Luciano Benedini | Chemistry | Best Researcher Award

Dr. Luciano Benedini | Chemistry | Best Researcher Award

Researcher/Professor from INQUISUR-CONICET/UNS, Argentina

Luciano Alejandro Benedini is an accomplished Argentine researcher specializing in pharmaceutical nanotechnology, biomaterials, and drug delivery systems. With a Ph.D. in Chemistry from Universidad Nacional del Sur (UNS), his academic journey reflects a strong foundation in pharmaceutical sciences. Benedini has held the position of Adjunct Researcher at INQUISUR-CONICET/UNS since 2015 and has been an Assistant Professor at UNS since 2001. His research portfolio includes over 20 peer-reviewed journal articles and multiple book chapters, focusing on colloidal systems, lipid-based nanocarriers, and bone tissue engineering. Benedini’s work is characterized by interdisciplinary collaboration and a commitment to addressing real-world medical challenges. His contributions have earned him several prestigious awards, including the “INNOVAR 2023” distinction from the Ministry of Science and Innovation. Benedini’s expertise and dedication position him as a leading figure in his field, making him a strong candidate for the Best Researcher Award.

Professional Profile

Education

Luciano Alejandro Benedini’s educational background is rooted in pharmaceutical sciences and chemistry. He earned his degree in Pharmacy from Universidad Nacional del Sur (UNS) in 2003, providing a solid foundation in pharmaceutical principles. Pursuing further specialization, he completed his Ph.D. in Chemistry at UNS between 2008 and 2012. His doctoral thesis, titled “Interaction between a biocompatible surfactant with pharmacological interest structures,” delved into the interactions of biocompatible surfactants with pharmacologically relevant structures, highlighting his early interest in drug delivery systems and nanotechnology. This academic progression equipped Benedini with the knowledge and skills necessary for his subsequent research endeavors in pharmaceutical nanotechnology and biomaterials.

Professional Experience

Luciano Alejandro Benedini has amassed extensive professional experience in both academic and research settings. Since 2015, he has served as an Adjunct Researcher at INQUISUR-CONICET/UNS, where he has been involved in cutting-edge research on nanomaterials and drug delivery systems. Concurrently, he has held the position of Assistant Professor at the Department of Biology, Biochemistry, and Pharmacy at UNS since 2001, contributing to the education and mentorship of students in pharmaceutical sciences. Benedini’s professional journey also includes postdoctoral fellowships at prestigious institutions such as Universidad de Santiago de Compostela and Bielefeld University, where he collaborated with international experts in the field. His dual roles in academia and research underscore his commitment to advancing pharmaceutical sciences through both education and innovation.

Research Interests

Luciano Alejandro Benedini’s research interests are centered around pharmaceutical nanotechnology, biomaterials, and drug delivery systems. He focuses on the design and characterization of lipid-based nanocarriers, such as liposomes and nanoemulsions, for targeted drug delivery. Benedini is also interested in the development of bioactive scaffolds for bone tissue engineering, utilizing materials like hydroxyapatite and alginate composites. His work often explores the physicochemical properties of colloidal systems and their interactions with biological membranes, aiming to enhance the efficacy and safety of therapeutic agents. Additionally, Benedini investigates stimuli-responsive drug delivery systems that can adapt to physiological conditions, offering controlled release profiles. His interdisciplinary approach combines principles of chemistry, biology, and materials science to address complex challenges in medicine.

Research Skills

Luciano Alejandro Benedini possesses a diverse set of research skills that enable him to conduct comprehensive studies in pharmaceutical sciences. He is proficient in various analytical techniques, including spectroscopy, chromatography, and electron microscopy, which are essential for characterizing nanomaterials and assessing their interactions with biological systems. Benedini has expertise in formulating and evaluating lipid-based drug delivery systems, focusing on parameters like encapsulation efficiency, release kinetics, and stability. His skills extend to the development of biomimetic scaffolds for tissue engineering applications, where he assesses biocompatibility, mechanical properties, and bioactivity. Benedini’s ability to integrate experimental data with theoretical models allows him to optimize formulations and predict their behavior in physiological environments. His methodological rigor and technical proficiency contribute significantly to the advancement of pharmaceutical nanotechnology.

Awards and Honors

Luciano Alejandro Benedini’s contributions to pharmaceutical sciences have been recognized through several awards and honors. Notably, he received the “INNOVAR 2023” distinction from the Ministry of Science and Innovation in the Applied Research category for his project on NanoA, highlighting his impact on translational research. He was also awarded the Aaron and Fanny Fidelef de Nijamkim’s Award for Best Ph.D. in Chemistry in 2012 by Universidad Nacional del Sur, acknowledging his academic excellence. Benedini has secured multiple postdoctoral fellowships, including those granted by Fundación Carolina and CONICET, facilitating international research collaborations. His selection as an Associated Researcher by CONICET in 2018 further underscores his standing in the scientific community. These accolades reflect Benedini’s dedication to research excellence and innovation.

Conclusion

Luciano Alejandro Benedini’s extensive academic background, professional experience, and research achievements position him as a leading figure in pharmaceutical nanotechnology and biomaterials. His interdisciplinary approach, combining chemistry, biology, and materials science, has led to significant advancements in drug delivery systems and tissue engineering. Benedini’s commitment to addressing real-world medical challenges through innovative research is evident in his numerous publications, collaborations, and accolades. His role as an educator further amplifies his impact, as he mentors the next generation of scientists. Considering his substantial contributions to science and his ongoing pursuit of excellence, Benedini is a highly suitable candidate for the Best Researcher Award.

Publications Top Notes

  1. Title: Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: Assessment of their bioactivity, biocompatibility, and antibacterial activity
    Authors: L. Benedini, J. Laiuppa, G. Santillán, M. Baldini, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 115, Article 111101
    Year: 2020
    Citations: 82

  2. Title: Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods
    Authors: L. Benedini, D. Placente, J. Ruso, P. Messina
    Journal: Materials Science and Engineering: C, Vol. 99, pp. 180–190
    Year: 2019
    Citations: 56

  3. Title: The ascorbyl palmitate-water system: Phase diagram and state of water
    Authors: L. Benedini, E.P. Schulz, P.V. Messina, S.D. Palma, D.A. Allemandi, P.C. Schulz
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 375 (1–3)
    Year: 2011
    Citations: 50

  4. Title: Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations
    Authors: D. Placente, L.A. Benedini, M. Baldini, J.A. Laiuppa, G.E. Santillán, …
    Journal: International Journal of Pharmaceutics, Vol. 548 (1), pp. 559–570
    Year: 2018
    Citations: 42

  5. Title: Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities
    Authors: J. Sartuqui, A.N. Gravina, R. Rial, L.A. Benedini, L.H. Yahia, J.M. Ruso, …
    Journal: Colloids and Surfaces B: Biointerfaces, Vol. 145, pp. 382–391
    Year: 2016
    Citations: 39

  6. Title: Self-assembly of 33-mer gliadin peptide oligomers
    Authors: M.G. Herrera, L.A. Benedini, C. Lonez, P.L. Schilardi, T. Hellweg, …
    Journal: Soft Matter, Vol. 11 (44), pp. 8648–8660
    Year: 2015
    Citations: 36

  7. Title: Colloidal properties of amiodarone in water at low concentration
    Authors: L. Benedini, P.V. Messina, R.H. Manzo, D.A. Allemandi, S.D. Palma, E.P. Schulz, …
    Journal: Journal of Colloid and Interface Science, Vol. 342 (2), pp. 407–414
    Year: 2010
    Citations: 35

  8. Title: Ascorbyl palmitate interaction with phospholipid monolayers: electrostatic and rheological preponderancy
    Authors: M. Mottola, N. Wilke, L. Benedini, R.G. Oliveira, M.L. Fanani
    Journal: Biochimica et Biophysica Acta (BBA) – Biomembranes, Vol. 1828 (11), pp. 2496–2505
    Year: 2013
    Citations: 33

  9. Title: Biopolymers for medical applications
    Authors: J.M. Ruso, P.V. Messina
    Publisher: CRC Press
    Year: 2017
    Citations: 31

Prasenjit Das | Chemistry | Best Researcher Award

Dr. Prasenjit Das | Chemistry | Best Researcher Award

Postdoc Researcher from Technische Universität Berlin, Germany

Dr. Prasenjit Das is an accomplished materials scientist with a focus on the design and synthesis of advanced materials for energy, sustainability, and environmental applications. His research primarily concentrates on the development of porous materials, such as covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for innovative solutions in energy storage, catalysis, and environmental remediation. With an impressive academic and professional background, Dr. Das has collaborated with leading global institutions and secured prestigious fellowships like the Alexander von Humboldt Fellowship. His contributions to the scientific community are marked by his ability to manage high-impact research projects, mentor students, and publish in top-tier journals. Known for his leadership in research and passion for education, Dr. Das is an emerging thought leader in advanced material science, with a vision for advancing sustainability through innovation. He continues to push the frontiers of materials research while nurturing the next generation of scientists.

Professional Profile

Education

Dr. Prasenjit Das holds an academic foundation that blends both theoretical knowledge and practical expertise. He obtained his Ph.D. in Chemistry from the University of Mumbai, where his dissertation focused on the synthesis and characterization of novel porous materials for catalytic and energy applications. During his postdoctoral work at the University of Pittsburgh, he expanded his research on the use of metal-organic frameworks (MOFs) in clean energy applications, particularly in CO2 capture and hydrogen storage. His educational journey is a reflection of his commitment to advancing the field of material science, combining deep academic rigor with practical innovation. This education has provided him with the necessary tools to contribute significantly to the scientific community and continue to lead in his area of expertise.

Professional Experience

Dr. Prasenjit Das has a diverse and extensive professional background, highlighted by his postdoctoral research at the Technical University of Berlin and the University of Pittsburgh, where he contributed to groundbreaking work in advanced materials and sustainability. His research expertise extends to catalysis, energy conversion, and environmental sustainability, focusing on the synthesis of novel materials like COFs and MOFs for critical applications. Dr. Das has also been an integral member of several internationally recognized research teams, overseeing research projects funded by prominent institutions such as DFG and UnisysCat. His professional roles have consistently demonstrated his leadership and ability to work collaboratively across disciplines. Dr. Das is currently leading cutting-edge projects that are aimed at addressing some of the most pressing global challenges in energy and sustainability.

Research Interests

Dr. Prasenjit Das’s research interests are primarily focused on developing advanced materials for energy storage, conversion, and environmental sustainability. He specializes in the synthesis of porous materials, including covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for use in clean energy applications such as CO2 capture, hydrogen storage, and photocatalysis. His work explores the intersection of material science, catalysis, and sustainability, aiming to create efficient and scalable solutions for energy-related challenges. Additionally, Dr. Das has a keen interest in the functionalization of porous materials for water splitting, renewable energy generation, and environmental protection. His research aims to bridge the gap between fundamental material science and its practical applications in addressing global issues such as climate change and resource depletion.

Research Skills

Dr. Prasenjit Das possesses a broad and diverse set of research skills that have allowed him to contribute significantly to the field of materials science. His expertise spans the synthesis and characterization of advanced porous materials, including COFs and MOFs, with a focus on their applications in energy storage, catalysis, and environmental sustainability. He is proficient in a wide array of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectroscopy, which he employs to thoroughly characterize and understand the properties of novel materials. Additionally, Dr. Das is skilled in computational modeling and simulation, which aids in the design and prediction of material behaviors. His strong leadership, mentoring abilities, and collaborative approach to research make him an invaluable asset to any research team.

Awards and Honors

Dr. Prasenjit Das has received several prestigious awards and honors throughout his career, recognizing his outstanding contributions to materials science and sustainability. Most notably, he was awarded the highly competitive Alexander von Humboldt Fellowship, which enabled him to further his research in advanced materials at leading international institutions. Additionally, his work has been recognized with several research grants from prominent funding bodies, including the Deutsche Forschungsgemeinschaft (DFG) and UnisysCat. Dr. Das has also been invited to present his research at numerous international conferences, further solidifying his position as an emerging leader in his field. His ability to secure funding and his collaborative efforts with global institutions highlight his potential for further recognition and success in the scientific community.

Conclusion

In conclusion, Dr. Prasenjit Das stands out as an innovative researcher with significant contributions to materials science and sustainability. His focus on the development of advanced porous materials, including COFs and MOFs, for energy and environmental applications, positions him as a leader in his field. Dr. Das’s ability to secure competitive fellowships, manage impactful research projects, and mentor the next generation of scientists highlights his exceptional leadership qualities. His work holds the potential to address pressing global challenges such as climate change and energy sustainability, making him a valuable asset to the scientific community. As he continues to make strides in his research, Dr. Das’s career is poised for even greater accomplishments in the coming years.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

Ying-Xue Yuan | Chemistry | Best Researcher Award

Prof. Dr. Ying-Xue Yuan | Chemistry | Best Researcher Award

Research Fellow from Zhengzhou University, China

Ying-Xue Yuan is a Research Fellow in the College of Chemistry at Zhengzhou University, specializing in the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She received her Ph.D. in Chemistry in 2020 from Huazhong University of Science and Technology (HUST). Following her Ph.D., she undertook postdoctoral research under the supervision of Professor Shuang-Quan Zang at Zhengzhou University from 2020 to 2022. Yuan’s work focuses on advancing the synthesis of coinage metal clusters with atomic precision and exploring their unique properties for various applications. Her research has the potential to revolutionize the fields of nanotechnology, materials science, and catalysis, with implications for both fundamental understanding and industrial applications. Yuan’s academic journey reflects a dedication to innovation and excellence, marked by her rising status as an independent researcher in the field of chemistry.

Professional Profile

Education

Ying-Xue Yuan completed her Ph.D. in Chemistry at Huazhong University of Science and Technology (HUST) in 2020. Throughout her doctoral studies, she focused on developing advanced methods for synthesizing metal clusters and exploring their supramolecular assembly. Her research at HUST laid a strong foundation in understanding the fundamental principles of molecular and materials chemistry. After earning her Ph.D., she pursued postdoctoral research at Zhengzhou University under the guidance of Professor Shuang-Quan Zang from 2020 to 2022. During this period, she expanded her research to include the practical applications of coinage metal clusters in catalysis and materials design. Her academic training has equipped her with a strong theoretical and practical understanding of chemistry, and she continues to build on this knowledge as she progresses in her career.

Professional Experience

Ying-Xue Yuan is currently serving as a Research Fellow in the College of Chemistry at Zhengzhou University. Before her current role, she gained invaluable experience as a postdoctoral researcher from 2020 to 2022, collaborating with Professor Shuang-Quan Zang. During her postdoctoral work, she contributed to several projects focusing on atomically-precise coinage metal clusters, enhancing her research portfolio and establishing her as an expert in the field. Yuan’s professional trajectory has shown significant promise, quickly advancing through research roles and collaborating with prominent academics in chemistry. Her postdoctoral experience also included working on high-impact publications, exploring applications for metal clusters in advanced materials and catalysis. This experience has provided her with a solid foundation for leading independent research projects and contributing to the advancement of her field.

Research Interests

Ying-Xue Yuan’s research interests lie at the intersection of materials chemistry, nanotechnology, and supramolecular chemistry. Her primary focus is on the preparation, supramolecular assembly, and application of atomically-precise coinage metal clusters. She investigates the unique properties of these clusters, such as their size-dependent behavior, and explores their potential applications in fields such as catalysis, energy storage, and material science. Yuan is particularly interested in understanding the self-assembly processes that lead to the formation of highly ordered, stable, and functional materials from coinage metal clusters. Her work aims to push the boundaries of how atomic-level precision can be harnessed for designing novel materials with tailored properties for specific applications, making significant contributions to both fundamental research and industrial development.

Research Skills

Ying-Xue Yuan possesses a strong set of research skills, which are critical to her success in the field of chemistry. Her expertise includes the synthesis and characterization of metal clusters, with an emphasis on precision and supramolecular assembly. She is skilled in various techniques such as X-ray diffraction, spectroscopy, and electron microscopy, which are essential for the analysis and characterization of materials at the atomic level. Yuan has also developed advanced skills in computational chemistry and modeling, allowing her to predict and optimize the properties of metal clusters before they are synthesized. Furthermore, her ability to collaborate with other researchers and contribute to interdisciplinary projects showcases her communication and teamwork skills, making her a versatile and effective researcher in both academic and applied settings.

Awards and Honors

As of now, Ying-Xue Yuan has not yet accumulated a long list of major awards and honors, which is understandable given that she is an early-career researcher. However, her work in the field of atomically-precise coinage metal clusters holds significant potential, and she is well-positioned for recognition in the future. Her postdoctoral work and current research as a Research Fellow suggest that she is on a promising trajectory to receive awards and honors in the coming years. As her research contributions gain further recognition, it is likely that her efforts will be acknowledged through prestigious awards in the fields of chemistry and nanotechnology, particularly for her innovative work in materials chemistry and catalysis.

Conclusion

Ying-Xue Yuan is a promising early-career researcher who has made significant strides in the field of chemistry, particularly in the preparation and application of atomically-precise coinage metal clusters. While her independent research career is still in the early stages, her academic background, postdoctoral experience, and specialized research interests indicate that she has a strong potential for future breakthroughs in nanotechnology and materials science. Yuan’s work demonstrates a deep understanding of complex chemistry principles and a passion for exploring new applications of atomic-level precision in material design. With a growing body of work and increasing recognition in her field, she is poised for continued success and potential future accolades as she advances her career.

Publications Top Notes

  1. Title: In-Situ Surface Repair of FAPbBr₃ Quantum Dots toward High-Performance Pure-Green Perovskite Light-Emitting Diodes
    Authors: Zhang, Jibin; Zhang, Dandan; Zhou, Xin; Hou, Lintao; Yuan, Yingxue
    Journal: Nano Letters
    Year: 2024
    Citations: 6

  2. Title: Chiral silver cluster-based light-harvesting systems: Enantioselective chirality transfer and amplified circularly polarized luminescence
    Authors: Yuan, Yingxue; Zhang, Jiani; Wang, Junru; Li, Kai; Zang, Shuangquan
    Journal: Chem
    Year: 2024
    Citations: 14

Seyed Iman Alavioon | Chemistry | Best Researcher Award

Dr. Seyed Iman Alavioon | Chemistry | Best Researcher Award

University of Tehran and Shahid Beheshti University, Iran

Dr. Seyed Iman Alavioon is a distinguished Iranian researcher specializing in organic and medicinal chemistry. With a robust academic foundation and extensive professional experience, he has made significant contributions to the fields of catalysis, drug delivery systems, and nanomedicine. His work encompasses both theoretical and applied aspects of chemistry, reflecting a deep commitment to advancing scientific knowledge and practical applications. Dr. Alavioon’s interdisciplinary approach bridges the gap between fundamental research and industrial innovation, positioning him as a valuable asset in both academic and commercial settings. His dedication to research excellence and education underscores his suitability for recognition as a leading researcher in his field.

Professional Profile

Education

Dr. Alavioon’s academic journey began with a Bachelor of Science in Applied Chemistry from Urmia University, where he focused on theoretical studies of natural products. He then pursued a Master of Science in Organic Chemistry at the University of Tehran, researching the catalytic effects of metal-supported SBA-15 on cyclization reactions. His doctoral studies at Shahid Beheshti University centered on C-H bond functionalization and decarboxylation reactions using transition metal catalysts, earning him an “Excellent” grade. Furthering his expertise, Dr. Alavioon completed two postdoctoral fellowships at the National Nutrition and Food Technology Research Institute, exploring coumarin derivatives, antibacterial biofilms, and nano redox-sensitive drug delivery systems.

Professional Experience

Dr. Alavioon’s professional career is marked by a blend of academic and industrial roles. Since 2020, he has served as the R&D Manager at Bayer Aflak Pharmaceutical Company, overseeing drug formulation and regulation for both veterinary and human applications. Concurrently, he held the position of Technical Officer and Cosmetic Formulator at Modiran Sanat Sa’adat, focusing on cosmeceutical products. His tenure as a Research Fellow at the Ministry of Defense from 2015 to 2022 highlights his involvement in high-impact projects, including the development of advanced rocket fuel materials. Dr. Alavioon’s diverse experiences reflect his ability to apply scientific principles to real-world challenges effectively.

Research Interests

Dr. Alavioon’s research interests are broad and interdisciplinary, encompassing C-H activation and functionalization, drug delivery systems, medicinal chemistry, and electrochemical synthesis. He is particularly focused on the synthesis of novel organic and medicinal derivatives, exploring their potential therapeutic properties. His work in encapsulation and pharmaceutics aims to enhance drug efficacy and delivery mechanisms. Additionally, Dr. Alavioon is engaged in computational organic chemistry and living polymerization, contributing to the development of advanced materials and pharmaceuticals. His research endeavors are characterized by a commitment to innovation and practical application.

Research Skills

Dr. Alavioon possesses a comprehensive skill set that spans various aspects of chemistry and related disciplines. He is proficient in molecular docking using AutoDock, and has extensive experience with chemistry software such as Gaussian, HyperChem, Spartan, and MATLAB. His expertise includes instrumental analytical techniques like HPLC, GC, IR, UV, and AAS. Dr. Alavioon has taught a range of subjects, including organic and medicinal chemistry, physical organic chemistry, and analytical chemistry, demonstrating his ability to convey complex concepts effectively. His skills in polymer chemistry and spectrometry further enhance his research capabilities, enabling him to undertake multifaceted projects with precision.

Awards and Honors

Dr. Alavioon’s contributions to science and technology have been recognized through various awards and honors. He is a permanent member of the Iranian Chemistry and Chemical Engineering Association and a member of the National Elite Foundation. His innovative work in developing a high-performance compound for rocket fuel, which surpassed existing high-energy materials in several parameters, was acknowledged by the Ministry of Defense. Additionally, Dr. Alavioon achieved notable rankings in national examinations, securing the 77th position in the master’s national exam and the 6th position in the specialized doctorate exam, reflecting his academic excellence and dedication to his field.

Conclusion

Dr. Seyed Iman Alavioon exemplifies the qualities of a leading researcher through his extensive academic background, diverse professional experiences, and significant contributions to science and industry. His interdisciplinary approach, combining organic chemistry, medicinal research, and practical applications, underscores his ability to address complex challenges effectively. Dr. Alavioon’s commitment to innovation, education, and collaboration positions him as a valuable contributor to the scientific community. His achievements and ongoing endeavors make him a strong candidate for recognition as a top researcher in his field

Publications Top Notes

  1. Title: Decarboxylation and cross-coupling reactions of coumarin-3-carboxylic acid: A comprehensive review
    Authors: Hooshmand, Seyyed Emad; Alavioon, Seyed Iman; Saeb, Mohammad Reza; Brahmachari, Goutam; Shiri, Morteza
    Type: Review
    Year: 2025 (assumed, please confirm if needed)
    Citations: 2

Yaojia Jiang | Organic Chemistry | Best Researcher Award

Mr. Yaojia Jiang | Organic Chemistry | Best Researcher Award

Professor from Guizhou University, China

Yaojia Jiang is an accomplished chemist with a strong academic and research background in radical chemistry, carbene and nitrene chemistry, and biological sciences. His academic journey showcases steady growth under the mentorship of highly respected scholars and at leading institutions. After earning his Master’s degree at Soochow University in 2010, he pursued a Ph.D. at Nanyang Technological University, completing it in 2014. During his doctoral studies, he specialized in carbene and nitrene transformations, a highly significant area of research with broad applications in organic synthesis. Jiang then expanded his expertise through postdoctoral work in biological sciences, which added a multidisciplinary dimension to his research profile. His independent career began in 2015 at Nanjing Tech University, focusing on carbene transformations, and later advanced at Guizhou University, where his work centers on modular single-carbon insertion reactions and sustainable pesticide development. His research combines fundamental chemistry with applications that address real-world problems, particularly in agriculture and green chemistry. Yaojia Jiang’s career path highlights not only technical expertise but also innovation, adaptability, and an ongoing commitment to sustainability and atom-economical processes. His diverse experiences position him as a leading figure in advancing chemical sciences in environmentally conscious ways.

Professional Profile

Education

Yaojia Jiang’s educational journey reflects strong academic foundations and strategic specialization in areas of growing scientific importance. He earned his Master’s degree in 2010 from Soochow University under the supervision of Professor Jian-Ping Zou, specializing in radical chemistry. This early focus provided him with a rigorous understanding of reactive intermediates and set the stage for his future contributions to the field. In 2014, he completed his Ph.D. at Nanyang Technological University (NTU) in Singapore, one of Asia’s leading research institutions. His doctoral research, supervised by Professors Cheol-Min Park and Teck-Peng Loh, delved into the chemistry of carbenes and nitrenes, reactive species crucial in modern organic synthesis. His Ph.D. work significantly enhanced his expertise in reaction mechanisms and synthetic methods, skills essential for high-level chemical innovation. Jiang’s educational experiences at two prominent institutions, combined with mentorship from globally respected scientists, provided him with both theoretical depth and practical skills. His academic background was further diversified through postdoctoral research in biological sciences, broadening his interdisciplinary knowledge and positioning him well for independent research that bridges chemistry and applied life sciences.

Professional Experience

Yaojia Jiang began his independent academic career shortly after completing his postdoctoral studies. In 2015, he joined Nanjing Tech University, where he focused on carbene transformations, contributing important research on highly reactive intermediates and their controlled manipulation for synthetic applications. His early years as an independent researcher showcased a rapid transition from trainee to research leader, reflecting his ability to design, lead, and execute complex chemical research projects. Subsequently, Jiang moved to Guizhou University, a rising hub for scientific research in China. At Guizhou University, he expanded his research portfolio by focusing on modular single-carbon insertion reactions and their applications in pesticide design. His work at Guizhou emphasizes green chemistry principles and atom-economical strategies, aligning his research with global calls for sustainable innovation. Over the course of his professional career, Jiang has demonstrated a unique combination of deep technical expertise and practical application, consistently pushing the boundaries of synthetic chemistry. His progression from graduate student to a respected academic researcher in a relatively short span reflects both his scientific excellence and leadership capabilities.

Research Interest

Yaojia Jiang’s research interests center around reactive intermediates, especially carbenes and nitrenes, and their controlled transformations for synthetic applications. His early work in radical chemistry laid the foundation for a deep understanding of highly reactive species, leading to advanced exploration of carbene and nitrene chemistries during his Ph.D. training. Jiang is particularly fascinated by modular single-carbon insertion reactions, which offer precise control over molecular architecture and have significant implications in developing functional molecules. His current research aims to apply these reactions toward the design of new, environmentally friendly pesticides using green and atom-economical processes. This focus bridges fundamental organic chemistry with real-world applications in agriculture and environmental protection. His interdisciplinary approach, integrating organic synthesis with biological insights from his postdoctoral experience, allows him to pursue research topics that are both intellectually challenging and socially impactful. In an era where sustainable chemical processes are increasingly vital, Jiang’s research direction positions him at the forefront of green innovation in synthetic chemistry. His ongoing projects reflect a balance of fundamental scientific curiosity and a commitment to contributing solutions to pressing global challenges.

Research Skills

Yaojia Jiang possesses an extensive range of research skills that make him highly effective as a synthetic chemist and innovator. His expertise in radical, carbene, and nitrene chemistry provides him with a strong foundation in handling reactive intermediates and understanding complex reaction mechanisms. He is skilled in the design and execution of multi-step organic synthesis, employing both classical methods and cutting-edge techniques. His experience with biological sciences during his postdoctoral training broadened his technical capabilities to include interdisciplinary methods, blending chemistry with biological systems analysis. Jiang’s research emphasizes green chemistry and atom-economical strategies, requiring a keen understanding of reaction efficiency, catalyst design, and sustainable process development. His work also demonstrates strong skills in experimental planning, data analysis, and scientific writing, evidenced by his successful transition into independent research leadership. Jiang has shown proficiency in mentoring younger researchers and managing laboratory activities, essential skills for building and maintaining a productive research team. His methodological rigor, creativity in problem-solving, and adaptability to new research challenges underscore his profile as a highly skilled and versatile researcher ready for larger international scientific collaborations and leadership roles.

Award and Honors

Although specific awards and honors for Yaojia Jiang were not listed in the provided information, his career progression itself is a testament to his excellence. Successfully obtaining a Ph.D. from a prestigious institution such as Nanyang Technological University under the mentorship of world-renowned scientists is a strong indicator of his academic and research capabilities. Securing independent research positions at respected universities like Nanjing Tech University and Guizhou University reflects institutional recognition of his potential and contributions. His rapid transition to an independent career and his ability to sustain and develop research programs in competitive environments suggest that he has earned professional respect in the field of synthetic and green chemistry. In future stages of his career, additional formal recognitions such as international awards, research grants, or leadership appointments in scientific societies could further highlight his achievements. Overall, Yaojia Jiang’s track record positions him well for future honors as he continues to contribute significantly to the advancement of chemical sciences and sustainable technologies.

Conclusion

Yaojia Jiang exemplifies the qualities of a forward-thinking and highly capable researcher in the field of synthetic and green chemistry. His strong academic background, diverse research experiences, and focus on addressing real-world challenges through innovative chemical processes make him a standout figure in modern scientific research. His work on carbene transformations and modular single-carbon insertion reactions, with applications in sustainable pesticide development, reflects a rare combination of deep scientific understanding and social responsibility. While his profile would be further strengthened by greater international recognition and large-scale collaborations, his current achievements already demonstrate significant excellence and impact. Yaojia Jiang is on a clear path toward becoming a global leader in green chemistry and synthetic innovation. His ongoing dedication to sustainable chemical solutions and his ability to adapt and expand his research interests mark him as an ideal candidate for future prestigious awards and broader academic leadership roles.

Publications Top Notes

  1. Title: Discovery of Novel Antibacterial Agents against Plant Pathogens: Design, Synthesis, Antibacterial Activity, and Mechanism of Action of 1,2,4-Thiadiazole Derivatives Containing a Sulfone Moiety

    • Authors: Zou Yue, Zhu Mei, Zhu Zongnan, Jiang Yaojia, Chen Jixiang

    • Year: 2025

  2. Title: Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System

    • Authors: Han Jiabin, Fan Yaxin, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

    • Citations: 1

  3. Title: Pd(II) Auxiliary Assembling and Diverse Transformations via Inert C(sp³)-H Bond Activation

    • Authors: Luo Jiangbin, Chen Jie, Yang Xiaoyan, Hao Gefei, Jiang Yaojia

    • Year: 2025

  4. Title: Nickel-Catalyzed Multicomponent Assembly of Alkynes Toward α‑CF₃‑Alkenes

    • Authors: Li Ling, Li Yingmei, Yan Chongchong, Zhang Jian, Jiang Yaojia

    • Year: 2024

Bel Youssouf G. Mountessou | Chemistry | Best Researcher Award

Dr. Bel Youssouf G. Mountessou | Chemistry | Best Researcher Award

Humboldt Junior Researcher from Higher Teacher Training College, University of Yaoundé I, Cameroon

Dr. Bel Youssouf G. Mountessou is a distinguished Cameroonian chemist specializing in organic and theoretical chemistry, with a strong focus on natural product research. His academic journey is marked by a PhD in Organic Chemistry (2020) and a Master’s in Physical and Theoretical Chemistry (2022) from the University of Yaoundé I. Professionally, he has held various academic and research positions, including part-time lectureships and postdoctoral fellowships at renowned institutions such as the HEJ Research Institute of Chemistry in Pakistan and the Helmholtz Centre for Infection Research in Germany. Dr. Mountessou’s research interests encompass the isolation and characterization of biologically active natural compounds, particularly from fungi, and the application of computational tools to study their antimicrobial and cytotoxic properties. His contributions to the field are evidenced by numerous publications in reputable journals and active participation in international conferences and workshops. Recognized for his scientific excellence, he has received accolades such as the Best Researcher Award in Bioinorganic Chemistry. Dr. Mountessou’s dedication to advancing chemical sciences and his commitment to education and research make him a prominent figure in his field.

Professional Profile

Education

Dr. Mountessou’s educational background is rooted in the University of Yaoundé I, Cameroon, where he has achieved multiple degrees in chemistry. He earned his Bachelor of Science in Chemistry in 2011, followed by a Master’s degree in Organic Chemistry in 2013. Demonstrating a commitment to furthering his expertise, he obtained a PhD in Organic Chemistry in 2020. His academic pursuits continued with a Master’s degree in Physical and Theoretical Chemistry in 2022. This comprehensive educational foundation has equipped him with a robust understanding of chemical principles, both in theory and application, laying the groundwork for his subsequent research endeavors.

Professional Experience

Dr. Mountessou’s professional career encompasses a blend of academic teaching and research roles. Since 2018, he has served as a part-time lecturer at the Higher Institute of Chemistry and Management and the Higher Teacher Training College in Yaoundé, Cameroon. His research experience includes postdoctoral fellowships at the HEJ Research Institute of Chemistry in Pakistan (2023–2024) and the Helmholtz Centre for Infection Research in Germany (2021). Additionally, he has been actively involved with the Humboldt Research Hub-CECANAPROF at the University of Yaoundé I, contributing as a technical assistant and trainer. These roles have allowed him to engage in cutting-edge research while mentoring students and collaborating with international scientists.

Research Interests

Dr. Mountessou’s research interests are centered on the exploration of natural products, particularly those derived from fungi. He focuses on the isolation and characterization of biologically active compounds with potential antimicrobial and cytotoxic properties. His work integrates theoretical chemistry approaches, including quantum chemical modeling and spectroscopy, to understand the chemical reactivity and biological activity of these compounds. By combining experimental and computational methods, he aims to discover novel compounds that could contribute to the development of new therapeutic agents. His research is instrumental in addressing global health challenges through the discovery of natural bioactive molecules.

Research Skills

Dr. Mountessou possesses a diverse set of research skills that encompass both laboratory techniques and computational tools. His laboratory expertise includes the collection and identification of fungal strains, isolation and purification of natural products, and the use of spectroscopic methods for structural elucidation. On the computational front, he is proficient in molecular docking, molecular dynamics simulations, and quantum chemical calculations, utilizing software such as Gaussian and GaussView. His ability to integrate these skills allows for a comprehensive approach to studying the chemical and biological properties of natural compounds, facilitating the identification of potential drug candidates.

Awards and Honors

Dr. Mountessou’s contributions to the field of chemistry have been recognized through various awards and honors. Notably, he received the Best Researcher Award in Bioinorganic Chemistry, acknowledging his innovative work in natural product research. He is a member of esteemed professional organizations, including the Royal Society of Chemistry and the Society for Medicinal Plant and Natural Product Research. His involvement with the Humboldt Research Hub-CECANAPROF and collaboration with the Helmholtz Centre for Infection Research further highlight his commitment to advancing scientific knowledge and fostering international research partnerships.

Conclusion

Dr. Bel Youssouf G. Mountessou exemplifies the qualities of a dedicated and innovative researcher in the field of chemistry. His extensive educational background, coupled with a robust professional experience, underscores his commitment to scientific excellence. His research, which bridges experimental and computational chemistry, contributes significantly to the discovery of biologically active natural products with potential therapeutic applications. Recognized by his peers and professional organizations, Dr. Mountessou continues to impact the scientific community through his research, teaching, and collaborations. His work not only advances the field of chemistry but also holds promise for addressing pressing global health challenges.

Publications Top Notes​

  • Phytochemistry and pharmacology of Harungana madagascariensis: Mini review
    Authors: GM Happi, GLM Tiani, BYM Gbetnkom, H Hussain, IR Green, BT Ngadjui, BYG Mountessou, et al.
    Phytochemistry Letters, 35, 103–112 (2020)
    📚 Citations: 34

  • Two xanthones and two rotameric (3→8) biflavonoids from the Cameroonian medicinal plant Allanblackia floribunda Oliv. (Guttiferae)
    Authors: BYG Mountessou, J Tchamgoue, JP Dzoyem, RT Tchuenguem, F Surup, et al.
    Tetrahedron Letters, 59(52), 4545–4550 (2018)
    📚 Citations: 21

  • Crystal structure, spectroscopic analysis, electronic properties and molecular docking study of costunolide for inhibitor capacity against Onchocerca volvulus main protease
    Authors: BYG Mountessou, ASW Mbobda, HG Stammler, EO Akintemi, MB Mbah, et al.
    Journal of Molecular Structure, 1282, 135185 (2023)
    📚 Citations: 16

  • Simplicilones A and B isolated from the endophytic fungus Simplicillium subtropicum SPC3
    Authors: EGM Anoumedem, BYG Mountessou, SF Kouam, A Narmani, F Surup
    Antibiotics, 9(11), 753 (2020)
    📚 Citations: 16

  • Structural analysis and molecular docking study of pachypodostyflavone: A potent anti-onchocerca
    Authors: BYG Mountessou, AW Ngouonpe, ASW Mbobda, EO Akintemi, et al.
    Journal of Molecular Structure, 1291, 136003 (2023)
    📚 Citations: 12

  • Pachypodostyflavone, a new 3-methoxy flavone and other constituents with antifilarial activities from the stem bark of Duguetia staudtii
    Authors: ASW Mbobda, AW Ngouonpe, GM Happi, BYG Mountessou, E Monya, et al.
    Planta Medica International Open, 8(02), e56–e61 (2021)
    📚 Citations: 8

  • Chemical constituents of the medicinal plant Indigofera spicata Forsk (Fabaceae) and their chemophenetic significance
    Authors: IL Mouafon, GLM Tiani, BYG Mountessou, M Lateef, MS Ali, IR Green, et al.
    Biochemical Systematics and Ecology, 95, 104230 (2021)
    📚 Citations: 8

  • Virtual screening, MMGBSA, and molecular dynamics approaches for identification of natural products from South African biodiversity as potential Onchocerca volvulus pi-class inhibitors
    Authors: MB Maraf, BYG Mountessou, TFH Merlin, P Ariane, JNN Fekoua, et al.
    Heliyon, 10(9) (2024)
    📚 Citations: 6

  • Vibrational spectroscopic investigations, electronic properties, molecular structure and quantum mechanical study of an antifolate drug: pyrimethamine
    Authors: PMA Mekoung, BYG Mountessou, MB Mbah, M Signe, AAA Zintchem, et al.
    Computational Chemistry, 10(4), 157–185 (2022)
    📚 Citations: 4

  • Molecular structure, molecular docking, molecular dynamics simulation, and drug likeness evaluation of 3,7-dihydroxy-1,2-dimethoxyxanthone for its anticancer activity
    Authors: AO Oladimeji, BYG Mountessou, P Penta, DD Babatunde, EO Akintemi, et al.
    Journal of Molecular Structure, 1319, 139359 (2025)
    📚 Citations: 3

 

 

Danning Xing | Chemistry | Best Researcher Award

Dr. Danning Xing | Chemistry | Best Researcher Award

Associate Researcher from Shandong Institute of Advanced Technology, China

Dr. Danning Xing is an associate researcher at the Shandong Institute of Advanced Technology. She has a strong academic background, having earned her Ph.D. from the State Key Laboratory of Crystal Materials at Shandong University. Her research primarily focuses on the structural design and development of π-d conjugated metal-organic frameworks (MOFs) for applications in photocatalysis and electrocatalysis, which have important implications for sustainable energy and environmental protection. Dr. Xing has published 17 SCI-indexed papers in renowned journals such as Advanced Materials, Small, and Applied Catalysis B: Environmental, and holds one authorized patent. Her research has attracted increasing attention, evidenced by a citation index of 649. Dr. Xing also collaborates with leading scholars in the field, such as Prof. Biaobiao Huang, further expanding her research network and impact. She has received funding from prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Her continuous pursuit of innovative approaches positions her as a rising star in materials science.

Professional Profile

Education

Dr. Danning Xing completed her Bachelor’s degree in Chemistry from Shandong University, where she laid the foundation for her future research career. Following her undergraduate studies, she pursued a Ph.D. at the State Key Laboratory of Crystal Materials at Shandong University, where she focused on advanced materials science, specifically in the field of metal-organic frameworks (MOFs). Throughout her doctoral studies, she honed her skills in material design, catalysis, and structural characterization, preparing her for a career in cutting-edge research. Her educational journey has provided her with a deep understanding of chemistry, material science, and engineering, which she applies in her current research endeavors.

Professional Experience

Dr. Danning Xing’s professional career is marked by her transition from academia to research in applied science. After completing her doctoral studies, she took on the role of associate researcher at the Shandong Institute of Advanced Technology, where she continues to advance her work in MOF-based photocatalysis and electrocatalysis. She has been actively involved in securing research funding, including two major grants from the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Dr. Xing’s collaborations with notable scholars, such as Prof. Biaobiao Huang, highlight her ability to engage in high-level research projects and establish connections with leading figures in her field. Her work in research positions has enabled her to make significant strides in both academic and practical applications of materials science.

Research Interests

Dr. Danning Xing’s primary research interests lie in the design, synthesis, and application of π-d conjugated metal-organic frameworks (MOFs) for energy-related applications, particularly photocatalysis, electrocatalysis, and water splitting. Her work aims to address the challenges posed by traditional MOFs, such as poor conductivity and limited stability. She is focused on developing MOFs with enhanced electronic properties, stability, and efficiency. By incorporating small-molecule intercalation and hydrogen bond reinforcement, Dr. Xing has created MOFs with exceptional catalytic activity and long-lasting stability, making them promising candidates for sustainable energy production and environmental applications. Additionally, her work in optimizing electronic coupling through the construction of bimetallic sites represents a significant step forward in enhancing the performance of MOFs in electrocatalysis.

Research Skills

Dr. Danning Xing possesses a comprehensive set of research skills that have supported her successful career in materials science. She is skilled in the design and synthesis of advanced materials, particularly metal-organic frameworks (MOFs), and has a strong command of techniques for characterizing these materials at the molecular level. Her expertise includes the use of various analytical tools to measure the physical and chemical properties of materials, such as X-ray diffraction, spectroscopy, and electron microscopy. In addition to her technical expertise, Dr. Xing excels in experimental design, data analysis, and problem-solving. Her ability to collaborate with leading researchers and secure research funding further demonstrates her capability in conducting high-impact scientific research.

Awards and Honors

Dr. Danning Xing has earned recognition for her contributions to materials science and catalysis, particularly for her innovative work in π-d conjugated metal-organic frameworks (MOFs). Her research has been supported by prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China, highlighting her potential as a rising researcher. Additionally, her work has been published in top-tier scientific journals, such as Advanced Materials, Small, and Applied Catalysis B: Environmental, which speaks to the impact of her research. While she has yet to receive specific academic awards or honors, her growing citation index and the success of her collaborations demonstrate her increasing recognition in the research community.

Conclusion

Dr. Danning Xing is an emerging researcher with a promising future in the field of materials science, particularly in the design of advanced metal-organic frameworks (MOFs) for energy applications. Her innovative contributions to photocatalysis, electrocatalysis, and water splitting have the potential to significantly impact sustainable energy production and environmental protection. With 17 publications in high-impact journals, one authorized patent, and ongoing collaborations with renowned scholars, Dr. Xing is steadily making her mark in the research community. Her research, supported by competitive funding, demonstrates her capability and ambition to tackle pressing challenges in catalysis and materials science. As her career progresses, Dr. Xing is likely to receive more recognition for her groundbreaking work, making her an excellent candidate for future awards.

Publications Top Notes

  • Platinum modification of metallic cobalt defect sites for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural
    Authors: Haoyu Zhan, Baixue Cheng, Yankun Lu, Tao Wang, Peng Zhou
    Journal: Journal of Energy Chemistry
    Year: 2025
    Citations: 7

Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Assoc. Prof. Dr. Mitra Tavakoli | Green Chemistry | Global Health Impact Award

Associate Professor in Chemical and polymer Engineering Department from Yazd University, Iran

Dr. Mitra Tavakoli Ardakani is an Associate Professor in the Chemical and Polymer Engineering Group at Yazd University, Iran. With a career spanning over two decades, she has made significant contributions to the field of polymer engineering, particularly in the development and characterization of polymer nanocomposites. Her research encompasses areas such as rubber blends, polymer processing, tissue engineering, and hydrogels. Dr. Tavakoli has published extensively in reputable journals and has presented her work at numerous national and international conferences. Her academic endeavors are complemented by her commitment to teaching and mentoring, having supervised several master’s theses. Through her research and academic activities, Dr. Tavakoli continues to advance the field of polymer science, contributing to both academic knowledge and practical applications.

Professional Profile

Education

Dr. Tavakoli’s academic journey in polymer engineering began with a Bachelor of Science degree from Amirkabir University, followed by a Master of Science and a Ph.D. in the same field from the same institution. Her doctoral research focused on the development of polymer nanocomposites, laying the groundwork for her future research endeavors. This strong educational foundation has equipped her with the theoretical knowledge and practical skills necessary to excel in her field.

Professional Experience

Throughout her tenure at Yazd University, Dr. Tavakoli has held various administrative and academic positions. She served as the Deputy in the Yazd Standard Office from 2015 to 2020, where she was involved in setting and maintaining academic standards. Between 2012 and 2014, she was the Director of Educational Affairs, overseeing curriculum development and academic policies. Earlier, from 2002 to 2005, she managed the university’s publishing department. In addition to these roles, Dr. Tavakoli has been actively involved in teaching, offering courses such as Chemistry and Polymerization Kinetics, Energy and Mass Balance, and Advanced Physical Chemistry of Polymers.

Research Interests

Dr. Tavakoli’s research interests are diverse and interdisciplinary, focusing on the synthesis and characterization of polymer nanocomposites, rubber blends, and the irradiation of polymers. She is particularly interested in the application of these materials in tissue engineering and food packaging. Her work on hydrogels and aerogels explores their potential in biomedical applications, while her studies on polymer processing aim to enhance material properties for industrial use. By integrating principles from chemistry, materials science, and engineering, Dr. Tavakoli seeks to develop innovative solutions to contemporary challenges in health and sustainability.

Research Skills

Dr. Tavakoli possesses a comprehensive skill set in polymer science, including expertise in polymer synthesis, characterization techniques, and material testing. She is proficient in various analytical methods such as spectroscopy, rheology, and microscopy, which she employs to investigate the structural and mechanical properties of polymeric materials. Her experience with irradiation techniques, including electron beam processing, allows her to modify polymer structures for specific applications. Additionally, her proficiency in experimental design and statistical analysis enables her to optimize material properties effectively.

Awards and Honors

Dr. Tavakoli’s contributions to polymer engineering have been recognized through her involvement in scientific committees and editorial boards. She has served as a member of the scientific committee and jury for the 7th National Polymer Conference of Iran in 2023. Her research has been published in high-impact journals, reflecting the significance and quality of her work. Through her academic and professional achievements, Dr. Tavakoli has established herself as a respected figure in the field of polymer science.

Conclusion

Dr. Mitra Tavakoli Ardakani’s extensive experience in polymer engineering, combined with her dedication to research and education, positions her as a valuable contributor to advancements in material science. Her work on polymer nanocomposites and their applications in health and environmental sectors demonstrates her commitment to addressing global challenges. By fostering interdisciplinary collaborations and mentoring the next generation of scientists, Dr. Tavakoli continues to influence the field positively. Her achievements reflect a career dedicated to scientific excellence and societal impact.

Publications Top Notes

  • Title: NR/SBR/organoclay nanocomposites: Effects of molecular interactions upon the clay microstructure and mechano‐dynamic properties
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2012
    Citations: 37

  • Title: Effectiveness of maleic anhydride grafted EPDM rubber (EPDM-g-MAH) as compatibilizer in NR/organoclay nanocomposites prepared by melt compounding
    Authors: M. Tavakoli, A.A. Katbab, H. Nazockdast
    Year: 2011
    Citations: 35

  • Title: Surface modification of polymers to enhance biocompatibility
    Authors: M. Tavakoli
    Year: 2005
    Citations: 27

  • Title: Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites
    Authors: S. Jahandideh, M.J.S. Shirazi, M. Tavakoli
    Year: 2017
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber (SBR/ENR50) nanocomposites containing nanoclay and carbon black as fillers for application in tire-tread compounds
    Authors: S. Ahmadi Shooli, M. Tavakoli
    Year: 2016
    Citations: 22

  • Title: Styrene butadiene rubber/epoxidized natural rubber/carbon filler nanocomposites: microstructural development and cure characterization
    Authors: S. Khalifeh, M. Tavakoli
    Year: 2019
    Citations: 12

  • Title: A Comparative Study of the Dynamic-Mechanical Properties of Styrene Butadiene Rubber/Epoxidized Natural Rubber Dual Filler Nanocomposites Cured by Sulfur or Electron Beam
    Authors: S.A.S.M. Tavakoli
    Year: 2019
    Citations: 11

  • Title: Enhancement in the mechanical property of NBR/PVC nanocomposite by using sulfur and electron beam curing in the presence of Cloisite 30B nanoclay
    Authors: A.S. Rad, E. Aali, S. Hallajian, D. Zangeneh, M. Tavakoli, K. Ayub, M. Peyravi
    Year: 2020
    Citations: 8

  • Title: Coincident optimization of specific volume and tensile strength at acrylic high-bulked yarn using Taguchi method
    Authors: M. Sadeghi-Sadeghabad, M. Tavakoli, A. Alamdar-Yazdia, H. Mashroteha
    Year: 2015
    Citations: 8

Zhishuai Geng | Chemistry | Best Researcher Award

Prof. Zhishuai Geng | Chemistry | Best Researcher Award

Assistant Professor from Beijing Institute of Technology, China

Zhishuai Geng is a highly accomplished researcher and Assistant Professor at the School of Materials Science and Engineering, Beijing Institute of Technology. With a strong academic background and a distinguished postdoctoral tenure at the University of California, Santa Barbara, Dr. Geng has positioned himself at the forefront of polymer materials research. His work encompasses dynamic polymer networks, self-healing materials, recyclable polymers, and flame-retardant systems, all aimed at creating sustainable, multifunctional, and high-performance materials. He has authored and co-authored numerous publications in top-tier journals such as ACS Applied Materials & Interfaces, Macromolecules, Chemical Engineering Journal, and Journal of Polymer Science. In addition to his academic contributions, Dr. Geng is also an inventor with several patents in the areas of antibacterial polyurethanes and functional polymeric materials. His engagement with the scientific community is evident through his active peer-review duties for prominent journals and participation in major scientific conferences. Dr. Geng’s innovative work reflects a balance between fundamental chemistry and real-world applications, earning him recognition as an emerging leader in the field. His commitment to solving complex challenges in materials science through interdisciplinary strategies makes him an excellent candidate for prestigious research awards and future academic leadership roles.

Professional Profile

Education

Zhishuai Geng’s academic journey began with a Bachelor of Science in Materials Chemistry from Nankai University, China, completed in 2012. This foundational education grounded him in chemical principles essential for advanced materials research. He then pursued his Ph.D. at the Georgia Institute of Technology in the School of Chemistry and Biochemistry, where he conducted innovative research from 2012 to 2018. His doctoral work focused on polymer chemistry and functional macromolecular systems, laying the groundwork for his future scientific pursuits. Following this, Dr. Geng expanded his expertise internationally through a postdoctoral fellowship at the University of California, Santa Barbara, from 2018 to 2021. There, he worked in the Materials Research Laboratory, a globally recognized hub for cutting-edge research in polymer science and materials engineering. This postdoctoral experience significantly enriched his knowledge in covalent adaptable networks, click chemistry, and flame-retardant materials. In May 2021, he began his role as an Assistant Professor at the Beijing Institute of Technology, where he continues to push the boundaries of polymer innovation. His diverse educational background, spanning elite institutions in both China and the United States, equips him with a global perspective and the technical versatility necessary for leading impactful research in materials science.

Professional Experience

Zhishuai Geng’s professional experience reflects a dynamic and progressive trajectory in academia and research. His career began with an intensive postdoctoral research appointment at the University of California, Santa Barbara, between July 2018 and April 2021. There, he collaborated with leading materials scientists on high-impact research projects, gaining deep expertise in covalent adaptable networks, polymer synthesis, and functional material systems. This period also fostered his proficiency in publishing within high-ranking journals and filing patent applications. In May 2021, Dr. Geng transitioned into a faculty role as an Assistant Professor in the School of Materials Science and Engineering at Beijing Institute of Technology. In this position, he leads a research group focused on the design and development of advanced polymeric materials, addressing key challenges in recyclability, mechanical performance, and multifunctionality. In addition to research, he actively mentors students and contributes to academic service through reviewing scholarly articles and participating in academic societies. His professional affiliations include roles in the Georgia Tech Polymer Network and the Center for the Science and Technology of Advanced Materials and Interfaces. Through these diverse experiences, Dr. Geng has established himself as a capable leader and innovator in the field of materials science and engineering.

Research Interest

Dr. Zhishuai Geng’s research interests lie at the intersection of polymer chemistry, materials engineering, and sustainable design. His primary focus is on dynamic polymer networks and covalent adaptable networks, often known as vitrimers, which allow for reprocessing, self-healing, and enhanced material lifespans. He is particularly interested in developing self-healing polymers that combine structural performance with autonomous repair capabilities. Another major area of his work involves flame-retardant polymer materials, where he has contributed significantly to the design of macromolecular and reactive flame retardants, especially phosphorus-based systems. These materials aim to enhance fire safety in polymers without compromising mechanical properties. Dr. Geng is also engaged in creating antimicrobial materials for biomedical applications, an area that addresses critical needs in healthcare and public safety. Furthermore, he explores surface modification techniques using covalent bonding strategies to enhance compatibility and functionality in complex systems. His interdisciplinary interests integrate organic chemistry, polymer physics, and nanotechnology, enabling the design of advanced materials with multiple, often synergistic, functions. Dr. Geng’s work not only contributes to academic knowledge but also holds strong translational potential for applications in electronics, healthcare, and environmental sustainability.

Research Skills

Zhishuai Geng has cultivated a comprehensive skill set that spans the synthesis, characterization, and application of advanced polymeric materials. His expertise in dynamic polymer networks and covalent adaptable networks has enabled him to design materials with properties such as self-healing, recyclability, and thermal responsiveness. He is proficient in advanced polymer synthesis techniques, including click chemistry, post-polymerization modification, and coordination crosslinking. These methods are used to construct multifunctional systems with tailored mechanical and thermal properties. Dr. Geng is also skilled in developing flame-retardant materials through phosphorus-based and macromolecular strategies, demonstrating an ability to balance fire resistance with mechanical integrity. His work in antimicrobial polymer design reflects his capacity for integrating biofunctional components into synthetic frameworks. Technically, he is adept at using a wide range of analytical tools, including spectroscopy (FTIR, NMR), thermal analysis (TGA, DSC), and mechanical testing. His experience also extends to surface engineering, nanoporous structure fabrication, and dielectric property testing. Additionally, Dr. Geng’s role as an active peer reviewer for journals like Macromolecules, Chemical Engineering Journal, and Biomacromolecules demonstrates his analytical rigor and recognition in the field. These research skills collectively enable him to tackle complex scientific challenges and lead high-impact projects across academia and industry.

Awards and Honors

While specific awards are not explicitly listed, Zhishuai Geng’s achievements in research and innovation reflect significant professional recognition. His selection as a postdoctoral fellow at the prestigious University of California, Santa Barbara, highlights his early potential and research promise. Moreover, his current appointment as an Assistant Professor at Beijing Institute of Technology—a top-tier university in China—demonstrates institutional trust in his expertise and leadership. Dr. Geng has filed and received multiple patents, including a Chinese patent for antibacterial polyurethane (CN 116041660 A) and a U.S. patent for polycation synthesis (US 11,589,590 B2), underscoring the novelty and applicability of his research. He has published in leading journals across the fields of chemistry and materials science and has participated in international conferences, such as the American Chemical Society (ACS) National Meeting. Additionally, his role as a frequent peer reviewer for highly regarded journals is an implicit recognition of his scholarly authority. His involvement in scientific organizations like the Georgia Tech Polymer Network and the Center for Advanced Materials and Interfaces further affirms his standing in the research community. With continued excellence, formal awards and honors are likely to follow in his advancing academic career.

Conclusion

Zhishuai Geng exemplifies the qualities of a dedicated, innovative, and impactful researcher in the field of materials science and polymer chemistry. His work demonstrates a deep commitment to solving pressing global challenges through the development of recyclable, flame-retardant, self-healing, and antimicrobial polymer materials. With a solid academic background, including training at Georgia Institute of Technology and postdoctoral research at UC Santa Barbara, Dr. Geng brings a global perspective and technical sophistication to his role as Assistant Professor at Beijing Institute of Technology. His prolific publication record, collaborative patent activity, and active involvement in peer reviewing indicate both scientific credibility and community engagement. While his professional recognition could be further elevated through formal academic awards and expanded research leadership, his contributions already mark him as a rising leader in his domain. Dr. Geng’s ability to bridge fundamental research and real-world application positions him as a valuable asset to the academic and industrial research ecosystems. He is an ideal candidate for research honors such as the Best Researcher Award, and with continued achievements, he is poised to influence the future of sustainable and multifunctional material development on a global scale.

Publication Top Notes

1. Ultrarobust, Self-Healing Poly(urethane-urea) Elastomer with Superior Tensile Strength and Intrinsic Flame Retardancy Enabled by Coordination Cross-Linking
Authors: Yuxin Luo, Meiyan Tan, Jaeman Shin, Cheng Zhang, Shiyuan Yang, Ningning Song, Wenchao Zhang, Yunhong Jiao, Jixing Xie, Zhishuai Geng, et al.
Journal: ACS Applied Materials & Interfaces
Year: 2024
DOI: 10.1021/acsami.4c08185

2. Metformin-Mediated Fast Charge-Reversal Nanohybrid for Deep Penetration Piezocatalysis-Augmented Chemodynamic Immunotherapy of Cancer
Authors: Yuan Wang, Qingshuang Tang, Ruiqi Wu, Shiyuan Yang, Zhishuai Geng, Ping He, Xiaoda Li, Qingfeng Chen, Xiaolong Liang
Journal: ACS Nano
Year: 2024
DOI: 10.1021/acsnano.3c11174
Citations: 3

3. Dual Nucleation Sites Induced by ZIF-67 Towards Mismatch of Polyphosphazene Hollow Sub-Micron Polyhedrons and Nanospheres in Flame Retardant Epoxy Matrix
Authors: Xiaoning Song, Boyou Hou, Zhengde Han, Ye-Tang Pan, Zhishuai Geng, Laia Haurie Ibarra, Rongjie Yang
Journal: Chemical Engineering Journal
Year: 2023
DOI: 10.1016/j.cej.2023.144278

4. Neighboring Group Participation in Ionic Covalent Adaptable Networks
Authors: Lindsay L. Robinson, Eden S. Taddese, Jeffrey L. Self, Christopher M. Bates, Javier Read de Alaniz, Zhishuai Geng, Craig J. Hawker
Journal: Macromolecules
Year: 2022
DOI: 10.1021/acs.macromol.2c01618
Citations: 4

5. Gold(I)-Catalyzed Tandem Cyclization/Hydroarylation of o-Alkynylphenols with Haloalkynes
Authors: Jiawen Wu, Cunbo Wei, Fen Zhao, Wenqian Du, Zhishuai Geng, Zhonghua Xia
Journal: The Journal of Organic Chemistry
Year: 2022
DOI: 10.1021/acs.joc.2c01804
Citations: 5

6. Multielement Flame-Retardant System Constructed with Metal POSS–Organic Frameworks for Epoxy Resin
Authors: Boyou Hou, Wenyuan Zhang, Hongyu Lu, Kunpeng Song, Zhishuai Geng, Xinming Ye, Ye-Tang Pan, Wenchao Zhang, Rongjie Yang
Journal: ACS Applied Materials & Interfaces
Year: 2022
DOI: 10.1021/acsami.2c14740

7. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups
Authors: Pranav P. Kalelkar, Zhishuai Geng, M.G. Finn, David M. Collard
Journal: Biomacromolecules
Year: 2019
DOI: 10.1021/acs.biomac.9b00504
Citations: 19

8. Placing Functionality Where You Want: The Allure of Sequence Control
Authors: Zhishuai Geng, J. Lee, Craig J. Hawker
Journal: Chem
Year: 2019
DOI: 10.1016/j.chempr.2019.09.007

9. A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products
Authors: X. He, H. Zou, Z. Geng, X. Wang, W. Ding, F. Hu, Y. Zi, C. Xu, S.L. Zhang, H. Yu, et al.
Journal: Advanced Functional Materials
Year: 2018
DOI: 10.1002/adfm.201805540

Hongyuan Chuai | Photocatalysis | Best Researcher Award

Dr. Hongyuan Chuai | Photocatalysis | Best Researcher Award

Research Fellow from The HongKong Polytechnic University, China

Dr. Hongyuan Chuai is an accomplished researcher in the field of catalysis and electrochemical energy conversion. With a multidisciplinary background in organic, inorganic, and materials chemistry, he has made significant contributions to the development of innovative catalytic systems for carbon dioxide reduction and hydroformylation. His academic and research journey spans leading institutions in China and Europe, including Nankai University, Changchun University of Technology, CNRS in France, and currently, the Hong Kong Polytechnic University. Dr. Chuai’s research is distinguished by its focus on sustainable and green chemistry solutions, particularly the design of carbon-based materials and metal-supported catalysts. His work is published in top-tier journals such as ACS Catalysis and ACS Applied Materials & Interfaces, with multiple first and corresponding authorships. His studies on porous nanomaterials, single-atom catalysis, and electrocatalytic interfaces address critical global challenges in energy and environment. In addition to his research achievements, Dr. Chuai is actively involved in collaborative projects and mentorship roles, reflecting leadership potential and academic versatility. His combination of deep theoretical understanding and practical experimentation positions him as a prominent figure in modern catalysis. Dr. Chuai is a highly suitable candidate for accolades like the Best Researcher Award due to his innovation, productivity, and impact.

Professional Profile

Education

Dr. Hongyuan Chuai’s educational background reflects a strong foundation in chemistry and interdisciplinary research. He began his academic journey in 2011, enrolling in a Master’s program in organic chemistry at Changchun University of Technology. During this time, his research centered on the photocatalytic degradation of organic pollutants, laying the groundwork for his lifelong interest in catalytic systems and environmental remediation. He pursued his Ph.D. in inorganic chemistry at Nankai University, one of China’s top-tier institutions, from 2014 to 2016. His doctoral research involved the design and development of catalytic active sites on titanium dioxide (TiO₂) nanotubes for hydroformylation reactions. Further enriching his academic journey, Dr. Chuai participated in a prestigious joint Ph.D. program funded by the China Scholarship Council (CSC) at the Centre de Recherche Paul Pascal (CRPP), CNRS, in France from 2016 to 2018. This international exposure allowed him to explore the synthesis and characterization of spin-crossover (SCO) complexes. Dr. Chuai’s diverse academic experiences across organic and inorganic disciplines, both in China and abroad, have contributed to his comprehensive understanding of chemistry and catalysis, providing a solid platform for his continued research excellence.

Professional Experience

Dr. Hongyuan Chuai has accumulated over a decade of research experience across leading academic and research institutions. After completing his joint Ph.D. at Nankai University and CNRS, he was appointed as a Research Assistant at Nankai University from September 2019 to June 2020. His role during this period focused on catalysis and materials chemistry, preparing him for advanced postdoctoral work. From September 2020 to June 2024, he served as a Postdoctoral Fellow at Tianjin University, conducting pivotal research on carbon-based materials for electrochemical CO₂ reduction. He has concurrently held a position as an associate researcher at the same institution, demonstrating his growing academic leadership and project management skills. In 2024, Dr. Chuai advanced to a Research Fellow position at the Hong Kong Polytechnic University, further solidifying his reputation as an emerging expert in catalysis and sustainable materials. His professional trajectory showcases steady progress in research responsibility, scientific output, and collaborative engagement. Through roles that span both junior and senior research capacities, he has contributed significantly to the fields of inorganic chemistry, electrocatalysis, and environmental remediation. His work is consistently aligned with cutting-edge technology and global sustainability goals, underlining his value as an experienced and innovative researcher.

Research Interests

Dr. Hongyuan Chuai’s research interests are rooted in catalysis, inorganic chemistry, materials science, and sustainable energy. His primary focus lies in developing advanced catalytic materials for electrochemical carbon dioxide (CO₂) reduction, a reaction of global importance for mitigating climate change. He is particularly interested in carbon-based electrocatalysts, metal-supported systems, and porous nanostructures that can enhance catalytic selectivity and efficiency. His early academic pursuits in photocatalytic degradation of pollutants have evolved into broader interests in environmental catalysis and renewable energy conversion. In recent years, Dr. Chuai has expanded his work into single-atom catalysis, facet-dependent activity studies, and structure-property-function relationships of spinel oxides and hybrid nanomaterials. He also maintains an active interest in hydroformylation reactions using Rh- and Ru-based catalysts supported on engineered TiO₂ nanotubes. His projects often bridge theory with application, aiming to discover practical catalytic systems for energy-efficient and scalable chemical transformations. These research areas reflect a harmonious integration of environmental sustainability, fundamental chemistry, and advanced materials engineering. Dr. Chuai’s forward-looking vision and interdisciplinary mindset continue to shape the direction of his scientific exploration and establish him as a thought leader in energy-oriented chemical research.

Research Skills

Dr. Hongyuan Chuai possesses a robust and versatile skill set in experimental chemistry and advanced materials characterization. His expertise spans the synthesis of nanomaterials, electrocatalysts, and organometallic complexes, particularly those used in CO₂ reduction and hydroformylation processes. He has significant hands-on experience with techniques such as electrospinning, sol-gel synthesis, and wet chemical deposition for creating heterostructured and porous materials. In the laboratory, he demonstrates proficiency in catalyst design, surface modification, and doping strategies to fine-tune the catalytic performance of carbon-based and metal-supported materials. Dr. Chuai is highly skilled in structural and surface analysis using methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). He also applies electrochemical techniques including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and chronoamperometry for evaluating catalytic efficiency and reaction kinetics. Additionally, his research involves spectroscopic studies and in-situ monitoring of catalytic systems. His ability to integrate material design with mechanistic insights allows him to drive innovation in catalyst development. These technical competencies, combined with strong analytical and scientific writing skills, underscore Dr. Chuai’s capabilities as a leading researcher in energy conversion and catalysis.

Awards and Honors

While the curriculum vitae does not explicitly list formal awards, Dr. Hongyuan Chuai’s academic progression and publication record reflect a strong recognition within the scientific community. His selection for the China Scholarship Council (CSC) program for a joint Ph.D. at the Centre de Recherche Paul Pascal (CNRS) in France is a testament to his academic excellence and international competitiveness. Such scholarships are awarded to top-performing students and researchers, indicating his early promise as a scientific talent. Furthermore, his appointment as a Postdoctoral Fellow and later as an Associate Researcher at Tianjin University demonstrates institutional trust in his research capabilities. His most recent role as a Research Fellow at the Hong Kong Polytechnic University underscores a growing international reputation and leadership potential. In addition, Dr. Chuai has published in high-impact journals such as ACS Catalysis and ACS Applied Materials & Interfaces, which implies peer recognition and excellence in research quality. Although more formal awards, patents, or research grants as principal investigator could enhance his portfolio, his accomplishments already position him as a highly impactful and recognized researcher in his field. His career trajectory shows continued momentum toward greater recognition and future accolades.

Conclusion

Dr. Hongyuan Chuai is a remarkable and promising researcher whose contributions to catalysis and sustainable chemistry mark him as an emerging leader in the field. His interdisciplinary approach, grounded in both theoretical knowledge and experimental practice, enables him to tackle pressing environmental and energy-related challenges through innovative research. With a solid academic background, impressive international experience, and a growing publication record in prestigious journals, Dr. Chuai has demonstrated the qualities of a productive and visionary scientist. His work on carbon-based electrocatalysts and catalytic conversion processes is not only timely but also crucial to global sustainability goals. While further international collaborations, funding leadership, and industry-level research translation would elevate his academic standing even further, his current achievements are substantial. Dr. Chuai combines research rigor with originality and scientific maturity, making him highly deserving of recognition through awards such as the Best Researcher Award. His trajectory indicates a strong upward path, and with continued support and visibility, he is poised to make transformative contributions to the field of chemical and materials research.

Publications Top Notes

  1. Title: Enhancing Vinyl Acetate Hydroformylation with La‐Decorated Rh/TiO2 Nanotubes Catalysts
    Authors: Hongyuan Chuai, Baolin Zhu, Shoumin Zhang, Weping Huang
    Year: 2025

  2. Title: Discovery of Carbon Reduction Reaction
    Authors: Hongyuan Chuai, Weiping Huang, Sheng Zhang
    Year: 2025

  3. Title: Boosting Electrochemical CO2 Reduction to CO by Regulating the Porous Structure of Carbon Membrane
    Authors: Hongyuan Chuai, Haibei Yang, Sheng Zhang
    Year: 2024

  4. Title: Ceria-Mediated Dynamic Sn⁰/Sn^δ+ Redox Cycle for CO2 Electroreduction
    Authors: Hai Liu, Boyang Li, Zhihui Liu, Zhanpeng Liang, Hongyuan Chuai, Hui Wang, Shi Nee Lou, Yaqiong Su, Sheng Zhang, Xinbin Ma
    Year: 2023

  5. Title: Tailoring Microenvironment for Enhanced Electrochemical CO2 Reduction on Ultrathin Tin Oxide Derived Nanosheets
    Authors: Hai Liu, Yaqiong Su, Zhihui Liu, Hongyuan Chuai, Sheng Zhang, Xinbin Ma
    Year: 2023

  6. Title: Asymmetrical Electrohydrogenation of CO2 to Ethanol with Copper–Gold Heterojunctions
    Authors: Siyu Kuang, Yaqiong Su, Minglu Li, Hai Liu, Hongyuan Chuai, Xiaoyi Chen, Emiel J. M. Hensen, Thomas Meyer, Sheng Zhang, Xinbin Ma
    Year: 2023

  7. Title: Copper-Based Bimetallic Electrocatalysts for CO2 Reduction: From Mechanism Understandings to Product Regulations
    Authors: Haibei Yang, Hongyuan Chuai, Qingrui Meng, Meiyan Wang, Sheng Zhang, Xinbin Ma
    Year: 2022

  8. Title: Self-Supported Porous Carbon Nanofibers Decorated with Single Ni Atoms for Efficient CO2 Electroreduction
    Authors: Hui Wang, Hongyuan Chuai, Xiaoyi Chen, Jianlong Lin, Sheng Zhang, Xinbin Ma
    Year: 2022

  9. Title: Nanoporous Tin Oxides for Efficient Electrochemical CO2 Reduction to Formate
    Authors: Hai Liu, Baiyu Miao, Hongyuan Chuai, Xiaoyi Chen, Sheng Zhang, Xinbin Ma
    Year: 2022

  10. Title: Facet Dependent Oxygen Evolution Activity of Spinel Cobalt Oxides
    Authors: Lihua Zhang, Hongyuan Chuai, Hai Liu, Qun Fan, Siyu Kuang, Sheng Zhang, Xinbin Ma
    Year: 2021