

5. Sn-Modified Zr-UiO-66 Metal-Organic Frameworks for Dihydroxyacetone Conversion into Lactic Acid

  • Authors: Karina Kurmanbayeva, Semyon Nikulaichev, Nikolai A. Sokovikov, Viktoriia V. Torbina, Olga V. Vodyankina

  • Year: 2025

6. Unraveling the Mechanism of Hydrogen Evolution on Dark TiO₂ Obtained by Pulsed Laser Ablation

  • Authors: Elena D. Fakhrutdinova, E. V. Zinina, T. A. Bugrova, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2024

7. Laser Synthesis and Photocatalytic Properties of Bismuth Oxyhalides Nanoparticles

  • Authors: Vyacheslav E. Korepanov, Olesia A. Reutova, T. S. Kharlamova, Sergei A. Kulinich, V. A. Svetlichny

  • Year: 2024

8. Synergistic Effect as a Function of Preparation Method in CeO₂-ZrO₂-SnO₂ Catalysts for CO Oxidation and Soot Combustion

  • Authors: M. V. Grabchenko, Natalia N. Mikheeva, Nataliya V. Dorofeeva, Grigory V. Mamontov, Mikhail A. Salaev

  • Year: 2024

  • Citations: 4

9. Intermolecular Interactions, Regioselectivity, and Biological Activity of L-Ascorbic Acid, Nicotinic Acid and Their Cocrystal

  • Authors: Diana Nikolaevna Evtushenko, A. V. Fateev, Mark A. Khainovsky, Igor Albertovich Khlusov, Olga V. Vodyankina

  • Year: 2024

10. Design Strategy for Effective Supported Au-Pd Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural Under Mild Conditions

  • Authors: T. S. Kharlamova, Konstantin L. Timofeev, Denis P. Morilov, Olga A. Stonkus, Olga V. Vodyankina

  • Year: 2024

  • Citations: 3

LUMEI PU | Chemistry | Best Researcher Award

Prof. Dr. LUMEI PU | Chemistry | Best Researcher Award

Professor at College of science, Gansu agricultural university, China

Lumei Pu is a distinguished academic and researcher specializing in plasma chemistry and the application of natural products in medicinal and biological chemistry. With more than 34 years of experience at Gansu Agricultural University in China, she has made significant contributions to the development of her field. Pu’s extensive career includes a progression from her M.Sc. in Chemistry to a professorship in 2008, with a focus on exploring the intersection of chemistry and biology. Her research has had a lasting impact on understanding the properties and applications of natural compounds in various biological systems, positioning her as a leading expert in her areas of study.

Professional Profile

Education:

Lumei Pu obtained her M.Sc. in Chemistry from Northwest Normal University in China in 2001, where she laid the foundation for her career in scientific research. Her pursuit of advanced studies continued with a Ph.D., which she completed in 2005, further solidifying her expertise in the field of chemistry. These academic milestones were pivotal in shaping her research career, equipping her with the knowledge to contribute to both theoretical and applied chemistry in areas such as plasma chemistry and medicinal chemistry.

Professional Experience:

Lumei Pu has dedicated over three decades to research and academia, all at Gansu Agricultural University in China. Beginning as a lecturer, she ascended to a full professorship in 2008, where she became a leader in her department. Throughout her career, Pu has mentored numerous students and researchers, fostering innovation and promoting academic excellence. Her professional journey is marked by a continuous commitment to advancing the fields of plasma and medicinal chemistry.

Research Interests:

Pu’s primary research interests lie in plasma chemistry and the utilization of natural products in medicinal and biological chemistry. She has worked extensively on exploring how plasma technology can be applied to improve the synthesis of natural compounds and their therapeutic potential. Additionally, her research focuses on understanding the biochemical and biological roles of these compounds, investigating their potential in treating various diseases and improving human health. These interests have made her a key figure in both applied and theoretical research.

Research Skills:

Throughout her career, Lumei Pu has developed a diverse skill set, particularly in plasma chemistry, natural product chemistry, and medicinal chemistry. She is skilled in the design and execution of experiments that involve plasma technology to manipulate natural substances for biological and medicinal purposes. Her expertise extends to the analytical techniques required for studying complex chemical reactions, including spectroscopy and chromatography. Pu also possesses strong leadership and mentoring abilities, helping guide younger researchers to explore innovative scientific avenues.

Awards and Honors:

Lumei Pu’s dedication to research has earned her numerous accolades and recognition over the years. While specific awards are not detailed in the provided information, her position as a professor and her long-standing contribution to the field of plasma and medicinal chemistry reflect the respect she commands within the academic community. Her academic achievements and leadership roles within her institution underscore her significant contributions to advancing the scientific understanding of plasma chemistry and natural products.

Conclusion:

Lumei Pu is a highly experienced and knowledgeable researcher in plasma chemistry and medicinal chemistry, making her a strong candidate for the Best Researcher Award. While her extensive experience and research in the application of natural products are commendable, there is room to boost her global academic influence through enhanced publication activity, interdisciplinary collaboration, and innovation. If she continues to push the boundaries in these areas, she could further solidify her place as a leading figure in her field.

Publication Top Notes

  1. “A novel yet facile colorimetric and fluorescent dual-channel salamo-type probe for highly effective detection of B4O72− ions in real water samples and its application”
    • Authors: Zhang, Z.-X., Zhang, H.-W., Tuo, N., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1322
    • Article Number: 140497
  2. “Unprecedented cyclic-salamo-based compound and binuclear Zn(II) salamo-based complex originated from a double-armed salamo-based ligand: Experimental and theoretical studies”
    • Authors: Zhang, Z.-X., Du, M.-X., Yang, R.-W., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1321
    • Article Number: 140210
  3. “Exploring the synthesis, structure and properties of two phenoxy-bridged polynuclear Cu(II) and Ni(II) complexes containing salamo-based bicompartmental ligand”
    • Authors: Zhang, Z.-X., Tuo, N., Zhang, H.-W., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1320
    • Article Number: 139692
    • Citations: 1
  4. “Anion-Modulated Construction of Two Novel Tetra- and Hepta-Nuclear Ni(II) Salamo-Type Clusters: Comparison of the DFT Calculations and Weak Interaction Analyses”
    • Authors: Zhang, Z.-X., Zhang, H.-W., Zheng, T., Dong, W.-K., Wang, L.
    • Journal: Applied Organometallic Chemistry
    • Year: 2024
    • Volume: 38(12)
    • Article Number: e7733
  5. “Modulating electron structure of active sites in high-entropy metal sulfide nanoparticles with greatly improved electrocatalytic performance for oxygen evolution reaction”
    • Authors: Bo, L., Fang, J., Yang, S., Ma, Z., Tong, J.
    • Journal: International Journal of Hydrogen Energy
    • Year: 2024
    • Volume: 84
    • Pages: 89–96
  6. “Self-Assembly Mechanism of Avermectin B1a and Its Activity against Potato Rot Nematode”
    • Authors: Xu, W., Chu, S., Pan, F., Pu, L., Li, H.
    • Journal: ACS Agricultural Science and Technology
    • Year: 2024
    • Volume: 4(8)
    • Pages: 827–836
  7. “Interface Engineering Construction of an Ag-Modified Crystalline CoFe@Amorphous Fe2O3 Composite for Superior Oxygen Evolution Electrocatalysis”
    • Authors: Bo, L., Shen, Y., Li, S., Xu, L., Tong, J.
    • Journal: ACS Sustainable Chemistry and Engineering
    • Year: 2024
    • Volume: 12(32)
    • Pages: 12076–12085
  8. “Comprehensive insights of a Salamo-like Oligo(N,O-donor) ligand and its self-assembled di-nuclear Mn(III) and tetra-nuclear Cd(II) complexes”
    • Authors: Pu, L.-M., Li, S.-Z., Yan, Y.-B., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2024
    • Volume: 1309
    • Article Number: 138264
    • Citations: 3
  9. “Exploring the structural characteristics of novel Zn(II) complex and Ni(II) coordination polymer with a salamo-like ligand containing an exposed aldehyde”
    • Authors: Pu, L.-M., Gan, L.-L., Yue, Y.-N., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2024
    • Volume: 1308
    • Article Number: 138024
    • Citations: 2
  10. “An unusual highly sensitive dual-channel bis(salamo)-like chemical probe for recognizing B4O72−, sensing mechanism, theoretical calculations and practical applications”
    • Authors: Pu, L.-M., Li, X.-X., Chen, R., Long, H.-T., Dong, W.-K.
    • Journal: Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2024
    • Volume: 314
    • Article Number: 124187
    • Citations: 1

 

 

Liang-Nian He | Chemistry | Best Researcher Award

Prof. Liang-Nian He | Chemistry | Best Researcher Award

Professor at Nankai University, China

Prof. Liang-Nian He is a renowned Chinese chemist known for his exceptional contributions to green chemistry, catalysis, renewable energy chemistry, and CO2 chemistry. His groundbreaking work focuses on the catalytic conversion of CO2 into fuels and valuable chemicals, aiming to promote sustainability through carbon-neutral processes. Prof. He has an extensive academic and professional background, having worked in prestigious international institutions and published over 300 research papers. His research has garnered significant recognition, placing him among the most cited researchers in the field. He is a Professor of Chemistry at Nankai University and holds several prestigious fellowships, including being a Fellow of the Royal Society of Chemistry. Prof. He’s work has not only made theoretical contributions but also developed industrially applicable CO2 conversion technologies.

Professional Profile

Education:

Prof. Liang-Nian He obtained his doctorate in Chemistry from Nankai University in 1996. After completing his Ph.D., he worked as a postdoctoral associate at Wuhan University (1996-1998), collaborating with renowned chemist Prof. Ren-Xi Zhuo. During his academic journey, Prof. He was awarded international fellowships, including those from the AIST (National Institute of Advanced Science and Technology, Japan) from 2002-2003 and the NEDO (New Energy and Development Organization, Japan) fellowship from 1999-2002. These fellowships helped him further deepen his expertise in chemistry and catalysis. His formal education, combined with international postdoctoral training, laid a strong foundation for his future research endeavors.

Professional Experience:

Prof. Liang-Nian He has an impressive professional trajectory in both academic and international research environments. Currently, he is a Professor of Chemistry at Nankai University, one of China’s top research institutions. In addition to his academic role, Prof. He has contributed significantly to international scientific communities, having held prestigious fellowships such as the CSIRO Distinguished Visiting Professor at the Commonwealth Scientific and Industrial Research Organization in Australia in 2019. He has also been a recipient of the “Chutian Scholarship” Distinguished Professor award and has served in various capacities, including editorial roles for scientific publications and as an invited speaker at over 80 international conferences, further showcasing his influence in the global scientific arena.

Research Interests:

Prof. Liang-Nian He’s research focuses on the fields of green chemistry, catalysis, renewable energy chemistry, and CO2 chemistry. His work emphasizes the catalytic activation and transformation of CO2 into valuable chemicals and fuels, contributing to environmental sustainability and carbon-neutral technologies. He explores the integration of CO2 capture and conversion processes, aiming to close the carbon cycle through renewable energy-driven processes. Prof. He’s research also includes the development of novel catalytic materials and processes for biomass conversion and desulfurization technologies. His innovative work has far-reaching applications, addressing critical challenges in energy and environmental chemistry.

Research Skills:

Prof. Liang-Nian He possesses a comprehensive set of research skills in synthetic chemistry, catalysis, and materials design. He is skilled in developing novel catalytic processes for CO2 activation and conversion, focusing on green solvents and sustainable energy-driven reactions. His expertise extends to designing and synthesizing new catalytic materials based on mechanistic investigations. Prof. He also possesses strong analytical skills in reaction mechanism analysis and the development of catalytic processes that integrate CO2 capture with conversion. His ability to conduct interdisciplinary research, combining chemistry, energy science, and environmental sustainability, is central to his innovative contributions to CO2 valorization and green chemistry technologies.

Awards and Honors:

Prof. Liang-Nian He has received numerous prestigious awards and honors in recognition of his groundbreaking work in chemistry. He became a Fellow of the Royal Society of Chemistry in 2011, cementing his status as a leading figure in the field. In 2014, he was named one of the Most Cited Chinese Researchers by Elsevier, a distinction he held through 2024. Additionally, Prof. He was recognized as one of the top 1% highly cited authors in RSC journals from 2014-2020. He has also been the recipient of the Advancement of Science and Technology Award from the PLA in 2017, and the Nature Science Award of Tianjin in 2015. These accolades highlight the global recognition of his contributions to science, particularly in the areas of catalysis and CO2 chemistry.

Conclusion:

Prof. Liang-Nian He is a highly accomplished researcher with groundbreaking contributions in CO2 chemistry and green catalysis. His impressive publication record, innovative research interests, and leadership in the scientific community position him as an outstanding candidate for the Best Researcher Award. His work aligns with global priorities of sustainability and environmental protection, demonstrating not only academic excellence but also societal relevance. With slight improvements in expanding industry collaborations and public engagement, Prof. He can further magnify the impact of his research on a global scale.

Publication Top Notes:

  • Efficient, selective and sustainable catalysis of carbon dioxide
    • Authors: QW Song, ZH Zhou, LN He
    • Year: 2017
    • Citations: 926
  • Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion
    • Authors: ZZ Yang, LN He, J Gao, AH Liu, B Yu
    • Year: 2012
    • Citations: 516
  • CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion
    • Authors: ZZ Yang, YN Zhao, LN He
    • Year: 2011
    • Citations: 422
  • Upgrading carbon dioxide by incorporation into heterocycles
    • Authors: B Yu, LN He
    • Year: 2015
    • Citations: 338
  • Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins
    • Authors: Y Du, F Cai, DL Kong, LN He
    • Year: 2005
    • Citations: 320
  • Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol
    • Authors: JC Choi, LN He, H Yasuda, T Sakakura
    • Year: 2002
    • Citations: 307
  • Lewis basic ionic liquids‐catalyzed conversion of carbon dioxide to cyclic carbonates
    • Authors: ZZ Yang, LN He, CX Miao, S Chanfreau
    • Year: 2010
    • Citations: 306
  • Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride
    • Authors: H Yasuda, LN He, T Sakakura
    • Year: 2002
    • Citations: 299
  • Homogeneous hydrogenation of carbon dioxide to methanol
    • Authors: YN Li, R Ma, LN He, ZF Diao
    • Year: 2014
    • Citations: 284
  • Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions
    • Authors: JQ Wang, XD Yue, F Cai, LN He
    • Year: 2007
    • Citations: 259