Gui Chen | Inorganic Chemistry | Best Researcher Award

Prof. Gui Chen | Inorganic Chemistry | Best Researcher Award

Dongguan University of Technology, China

Prof. Gui Chen is an accomplished scholar in chemistry with expertise in photocatalysis, molecular catalysis, and renewable energy conversion, whose career reflects a strong balance of academic excellence, impactful research, and international collaboration. He earned his Ph.D. in Chemistry from the City University of Hong Kong (2012) following a master’s (2007) and bachelor’s degree (2004) in Chemistry from Xiamen University, where he was directly recommended for graduate admission based on academic distinction. Professionally, he has built an impressive trajectory—serving as a Postdoctoral Fellow at City University of Hong Kong (2012–2014), an Associate Professor at the Fujian Institute of Research on the Structure of Matter (2014–2017), and since 2017, advancing to Associate Professor and Professor at Dongguan University of Technology, where he continues to lead pioneering research. His research interests lie in CO₂ reduction, small molecule activation, visible-light photocatalysis, and hybrid catalytic systems, contributing solutions to global challenges in clean energy and environmental sustainability. He possesses strong research skills in photocatalyst design, molecular synthesis, nanomaterials, graphene hybrid systems, and advanced spectroscopic/electrochemical characterization, reflected in 42 published documents indexed in Scopus, 1,820 citations, and an h-index of 24. His works are widely published in high-impact journals including Nature Catalysis, Journal of the American Chemical Society, Angewandte Chemie International Edition, and Chemical Society Reviews, often through collaborations with leading international scientists. Prof. Chen’s academic excellence has been recognized through various awards, invited talks, and collaborative research grants, which underscore his reputation as a leader in the field. In conclusion, Prof. Gui Chen’s distinguished academic background, extensive publication record, and sustained contributions to sustainable chemistry and clean energy research position him as a globally recognized expert whose future endeavors are expected to further advance innovation, mentorship, and impactful international collaborations.

Profile: Scopus

Featured Publications

  1. Zhang, L., Chen, L., Shi, H., Wei, Y., Chen, G., & Lau, T.-C. (2025). Efficient photocatalytic reduction of CO2 to formate by a molecular noble metal-free system. Science China Chemistry, 68, 152–156.

  2. Bharti, J., Chen, L., Guo, Z., Cheng, L., Wellauer, J., Wenger, O. S., von Wolff, N., Lau, K.-C., Lau, T.-C., Chen, G., & Robert, M. (2023). Visible-light-driven CO2 reduction with homobimetallic complexes: Cooperativity between metals and activation of different pathways. Journal of the American Chemical Society, 145, 25195–25202.

  3. Wei, Y., Chen, L., Chen, H., Cai, L., Tan, G., Qiu, Y., Xiang, Q., Chen, G., Lau, T.-C., & Robert, M. (2022). Highly efficient photocatalytic reduction of CO2 to CO by in situ formation of a hybrid catalytic system based on molecular iron quaterpyridine covalently linked to carbon nitride. Angewandte Chemie International Edition, 61, e202116832.

  4. Ma, B., Blanco, M., Calvillo, L., Chen, L., Chen, G., Lau, T.-C., Drazic, G., Bonin, J., Robert, M., & Granozzi, G. (2021). Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. Journal of the American Chemical Society, 143, 8414–8425.

  5. Ma, B., Chen, G., Fave, C., Chen, L., Kuriki, R., Maeda, K., Ishitani, O., Lau, T.-C., Bonin, J., & Robert, M. (2020). Efficient visible-light driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. Journal of the American Chemical Society, 142, 6188–6195.

Ashish Patel | Pharmaceutical Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ashish Patel | Pharmaceutical Chemistry | Best Researcher Award

Parul Institute of Pharmacy, Parul University, India

Dr. Ashish Patel is an Associate Professor at Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, with extensive expertise in Pharmaceutical Chemistry. He earned his M.Pharm degree from M.S. University of Baroda in 2010 and subsequently completed his Ph.D. at R.K. University in 2016, focusing on the design and development of bioactive compounds. Over the course of his academic career, Dr. Patel has guided more than 25 postgraduate students and 5 Ph.D. scholars, demonstrating his commitment to mentorship and fostering research excellence. His professional experience includes curriculum development, laboratory management, and active participation in national and international conferences, contributing to the academic community both as a researcher and educator. Dr. Patel’s research interests are broad and interdisciplinary, encompassing drug design, green synthesis, anti-cancer and anti-diabetic compounds, and computational chemistry, with particular emphasis on virtual screening and structure-activity relationship studies. His research skills include microwave-assisted synthesis, FT-IR spectroscopy, molecular docking, and computer-aided drug design, enabling him to bridge theoretical approaches with experimental validation. To date, he has published 83 research articles, accumulated 574 citations, and maintains an h-index of 15, reflecting the impact of his contributions to pharmaceutical sciences. Dr. Patel has been recognized for his excellence in teaching and research through multiple awards, including the Leadership Award in the Professor’s Training Program at Parul University, highlighting his dedication to professional development and leadership in academia. In conclusion, Dr. Ashish Patel exemplifies the integration of teaching, mentorship, and innovative research in pharmaceutical chemistry. His career reflects a sustained commitment to advancing scientific knowledge, nurturing future researchers, and contributing to the global understanding of drug discovery and development, establishing him as a distinguished figure in his field.

Profile: Scopus | ORCID | Google Scholar | Staff Page

Featured Publications

  1. Patel, A., Rajendran, M., Shah, A., Patel, H., Pakala, S. B., & Karyala, P. (2021). Virtual screening of curcumin and its analogs against the spike surface glycoprotein of SARS-CoV-2 and SARS-CoV. Journal of Biomolecular Structure and Dynamics, 1–9.

  2. Saralaya, M. G., Patel, P., Patel, A., Manish, Roy, & Samresh, Patel. (2010). Antidiarrheal activity of methanolic extract of Moringa oleifera Lam roots in experimental animal models. International Journal of Pharmaceutical Research, 2(2), 25–29.

  3. Patel, A., Patel, S., Mehta, M., Patel, Y., Patel, R., Shah, D., Patel, D., & Shah, U. (2022). A review on synthetic investigation for quinoline—Recent green approaches. Green Chemistry Letters and Reviews, 15(2), 337–372.

  4. Patel, A. D., Pasha, T. Y., Lunagariya, P., Shah, U., Bhambharoliya, T., … [additional authors]. (2020). A library of thiazolidin‐4‐one derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors: An attempt to discover novel antidiabetic agents. ChemMedChem, 15(13), 1229–1242.

  5. Patel, P., Shah, D., Bambharoliya, T., Patel, V., Patel, M., Patel, D., Bhavsar, V., … [additional authors]. (2024). A review on the development of novel heterocycles as α-glucosidase inhibitors for the treatment of type-2 diabetes mellitus. Medicinal Chemistry, 20(5), 503–536.

Beril Anilanmert | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Beril Anilanmert | Chemistry | Best Researcher Award

Istanbul University-Cerrahpasa Institute of Forensic Sciences and Legal Medicine, Turkey

Assoc. Prof. Dr. Beril Anilanmert is a distinguished scholar in forensic toxicology and analytical chemistry, currently serving at the istanbul University – Cerrahpasa, Institute of Forensic Sciences, Turkey. She earned dual doctoral degrees, a Ph.D. in Analytical Chemistry from Marmara University and a Ph.D. in Forensic Sciences from Istanbul University, equipping her with rare interdisciplinary expertise that bridges the fields of chemistry, pharmacology, and forensic medicine. With over two decades of academic and research experience, she has made significant contributions to the detection and validation of toxic substances, explosive residues, and drugs of abuse using advanced analytical methodologies such as LC-MS/MS and chromatographic techniques. Her professional work extends to drug-facilitated crime investigations, forensic pharmacovigilance, and validation studies in line with ISO/IEC 17025 standards, and she has also provided specialized training courses in these areas. Her research interests focus on toxicological analysis, forensic pharmacology, psychoactive substances, and the development of reliable detection systems to support both health and justice. Demonstrating strong research skills in chromatographic separation, mass spectrometry, bioanalytical method development, and toxicological validation, she has published extensively in SCI-Expanded journals and contributed to internationally recognized books and book chapters with publishers such as CRC, Bentham, and Intech. Dr. Anılanmert has received several awards and honors from Elsevier, Bentham Science, TÜBİTAK, and Istanbul University for her impactful research and peer-review activities, alongside invitations to serve on scientific juries and conference committees. With 24 indexed documents, nearly 200 citations, and an h-index of 8, her scholarly influence continues to grow, reinforced by her leadership in funded projects and international collaborations. In conclusion, Assoc. Prof. Dr. Beril Anılanmert stands out as an accomplished researcher whose interdisciplinary expertise, innovative methodologies, and academic contributions have advanced forensic science, strengthened public health and safety, and positioned her as a leader with significant potential for further international impact.

Profile: Scopus | ORCID

Featured Publications

Electrophoresis. (2025). From one strand dyed/undyed hair with/without root to fast and successful STR profiling and evaluation with principal component analysis. Electrophoresis. Advance online publication.

Pakistan Journal of Pharmaceutical Sciences. (2023). Urgent first-step screening method for ketamine, phenobarbital, zopiclone, zolpidem, phenytoin and thiopental in adulterated soft drink. Pakistan Journal of Pharmaceutical Sciences. Advance online publication.

Xinqiang Fang | Chemistry | Best Researcher Award

Prof. Xinqiang Fang | Chemistry | Best Researcher Award

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

Prof. Xinqiang Fang is a distinguished scholar in the field of organic chemistry, currently serving as a Professor at the Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. He obtained his Ph.D. in Organic Chemistry from the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, followed by postdoctoral research at Nanyang Technological University, Texas A&M University, and Cornell University, which equipped him with advanced expertise in catalysis and synthetic methodology. His professional experience spans more than a decade of independent research, during which he has published over 80 peer-reviewed papers in prestigious journals such as JACS, Angewandte Chemie, and Nature Communications, earning more than 1,900 citations and an h-index of 24. His primary research interests include asymmetric catalysis, catalytic kinetic resolution, α-diketone chemistry, and the synthesis of bioactive natural products, with significant contributions to copper- and ruthenium-catalyzed reactions and novel methodologies in green chemistry. Skilled in reaction mechanism studies, catalytic design, and advanced organic synthesis, he has also trained numerous graduate students and postdoctoral researchers. His work has been highlighted by international platforms and recognized with honors for research excellence. In conclusion, Prof. Fang’s innovative contributions, global collaborations, and leadership in catalysis firmly establish him as a leading figure driving advancements in modern organic chemistry.

Profile: Scopus

Featured Publications

Harapriya Rath | Chemistry | Best Researcher Award

Prof. Harapriya Rath | Chemistry | Best Researcher Award

Professor from Indian Association for the Cultivation of Science | India

Prof. Harapriya Rath is a renowned chemist and academic leader with a specialized focus on macrocyclic and supramolecular chemistry, particularly porphyrinoid systems. Currently serving as a Professor at the School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, India, she has made significant contributions to organic, inorganic, and physical chemistry. Her research highlights include aromaticity switching, nonlinear optics, photophysical studies, and anion sensing using expanded porphyrins. Prof. Rath is widely recognized for her pioneering work on core-modified expanded porphyrins, which has opened up new possibilities in the field of functional molecular materials. With over 70 peer-reviewed publications in high-impact journals such as Nature Chemistry, JACS, Angewandte Chemie, and ChemComm, she has established herself as a global authority in the field. In addition to her prolific publication record, she has successfully guided numerous Ph.D. students and collaborated with leading international institutions across Japan, the UK, and Europe. Prof. Rath combines outstanding research, teaching excellence, and international networking, making her an influential figure in modern chemical sciences. Her work has not only contributed to the advancement of fundamental chemical knowledge but also found relevance in practical applications like sensors and molecular devices.

Professional Profile

Scopus Profile

Education

Prof. Harapriya Rath holds a Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Kanpur, India. Her doctoral research under the supervision of Prof. T. K. Chandrashekar focused on “Core Modified Expanded Porphyrins with Six meso-links: New Organic Materials for Nonlinear Optical Applications,” a study that laid the groundwork for her lifelong interest in macrocyclic and porphyrinoid chemistry. Prior to her Ph.D., she completed her M.Sc. in Chemistry, with a solid foundation in synthetic organic and inorganic chemistry. Following her doctoral studies, she pursued advanced postdoctoral research as a JSPS Fellow at Kyoto University and NAIST in Japan. Her international academic journey continued as a Royal Society Newton International Fellow at the University of Manchester, UK, where she expanded her work into molecular electronics and conformational rigidity. Her educational path has not only been rooted in academic excellence but also shaped by exposure to leading global research environments. Through her academic training in India and abroad, Prof. Rath acquired a comprehensive perspective on structural design, synthesis, and characterization of advanced molecular materials, enabling her to become a thought leader in macrocyclic chemistry.

Experience

Prof. Rath began her professional academic career at the Indian Association for the Cultivation of Science (IACS), Kolkata, where she currently serves as a Professor in the School of Chemical Sciences. Her professional journey also includes prestigious international postdoctoral appointments in Japan and the United Kingdom. she was a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow, where she worked at Kyoto University and NAIST on synthetic pathways for macrocyclic compounds with potential nonlinear optical properties. Later, she served as a Royal Society Newton International Fellow at the University of Manchester, where she collaborated with Prof. Martin Smith on molecular materials and π-conjugated systems. Over the years, Prof. Rath has led a productive and innovative research group at IACS, supervising Ph.D. students, initiating interdisciplinary collaborations, and securing funding from national and international science agencies such as SERB, DST, and JSPS. In addition to research, she is actively engaged in curriculum development, faculty recruitment, and organizing international conferences. Her extensive experience across different academic cultures has given her a unique ability to merge fundamental science with emerging technological applications, making her a sought-after academician and mentor.

Research Interests

Prof. Rath’s research interests lie at the interface of organic, inorganic, and physical chemistry, with a strong emphasis on macrocyclic chemistry, especially porphyrinoids and their derivatives. She is particularly known for her exploration of aromaticity and antiaromaticity in expanded porphyrins, where she has demonstrated how subtle structural modifications can lead to drastic changes in electronic properties. Her team has developed novel core-modified porphyrinoids that exhibit tunable aromaticity and have potential applications in nonlinear optics and molecular electronics. She is also deeply involved in investigating σ- and π-aromaticity switching, twisted Möbius topologies, and their implications in anion sensing and molecular recognition. Additionally, she explores supramolecular assemblies, photophysical properties of macrocycles, and their use in host–guest chemistry. Another frontier in her research includes studying NIR-absorbing chromophores and nonlinear optical materials, which are of immense interest for optoelectronic applications. Prof. Rath’s research is known for its novelty, interdisciplinary impact, and high relevance in material design, anion sensing, and energy transfer systems. Her work offers insights into not just structural chemistry but also electronic behaviors, bridging the gap between molecular design and functional application in sensors, devices, and smart materials.

Research Skills

Prof. Harapriya Rath brings an impressive array of research skills that blend chemical synthesis, spectroscopic characterization, and theoretical insight. She is highly skilled in designing and synthesizing large π-conjugated macrocyclic systems, particularly porphyrinoid-based frameworks. Her expertise lies in multi-step organic synthesis, functionalization of macrocycles, and manipulation of aromaticity through conformational control and core modifications. She is proficient in using advanced spectroscopic tools such as UV-Vis, fluorescence, NMR (1D and 2D), mass spectrometry, and single-crystal X-ray diffraction for structural analysis. Additionally, she integrates computational chemistry methods to understand electronic distribution, aromaticity indexes, and molecular orbitals using DFT and other quantum chemical techniques. Her skills also extend to studying photophysical behaviors such as emission lifetimes and quantum yields, which are crucial for designing optical sensors and photonic materials. With a background in physical-organic chemistry, she also explores nonlinear optical (NLO) properties using spectroscopic and theoretical methods. Prof. Rath’s lab operates at the confluence of synthetic chemistry and molecular materials science, where she trains young researchers in both experimental and analytical techniques. These well-rounded skills allow her to conduct fundamental and applied research at an internationally competitive level.

Awards and Honors

Prof. Harapriya Rath has received several prestigious awards and honors that underscore her outstanding contributions to chemical research. She was awarded the Ramanujan Fellowship by the Science and Engineering Research Board (SERB), Government of India, recognizing her as a young scientist with high potential. she was elected as a Fellow of the Royal Society of Chemistry (FRSC), a testament to her global standing in the field of chemical sciences. Earlier, she was the recipient of the Royal Society Newton International Fellowship, which allowed her to conduct pioneering research in molecular materials at the University of Manchester. She has also been a JSPS Postdoctoral Fellow in Japan, highlighting her early career excellence and international collaborations. Prof. Rath has been invited to deliver talks at national and international conferences, chaired scientific sessions, and contributed to academic panels and editorial review boards. She has received project funding from DST, SERB, and international partners. Her achievements in publishing high-impact research articles and mentoring future scientists further amplify her influence. Collectively, these accolades affirm her position as a leader in macrocyclic chemistry and molecular design.

Publication Top Notes

  1. Syntheses of Variants of π(σ) Aromatic Modified N-Methyl N-Confused Porphyrinoids with Adaptive Properties, Chemistry – An Asian Journal, 2025.

  2. Copper(III) Organometallic Complexes of Non (Anti)aromatic and Aromatic Doubly N-Confused Porphyrinoids: Syntheses and Characterization, Dalton Transactions, 2025,

  3. X-ray Characterization of Core-Modified N-Confused Fused Porphyrinogen and Genesis of π(σ) (Anti)aromatic N-Confused Fused Porphyrinoids, Organic Chemistry Frontiers, 2024, Citations: 3

  4. Organometallic Copper(II) Complex of meso-meso N-Methyl N-Confused Pyrrole-Bridged Doubly N-Methyl N-Confused Hexaphyrin, Organic & Biomolecular Chemistry, 2024, Citations: 3

  5. Rational and Controllable Syntheses of Variants of Modified N-Confused N-Fused Porphodimethenes and a Porphotrimethene with Adaptive Properties, Dalton Transactions, 2024, Citations: 3

Conclusion

Prof. Harapriya Rath is a trailblazer in the field of macrocyclic chemistry, particularly in the design and development of porphyrinoid-based materials with tailored electronic and optical properties. Her extensive body of work has not only advanced the fundamental understanding of aromaticity, conformational dynamics, and molecular recognition but also opened new avenues in functional materials for sensing, optoelectronics, and nonlinear optics. With a strong academic foundation built through her education in India and research fellowships in Japan and the UK, she brings a rare blend of theoretical insight and experimental rigor. As a professor at IACS Kolkata, she continues to inspire and mentor a new generation of chemists while actively contributing to global scientific discourse. Her recognition through prestigious fellowships and society memberships highlights her influence and dedication to scientific excellence. In every dimension—education, research, international collaboration, and community service—Prof. Rath exemplifies the qualities of a globally impactful researcher. With ongoing contributions and future potential for even broader interdisciplinary integration, she is well-positioned to shape the future of molecular materials science both in India and on the international stage.

Theoneste Muyizere | Chemistry | Best Researcher Award

Mr. Theoneste Muyizere | Chemistry | Best Researcher Award

Doctoral Researcher from National Center for Nanoscience and Technology, China

Theoneste Muyizere is a dedicated Rwandan researcher specializing in Nanobiotechnology and Nanomedicine, with a strong foundation in analytical chemistry and bioengineering. Currently pursuing his Ph.D. at the University of Chinese Academy of Sciences under the ANSO Fellowship, Theoneste’s work integrates cutting-edge DNA-based nanostructures for targeted drug delivery, gene therapy, and molecular imaging. His ambition to become a leading nanobiotechnologist is reflected in both the depth and breadth of his interdisciplinary research. He is the first author and corresponding author of impactful publications, including in Advanced Nanobiomed Research and Analytical Methods. He actively participates in international conferences such as ChinaNANO and the African Materials Research Society (AMRS), often receiving awards for his innovative poster presentations. His contributions extend beyond academia through co-founding Afro Nanotechnology Ltd., aiming to elevate research capacity in Africa. Theoneste’s work blends theoretical knowledge, experimental precision, and translational potential, with an emphasis on next-generation nanomedicine solutions. Fluent in English, French, Kinyarwanda, and Chinese, and proficient with numerous lab techniques and software tools, he is well-positioned as a future leader in scientific innovation. With a strong commitment to education, research excellence, and technological advancement, Theoneste represents a new generation of scientists pushing the boundaries of nanoscience for public health impact.

Professional Profile

Education

Theoneste Muyizere holds a comprehensive academic background bridging chemistry, biomedical sciences, and nanotechnology. He is currently pursuing a Ph.D. in Nanotechnology–Chemistry at the University of Chinese Academy of Sciences, focusing on DNA-based nanomedicine for targeted imaging and therapy. Prior to this, he obtained a Master’s degree in Applied Analytical Chemistry from Xi’an Shiyou University, China, where he developed proficiency in mass spectrometry and polymer chemistry. He further strengthened his technical expertise through a certificate program in Biomedical Engineering at Northwestern Polytechnical University, emphasizing his interdisciplinary learning. His undergraduate degree in Chemistry was completed at the University of Rwanda, and his high school studies culminated with an A’ Level certificate in Biology and Chemistry from College APEGIRUBUKI. His academic path is characterized by numerous competitive scholarships, including the Chinese Government Scholarship and the Rwandan Government REB funding. Through these programs, he acquired a solid theoretical and practical understanding of analytical techniques, organic synthesis, nanomaterials, and biotechnology. His coursework and laboratory training cover a wide array of subjects such as polymer chemistry, advanced organic and inorganic chemistry, biomaterials, drug delivery systems, and modern analytical instrumentation. This multidisciplinary education positions Theoneste for a distinguished research career at the interface of chemistry, biology, and nanomedicine.

Professional Experience

Theoneste Muyizere brings a diverse portfolio of professional experiences across academia, research, and applied science. Currently, he serves as a Laboratory Assistant and Technician at the CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, where he assists in nanomedicine-related experiments and technical development. He is also the Co-founder of Afro Nanotechnology Ltd., demonstrating entrepreneurial engagement in applying scientific knowledge to African development. Previously, he worked as an Assistant Researcher at Xi’an Shiyou University and Northwestern Polytechnical University, contributing to polymer analysis, bioimaging tools, and nanomaterials synthesis. Earlier in his career, Theoneste taught high school chemistry at G.S. RUBAGABAGA and G.S. RWAMIKO, building his foundation in science communication and pedagogy. He also undertook a professional internship at Xi’an Yidao Yueda Petroleum Technology Co. Ltd, working in the Analytical Testing Laboratory Division. These experiences have honed his technical, instructional, and problem-solving capabilities. Across his roles, he has been involved in various international workshops, conferences, and hands-on trainings related to biosafety, medical technology, and advanced drug delivery systems. Theoneste’s combined experience in teaching, research, lab management, and international collaboration makes him a dynamic professional contributing meaningfully to scientific advancement and practical implementation in biotechnology and nanomedicine.

Research Interests

Theoneste Muyizere’s research interests lie at the intersection of nanobiotechnology, analytical chemistry, and biomedicine, with a strong emphasis on DNA-based nanostructures for health applications. His core focus is the development of intelligent, stimuli-responsive nanodevices for targeted drug delivery and gene therapy, particularly in cancer treatment. He is also deeply engaged in engineering nano-bio interfaces that enhance molecular imaging and biomacromolecule sensing. This includes the construction of DNAzyme nanocircuits and nanorobots for real-time imaging and therapy monitoring. His interests extend to mass spectrometry techniques for analyzing polymers and biomolecules, integrating analytical rigor with biomedical relevance. Theoneste is passionate about translational research, aiming to convert lab-scale innovations into clinical and diagnostic tools. His broader goals include advancing Africa’s capacity in nanotechnology and biomedical sciences. As a participant in international projects and conferences, he continually refines his knowledge in molecular sensing, nanomedicine, regenerative therapy, and advanced analytical methods. His research is inherently interdisciplinary, drawing from chemistry, biology, and engineering to address complex problems in healthcare. By combining bioengineering principles with nano-scale materials design, Theoneste seeks to push the frontiers of personalized medicine, particularly through the synthesis and application of biomaterials that can function in vivo for precision diagnostics and therapy.

Research Skills

Theoneste Muyizere possesses an extensive and versatile set of research skills that position him as an advanced researcher in nanobiotechnology and analytical chemistry. He is proficient in the synthesis of nanomaterials, including DNA nanostructures, liposomes, and hydrogels, aimed at developing targeted drug delivery systems and molecular imaging agents. His expertise in cell culture techniques—including 2D, 3D, and organoid systems—complements his work in in vitro cytotoxicity, cell viability, and apoptosis assays. He is highly experienced in confocal laser scanning microscopy, flow cytometry, and in vivo imaging modalities such as MRI and fluorescence imaging. Theoneste also demonstrates strong command over analytical instrumentation, particularly in mass spectrometry (ESI, MALDI, PSI), and chromatography methods (HPLC, LC-MS, GC-MS). His knowledge extends to the operation of DLS, XRD, UV-Vis, and atomic force microscopy for nanomaterials characterization. In data analysis and visualization, he utilizes software like OriginPro, XCalibur, ChemDraw, and ImageJ. Additionally, his background in biosensor design, in vivo testing, and functional DNA engineering enables him to bridge analytical precision with clinical relevance. His ability to design, conduct, and analyze experiments independently, alongside his familiarity with ethical and safety regulations, makes him a well-rounded and capable scientific researcher.

Awards and Honors

Theoneste Muyizere has received multiple awards and honors recognizing his research excellence, academic performance, and leadership potential. Most notably, he is a recipient of the ANSO Fellowship for Young Talents (2020–2024), a prestigious program by the Chinese Academy of Sciences that supports emerging researchers from developing countries. His academic presentations have been awarded across various forums, including the “Excellent Poster Prize” at the 2024 Academic Forum on Artificial Intelligence and Frontier Nanotechnology, and the “NanoStar Poster Award” at a seminar hosted by the National Center for Nanoscience and Technology. He also received a Chinese Government Scholarship for his Master’s studies and a Rwandan Government REB Scholarship for his undergraduate education. In addition to academic awards, Theoneste has been recognized for his active participation in organizing committees, including for the African Materials Research Society Conference. His recognition extends to being selected as a visiting scholar at Northwestern Polytechnical University. These honors reflect not only his academic and scientific aptitude but also his initiative and global engagement. Through these accolades, Theoneste has demonstrated excellence in research communication, innovation, and international collaboration, solidifying his reputation as a promising leader in nanomedicine and scientific research.

Conclusion

Theoneste Muyizere exemplifies the qualities of a modern interdisciplinary researcher with a strong foundation in chemistry, biology, and nanotechnology. His academic journey, professional experience, and research output reflect a commitment to innovation, international collaboration, and practical impact. With a focus on developing next-generation DNA-based nanomedicines for diagnostics and therapy, he addresses some of the most pressing challenges in health and disease treatment. His technical proficiency across analytical instruments, in vivo experiments, and molecular imaging, coupled with his communication skills and multilingual fluency, make him an asset to both research institutions and global scientific networks. As a co-founder of Afro Nanotechnology Ltd., he also seeks to empower African scientific development. Theoneste’s accomplishments in publishing, presenting, and contributing to the scientific community highlight his potential for long-term leadership in nanobiotechnology. Recognized with awards and prestigious fellowships, he stands out as a dedicated scholar whose work is driven by both scientific curiosity and societal relevance. In conclusion, Theoneste Muyizere is a deserving candidate for the Best Researcher Award, and a role model for young scientists aspiring to merge academic excellence with meaningful innovation.

Publications Top Notes

  1. Engineered Nano–Bio Interfaces for Stem Cell Therapy
    🗞 Journal: Precision Chemistry
    📅 Published: August 28, 2023
    👥 Authors: Arsalan Umer, Muhammad Daniyal Ghouri, Theoneste Muyizere, Raja Muhammad Aqib, Abdul Muhaymin, Rong Cai, Chunying Chen

  2. Metal Salt Assisted Electrospray Ionization Mass Spectrometry for the Soft Ionization of GAP Polymers in Negative Ion Mode
    🗞 Journal: The Analyst
    📅 Published: 2020
    👥 Author: Theoneste Muyizere

  3. Polystyrene-Impregnated Paper Substrates for Direct Mass Spectrometric Analysis of Proteins and Peptides in Complex Matrices
    🗞 Journal: Analytical Methods
    📅 Published: 2018
    👥 Author: Theoneste Muyizere

  4. Development of Paper Substrate for Paper Spray MS in High-Sensitivity Analysis of Biological Samples
    🗞 Journal: Bioanalysis
    📅 Published: December 2018
    👥 Author: Theoneste Muyizere

 

Prasenjit Das | Chemistry | Best Researcher Award

Dr. Prasenjit Das | Chemistry | Best Researcher Award

Postdoc Researcher from Technische Universität Berlin, Germany

Dr. Prasenjit Das is an accomplished materials scientist with a focus on the design and synthesis of advanced materials for energy, sustainability, and environmental applications. His research primarily concentrates on the development of porous materials, such as covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for innovative solutions in energy storage, catalysis, and environmental remediation. With an impressive academic and professional background, Dr. Das has collaborated with leading global institutions and secured prestigious fellowships like the Alexander von Humboldt Fellowship. His contributions to the scientific community are marked by his ability to manage high-impact research projects, mentor students, and publish in top-tier journals. Known for his leadership in research and passion for education, Dr. Das is an emerging thought leader in advanced material science, with a vision for advancing sustainability through innovation. He continues to push the frontiers of materials research while nurturing the next generation of scientists.

Professional Profile

Education

Dr. Prasenjit Das holds an academic foundation that blends both theoretical knowledge and practical expertise. He obtained his Ph.D. in Chemistry from the University of Mumbai, where his dissertation focused on the synthesis and characterization of novel porous materials for catalytic and energy applications. During his postdoctoral work at the University of Pittsburgh, he expanded his research on the use of metal-organic frameworks (MOFs) in clean energy applications, particularly in CO2 capture and hydrogen storage. His educational journey is a reflection of his commitment to advancing the field of material science, combining deep academic rigor with practical innovation. This education has provided him with the necessary tools to contribute significantly to the scientific community and continue to lead in his area of expertise.

Professional Experience

Dr. Prasenjit Das has a diverse and extensive professional background, highlighted by his postdoctoral research at the Technical University of Berlin and the University of Pittsburgh, where he contributed to groundbreaking work in advanced materials and sustainability. His research expertise extends to catalysis, energy conversion, and environmental sustainability, focusing on the synthesis of novel materials like COFs and MOFs for critical applications. Dr. Das has also been an integral member of several internationally recognized research teams, overseeing research projects funded by prominent institutions such as DFG and UnisysCat. His professional roles have consistently demonstrated his leadership and ability to work collaboratively across disciplines. Dr. Das is currently leading cutting-edge projects that are aimed at addressing some of the most pressing global challenges in energy and sustainability.

Research Interests

Dr. Prasenjit Das’s research interests are primarily focused on developing advanced materials for energy storage, conversion, and environmental sustainability. He specializes in the synthesis of porous materials, including covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for use in clean energy applications such as CO2 capture, hydrogen storage, and photocatalysis. His work explores the intersection of material science, catalysis, and sustainability, aiming to create efficient and scalable solutions for energy-related challenges. Additionally, Dr. Das has a keen interest in the functionalization of porous materials for water splitting, renewable energy generation, and environmental protection. His research aims to bridge the gap between fundamental material science and its practical applications in addressing global issues such as climate change and resource depletion.

Research Skills

Dr. Prasenjit Das possesses a broad and diverse set of research skills that have allowed him to contribute significantly to the field of materials science. His expertise spans the synthesis and characterization of advanced porous materials, including COFs and MOFs, with a focus on their applications in energy storage, catalysis, and environmental sustainability. He is proficient in a wide array of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectroscopy, which he employs to thoroughly characterize and understand the properties of novel materials. Additionally, Dr. Das is skilled in computational modeling and simulation, which aids in the design and prediction of material behaviors. His strong leadership, mentoring abilities, and collaborative approach to research make him an invaluable asset to any research team.

Awards and Honors

Dr. Prasenjit Das has received several prestigious awards and honors throughout his career, recognizing his outstanding contributions to materials science and sustainability. Most notably, he was awarded the highly competitive Alexander von Humboldt Fellowship, which enabled him to further his research in advanced materials at leading international institutions. Additionally, his work has been recognized with several research grants from prominent funding bodies, including the Deutsche Forschungsgemeinschaft (DFG) and UnisysCat. Dr. Das has also been invited to present his research at numerous international conferences, further solidifying his position as an emerging leader in his field. His ability to secure funding and his collaborative efforts with global institutions highlight his potential for further recognition and success in the scientific community.

Conclusion

In conclusion, Dr. Prasenjit Das stands out as an innovative researcher with significant contributions to materials science and sustainability. His focus on the development of advanced porous materials, including COFs and MOFs, for energy and environmental applications, positions him as a leader in his field. Dr. Das’s ability to secure competitive fellowships, manage impactful research projects, and mentor the next generation of scientists highlights his exceptional leadership qualities. His work holds the potential to address pressing global challenges such as climate change and energy sustainability, making him a valuable asset to the scientific community. As he continues to make strides in his research, Dr. Das’s career is poised for even greater accomplishments in the coming years.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

Ying-Xue Yuan | Chemistry | Best Researcher Award

Prof. Dr. Ying-Xue Yuan | Chemistry | Best Researcher Award

Research Fellow from Zhengzhou University, China

Ying-Xue Yuan is a Research Fellow in the College of Chemistry at Zhengzhou University, specializing in the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She received her Ph.D. in Chemistry in 2020 from Huazhong University of Science and Technology (HUST). Following her Ph.D., she undertook postdoctoral research under the supervision of Professor Shuang-Quan Zang at Zhengzhou University from 2020 to 2022. Yuan’s work focuses on advancing the synthesis of coinage metal clusters with atomic precision and exploring their unique properties for various applications. Her research has the potential to revolutionize the fields of nanotechnology, materials science, and catalysis, with implications for both fundamental understanding and industrial applications. Yuan’s academic journey reflects a dedication to innovation and excellence, marked by her rising status as an independent researcher in the field of chemistry.

Professional Profile

Education

Ying-Xue Yuan completed her Ph.D. in Chemistry at Huazhong University of Science and Technology (HUST) in 2020. Throughout her doctoral studies, she focused on developing advanced methods for synthesizing metal clusters and exploring their supramolecular assembly. Her research at HUST laid a strong foundation in understanding the fundamental principles of molecular and materials chemistry. After earning her Ph.D., she pursued postdoctoral research at Zhengzhou University under the guidance of Professor Shuang-Quan Zang from 2020 to 2022. During this period, she expanded her research to include the practical applications of coinage metal clusters in catalysis and materials design. Her academic training has equipped her with a strong theoretical and practical understanding of chemistry, and she continues to build on this knowledge as she progresses in her career.

Professional Experience

Ying-Xue Yuan is currently serving as a Research Fellow in the College of Chemistry at Zhengzhou University. Before her current role, she gained invaluable experience as a postdoctoral researcher from 2020 to 2022, collaborating with Professor Shuang-Quan Zang. During her postdoctoral work, she contributed to several projects focusing on atomically-precise coinage metal clusters, enhancing her research portfolio and establishing her as an expert in the field. Yuan’s professional trajectory has shown significant promise, quickly advancing through research roles and collaborating with prominent academics in chemistry. Her postdoctoral experience also included working on high-impact publications, exploring applications for metal clusters in advanced materials and catalysis. This experience has provided her with a solid foundation for leading independent research projects and contributing to the advancement of her field.

Research Interests

Ying-Xue Yuan’s research interests lie at the intersection of materials chemistry, nanotechnology, and supramolecular chemistry. Her primary focus is on the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She investigates the unique properties of these clusters, such as their size-dependent behavior, and explores their potential applications in fields such as catalysis, energy storage, and material science. Yuan is particularly interested in understanding the self-assembly processes that lead to the formation of highly ordered, stable, and functional materials from coinage metal clusters. Her work aims to push the boundaries of how atomic-level precision can be harnessed for designing novel materials with tailored properties for specific applications, making significant contributions to both fundamental research and industrial development.

Research Skills

Ying-Xue Yuan possesses a strong set of research skills, which are critical to her success in the field of chemistry. Her expertise includes the synthesis and characterization of metal clusters, with an emphasis on precision and supramolecular assembly. She is skilled in various techniques such as X-ray diffraction, spectroscopy, and electron microscopy, which are essential for the analysis and characterization of materials at the atomic level. Yuan has also developed advanced skills in computational chemistry and modeling, allowing her to predict and optimize the properties of metal clusters before they are synthesized. Furthermore, her ability to collaborate with other researchers and contribute to interdisciplinary projects showcases her communication and teamwork skills, making her a versatile and effective researcher in both academic and applied settings.

Awards and Honors

As of now, Ying-Xue Yuan has not yet accumulated a long list of major awards and honors, which is understandable given that she is an early-career researcher. However, her work in the field of atomically-precise coinage metal clusters holds significant potential, and she is well-positioned for recognition in the future. Her postdoctoral work and current research as a Research Fellow suggest that she is on a promising trajectory to receive awards and honors in the coming years. As her research contributions gain further recognition, it is likely that her efforts will be acknowledged through prestigious awards in the fields of chemistry and nanotechnology, particularly for her innovative work in materials chemistry and catalysis.

Conclusion

Ying-Xue Yuan is a promising early-career researcher who has made significant strides in the field of chemistry, particularly in the preparation and application of atomically-precise coinage metal clusters. While her independent research career is still in the early stages, her academic background, postdoctoral experience, and specialized research interests indicate that she has a strong potential for future breakthroughs in nanotechnology and materials science. Yuan’s work demonstrates a deep understanding of complex chemistry principles and a passion for exploring new applications of atomic-level precision in material design. With a growing body of work and increasing recognition in her field, she is poised for continued success and potential future accolades as she advances her career.

Publications Top Notes

  1. Title: In-Situ Surface Repair of FAPbBr₃ Quantum Dots toward High-Performance Pure-Green Perovskite Light-Emitting Diodes
    Authors: Zhang, Jibin; Zhang, Dandan; Zhou, Xin; Hou, Lintao; Yuan, Yingxue
    Journal: Nano Letters
    Year: 2024
    Citations: 6

  2. Title: Chiral silver cluster-based light-harvesting systems: Enantioselective chirality transfer and amplified circularly polarized luminescence
    Authors: Yuan, Yingxue; Zhang, Jiani; Wang, Junru; Li, Kai; Zang, Shuangquan
    Journal: Chem
    Year: 2024
    Citations: 14

Seyed Iman Alavioon | Chemistry | Best Researcher Award

Dr. Seyed Iman Alavioon | Chemistry | Best Researcher Award

University of Tehran and Shahid Beheshti University, Iran

Dr. Seyed Iman Alavioon is a distinguished Iranian researcher specializing in organic and medicinal chemistry. With a robust academic foundation and extensive professional experience, he has made significant contributions to the fields of catalysis, drug delivery systems, and nanomedicine. His work encompasses both theoretical and applied aspects of chemistry, reflecting a deep commitment to advancing scientific knowledge and practical applications. Dr. Alavioon’s interdisciplinary approach bridges the gap between fundamental research and industrial innovation, positioning him as a valuable asset in both academic and commercial settings. His dedication to research excellence and education underscores his suitability for recognition as a leading researcher in his field.

Professional Profile

Education

Dr. Alavioon’s academic journey began with a Bachelor of Science in Applied Chemistry from Urmia University, where he focused on theoretical studies of natural products. He then pursued a Master of Science in Organic Chemistry at the University of Tehran, researching the catalytic effects of metal-supported SBA-15 on cyclization reactions. His doctoral studies at Shahid Beheshti University centered on C-H bond functionalization and decarboxylation reactions using transition metal catalysts, earning him an “Excellent” grade. Furthering his expertise, Dr. Alavioon completed two postdoctoral fellowships at the National Nutrition and Food Technology Research Institute, exploring coumarin derivatives, antibacterial biofilms, and nano redox-sensitive drug delivery systems.

Professional Experience

Dr. Alavioon’s professional career is marked by a blend of academic and industrial roles. Since 2020, he has served as the R&D Manager at Bayer Aflak Pharmaceutical Company, overseeing drug formulation and regulation for both veterinary and human applications. Concurrently, he held the position of Technical Officer and Cosmetic Formulator at Modiran Sanat Sa’adat, focusing on cosmeceutical products. His tenure as a Research Fellow at the Ministry of Defense from 2015 to 2022 highlights his involvement in high-impact projects, including the development of advanced rocket fuel materials. Dr. Alavioon’s diverse experiences reflect his ability to apply scientific principles to real-world challenges effectively.

Research Interests

Dr. Alavioon’s research interests are broad and interdisciplinary, encompassing C-H activation and functionalization, drug delivery systems, medicinal chemistry, and electrochemical synthesis. He is particularly focused on the synthesis of novel organic and medicinal derivatives, exploring their potential therapeutic properties. His work in encapsulation and pharmaceutics aims to enhance drug efficacy and delivery mechanisms. Additionally, Dr. Alavioon is engaged in computational organic chemistry and living polymerization, contributing to the development of advanced materials and pharmaceuticals. His research endeavors are characterized by a commitment to innovation and practical application.

Research Skills

Dr. Alavioon possesses a comprehensive skill set that spans various aspects of chemistry and related disciplines. He is proficient in molecular docking using AutoDock, and has extensive experience with chemistry software such as Gaussian, HyperChem, Spartan, and MATLAB. His expertise includes instrumental analytical techniques like HPLC, GC, IR, UV, and AAS. Dr. Alavioon has taught a range of subjects, including organic and medicinal chemistry, physical organic chemistry, and analytical chemistry, demonstrating his ability to convey complex concepts effectively. His skills in polymer chemistry and spectrometry further enhance his research capabilities, enabling him to undertake multifaceted projects with precision.

Awards and Honors

Dr. Alavioon’s contributions to science and technology have been recognized through various awards and honors. He is a permanent member of the Iranian Chemistry and Chemical Engineering Association and a member of the National Elite Foundation. His innovative work in developing a high-performance compound for rocket fuel, which surpassed existing high-energy materials in several parameters, was acknowledged by the Ministry of Defense. Additionally, Dr. Alavioon achieved notable rankings in national examinations, securing the 77th position in the master’s national exam and the 6th position in the specialized doctorate exam, reflecting his academic excellence and dedication to his field.

Conclusion

Dr. Seyed Iman Alavioon exemplifies the qualities of a leading researcher through his extensive academic background, diverse professional experiences, and significant contributions to science and industry. His interdisciplinary approach, combining organic chemistry, medicinal research, and practical applications, underscores his ability to address complex challenges effectively. Dr. Alavioon’s commitment to innovation, education, and collaboration positions him as a valuable contributor to the scientific community. His achievements and ongoing endeavors make him a strong candidate for recognition as a top researcher in his field

Publications Top Notes

  1. Title: Decarboxylation and cross-coupling reactions of coumarin-3-carboxylic acid: A comprehensive review
    Authors: Hooshmand, Seyyed Emad; Alavioon, Seyed Iman; Saeb, Mohammad Reza; Brahmachari, Goutam; Shiri, Morteza
    Type: Review
    Year: 2025 (assumed, please confirm if needed)
    Citations: 2

Zhigang Chen | Chemistry | Best Researcher Award

Dr. Zhigang Chen | Chemistry | Best Researcher Award

Associate Professor from Chongqing University of Technology, China

Zhigang Chen is an accomplished researcher and Associate Professor at the School of Energy Catalysis, Chongqing University of Technology. With a strong academic background in physical chemistry and materials science, he has developed a research niche in single-atom catalysis and advanced in situ characterization techniques. Dr. Chen has demonstrated an exceptional ability to combine theoretical knowledge with experimental innovation, resulting in significant contributions to the field of heterogeneous catalysis. His research has been widely recognized and published in prestigious journals such as Nature Communications, PNAS, Nano Letters, ACS Catalysis, and Small, with many works authored as the first or corresponding author. Throughout his academic and professional career, Dr. Chen has emphasized the development of scalable, high-performance catalysts for electrochemical applications, addressing key challenges in sustainable energy. His work not only advances fundamental understanding of catalyst behavior but also offers practical implications for energy conversion and storage technologies. Driven by scientific curiosity and a strong commitment to impactful research, Dr. Chen continues to explore novel materials and techniques with a vision to revolutionize the field of catalysis through innovation, precision, and interdisciplinary collaboration.

Professional Profile

Education

Zhigang Chen holds a robust academic foundation in materials science and physical chemistry, having completed his education at some of China’s most prestigious institutions. He earned his Bachelor’s degree in Materials Science and Engineering from Chongqing University of Technology in 2014, laying the groundwork for his future specialization in catalysis and nanotechnology. He then pursued a Master’s degree in Physical Chemistry at the School of Sciences, Shanghai University, from 2014 to 2017. During this time, he honed his skills in chemical analysis, reaction mechanisms, and materials characterization, which became pivotal in his later research. For his doctoral studies, Dr. Chen attended the University of Science and Technology of China, one of the country’s leading research universities, where he earned his Ph.D. in Physical Chemistry in 2020. His doctoral work delved into the mechanisms and design of advanced catalytic systems, particularly at the nanoscale level. Following his Ph.D., he undertook a postdoctoral fellowship at the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, specializing in surface catalysis. This rich academic trajectory has equipped him with a comprehensive understanding of both the theoretical and practical aspects of catalysis and advanced materials science.

Professional Experience

Zhigang Chen began his professional journey with a strong academic orientation, culminating in his current role as an Associate Professor at the School of Energy Catalysis, Chongqing University of Technology, where he has been serving since March 2023. Prior to this, he completed a postdoctoral fellowship at the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, from 2020 to 2023. There, he focused on surface catalysis and further deepened his expertise in nanostructured materials and their electrochemical applications. His postdoctoral research also emphasized in situ spectroscopic techniques, which enabled a more profound understanding of catalyst behavior under real-time operational conditions. Dr. Chen’s academic appointments reflect a continuous trajectory of growth, supported by both fundamental scientific training and advanced experimental research. Throughout his professional career, he has maintained a strong publishing record in internationally renowned journals and has taken on increasing responsibilities as a lead and corresponding author. His current role includes supervising graduate students, developing cutting-edge research projects in energy catalysis, and contributing to the scientific community through collaborations and peer-reviewed publications. His professional pathway showcases both academic depth and research leadership in a rapidly evolving scientific field.

Research Interests

Zhigang Chen’s research interests lie at the intersection of material science, surface chemistry, and energy technology, with a primary focus on the development and scale-up of single-atom catalysts. These advanced materials offer high catalytic efficiency, selectivity, and stability—key parameters for energy-related applications such as hydrogen evolution, oxygen evolution, and carbon dioxide reduction. His work is grounded in physical chemistry and is highly interdisciplinary, integrating concepts from solid-state chemistry, surface science, and electrochemical engineering. Dr. Chen is particularly interested in the application of in situ spectroscopic techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), which allow real-time investigation of catalytic behavior under operational conditions. His overarching research goal is to develop highly active and durable catalytic systems that contribute to sustainable and clean energy solutions. The combination of scalable material synthesis and in-depth mechanistic studies places his research at the frontier of nanocatalysis and materials innovation. Furthermore, he seeks to expand his work into industrially viable catalytic systems that can be deployed in real-world applications, thereby bridging the gap between fundamental research and applied technology.

Research Skills

Zhigang Chen possesses a diverse and advanced set of research skills that distinguish him in the field of catalysis and materials science. He is highly proficient in the synthesis and scale-up of single-atom catalysts, which involves complex procedures of atomic dispersion, substrate preparation, and post-treatment to achieve high catalytic performance. His work also extensively utilizes advanced characterization methods, particularly in situ spectroscopic techniques such as Raman spectroscopy, XPS (X-ray photoelectron spectroscopy), and XAS (X-ray absorption spectroscopy). These techniques enable him to monitor and analyze chemical reactions and structural changes of catalysts in real-time under operating conditions, providing critical insights into reaction mechanisms and material behavior. In addition to experimental techniques, Dr. Chen demonstrates strong skills in data interpretation, scientific writing, and critical review, as reflected in his numerous first-author publications in high-impact journals. His background in physical chemistry further enhances his ability to understand reaction kinetics, thermodynamics, and surface interactions at the atomic level. Moreover, he is adept at collaborating across disciplines, integrating materials science with electrochemistry and nanotechnology, which allows him to approach problems from multiple scientific perspectives. These research competencies position him as a leading innovator in catalyst development.

Awards and Honors

Zhigang Chen’s scholarly contributions have earned him recognition within the scientific community, as evidenced by his publication record in premier journals such as Nature Communications, PNAS, Nano Letters, Nano Energy, and ACS Catalysis. While specific awards or honors are not listed in his current profile, his recurring presence as the first or corresponding author in these top-tier journals is itself a mark of distinction. His research achievements reflect not only academic excellence but also innovation and leadership in the competitive field of catalysis and nanomaterials. Publishing in journals of this caliber requires stringent peer review and high-impact findings, indicating that Dr. Chen’s work consistently meets international standards of research excellence. Furthermore, his appointment as Associate Professor at a relatively early stage in his career signifies institutional recognition of his potential and expertise. He is also trusted with mentorship roles and leads significant research initiatives within his department. As his career progresses, it is expected that Dr. Chen will continue to receive formal awards and honors for his pioneering research, interdisciplinary collaborations, and contributions to advancing energy technologies.

Conclusion

Zhigang Chen stands out as a dynamic and innovative researcher whose work in single-atom catalysis and in situ spectroscopy has made a notable impact on the field of energy catalysis. His academic training, postdoctoral specialization, and current faculty role all reflect a focused and evolving career dedicated to advancing sustainable technologies through materials innovation. With a solid foundation in physical chemistry and materials science, Dr. Chen has developed advanced skills in catalyst synthesis and real-time analytical techniques, positioning him at the forefront of modern catalysis research. His extensive publication record in prestigious journals underscores his ability to produce high-quality, impactful research. Moreover, his current research aligns with global priorities such as clean energy and environmental sustainability, making his contributions both timely and socially relevant. As an emerging leader in his field, Dr. Chen has the potential to influence both academic research and industrial practices. With continued focus on interdisciplinary collaboration and application-driven research, he is well-poised to achieve greater scientific milestones. Overall, his profile makes him a strong contender for awards that recognize innovative and high-impact research.