RAVI VARALA | Chemistry | Best Researcher Award

Dr. RAVI VARALA | Chemistry | Best Researcher Award

SCIENTIST from SCRIPS PHARMA, India

Dr. Ravi Varala is a seasoned researcher in synthetic organic chemistry, with over 25 years of academic and industrial experience. He currently serves as an R&D Scientist at Scrips Pharma, Hyderabad, and as Director of Marketing at Swastha Biosciences. His career spans international postdoctoral roles, visiting researcher positions, and teaching appointments in reputed institutions across India, Portugal, Spain, Malaysia, and Brazil. Dr. Varala’s work includes the synthesis of biologically relevant heterocyclic compounds, sigmatropic rearrangements, and anticancer agents like Staurosporinone. He has made impactful contributions through his interdisciplinary collaboration, student mentorship, and laboratory innovation. His training includes hands-on expertise with modern chemical instrumentation and cheminformatics. With a Ph.D. from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, and multiple roles as a scientific investigator and researcher, he brings a unique combination of scholarly excellence and industrial insight. Dr. Varala has demonstrated strengths in problem-solving, manuscript writing, and research guidance. His professional journey reflects a commitment to advancing scientific knowledge and fostering academic-industry synergy. With a focus on meaningful scientific innovation, he stands out as a distinguished professional in the field of pharmaceutical and chemical sciences. He is currently active in international collaborations and continues to contribute significantly to his domain.

Professional Profile

Education

Dr. Ravi Varala holds a Ph.D. in Chemistry from the Indian Institute of Chemical Technology (IICT-CSIR), Hyderabad, awarded in 2006. His doctoral thesis, titled “A Facile Synthesis of Biologically Active Phthalimides & Its Analogues – A Study,” involved the development of novel heterocyclic compounds with therapeutic relevance, emphasizing the design and synthesis of N-phthaloyl-based structures. Prior to his doctorate, he completed his M.Sc. in Organic Chemistry from Kakatiya University (1997–1999), where he earned a First Class distinction. His undergraduate degree, B.Sc., was completed at Osmania University between 1993 and 1996, also with First Class distinction. He began his academic journey with distinction in his Intermediate (1991–1993) and SSC (1991) under the Board of Intermediate and Secondary Education respectively. Dr. Varala’s educational path reflects a consistent record of academic excellence and specialization in synthetic organic chemistry. His strong foundation in organic synthesis laid the groundwork for his future research in pharmaceutical and medicinal chemistry. His academic journey has not only been marked by scholarly rigor but also by early exposure to research, which has greatly influenced his research direction and professional trajectory in chemical sciences.

Professional Experience

Dr. Ravi Varala’s professional experience is both diverse and expansive, encompassing academic research, teaching, and industrial roles. He is currently working as an R&D Scientist at Scrips Pharma, Hyderabad, while also serving as the Director of Marketing at Swastha Biosciences, a dual role that showcases his versatility in both scientific innovation and strategic business development. Since December 2023, he has been a Research Fellow at INTI International University, Malaysia. His academic contributions include a significant tenure as a Contract Lecturer at TS-IIIT from January 2011 to July 2019, where he contributed to undergraduate education in chemistry. Internationally, he served as a Visiting Researcher at the prestigious University of São Paulo, Brazil (2015–2016), working under Prof. Osvaldo N. Oliveira Jr., an eminent scientist with an h-index of 85. His earlier industry experience includes positions as Associate Scientist at Laxai-Avanti Pharma and Research Scientist at Sapala Organics. Between 2007 and 2009, he worked as a Postdoctoral Research Associate in Portugal and Spain. Dr. Varala’s professional journey demonstrates his capacity to contribute across multiple sectors—academic, industrial, and global research—highlighting a comprehensive and impactful career in chemistry and pharmaceuticals.

Research Interest

Dr. Ravi Varala’s research interests lie predominantly in the field of synthetic organic chemistry, with a strong focus on heterocyclic compounds, natural product synthesis, and anticancer molecules. His early doctoral and postdoctoral research focused on the design and development of biologically active molecules such as N-phthaloyl analogues, and indolocarbazole alkaloids like Staurosporinone and K252d, which are known for their anticancer properties. He has also worked extensively on sigmatropic rearrangements, a crucial mechanism in modern organic synthesis. Dr. Varala’s work combines classical synthetic methods with modern catalytic processes and aims at building structurally complex, bioactive molecules. He is passionate about developing efficient synthetic pathways that improve yield and reduce environmental impact. In addition, his role as a research guide has allowed him to shape the research interests of young scholars, fostering innovation in both academia and the pharmaceutical industry. His interests also extend to structure-activity relationship (SAR) studies and target-based drug design, making his research valuable for therapeutic development. With international experience and a collaborative mindset, he is keen on multidisciplinary research that bridges chemistry with life sciences, aiming for translational impact in medical and pharmaceutical applications.

Research Skills

Dr. Ravi Varala possesses a robust skill set tailored to modern chemical research and pharmaceutical development. He is highly trained in multi-step organic synthesis, utilizing contemporary techniques and methodologies to construct complex molecular frameworks. His operational expertise includes sophisticated analytical and structural elucidation instruments such as NMR, IR, UV spectroscopy, and Polarimeter, essential for validating synthetic products. Dr. Varala is adept at cheminformatics tools including SciFinder, Beilstein, Web of Knowledge, and ISIS-based software, which he uses to plan, model, and refine synthetic strategies. He also demonstrates strong capabilities in manuscript writing, research proposal development, and experimental planning, reflecting his academic rigor. His experience spans both bench-level chemistry and supervisory roles, making him well-versed in managing research teams and guiding students through problem-solving in laboratory settings. In teaching and curriculum development, he shows an innovative approach by integrating modern pedagogical strategies like TLET/SSDP. His balanced experience in academic mentoring, industrial application, and research publication positions him as a highly skilled and versatile researcher. His comprehensive understanding of chemical synthesis and analytical techniques makes him a valuable asset to any scientific or industrial organization.

Awards and Honors

While specific awards and honors have not been explicitly detailed in the provided profile, Dr. Ravi Varala’s career reflects significant international recognition and academic trust, as demonstrated by his appointments and research fellowships. His selection as a Visiting Researcher at the University of São Paulo, Brazil—ranked among the world’s top 100 universities—is a prestigious academic endorsement. Moreover, his postdoctoral positions at the University of New Lisbon, Portugal, and ICIQB, Spain, underscore his strong reputation within European academic circles. These appointments are highly competitive and typically awarded based on a rigorous selection process evaluating scientific merit, publication record, and potential for collaboration. His role as a Research Fellow at INTI International University, Malaysia, further signifies recognition of his ongoing contributions to chemical sciences. Additionally, his continued involvement as a research guide, project lead, and director-level professional indicates professional trust and leadership standing. Though direct awards such as national honors or competitive research grants are not listed, the combination of his appointments, leadership roles, and international affiliations point to a career distinguished by peer recognition and academic achievement at a global level.

Conclusion

In conclusion, Dr. Ravi Varala exemplifies the qualities of a high-caliber researcher whose contributions span both academic excellence and industry relevance. With over two decades of dedicated work in synthetic organic chemistry, he has cultivated a unique blend of deep scientific knowledge, hands-on research expertise, and collaborative international experience. His consistent academic track record, involvement in cross-continental research initiatives, and leadership in both teaching and industry reflect a well-rounded professional trajectory. Dr. Varala’s work in anticancer drug development, heterocyclic synthesis, and sigmatropic rearrangements highlights his focus on impactful, application-driven science. His ability to train and mentor young researchers, paired with his fluency in modern chemical instrumentation and digital research tools, marks him as an asset to any academic or industrial setting. Although specific publication metrics or award citations could further support his profile, the depth and breadth of his career are unmistakable. Dr. Varala’s dedication to chemistry, his multidisciplinary approach, and his leadership across institutions make him a worthy candidate for the Best Researcher Award and a continued contributor to global scientific advancement.

Publications Top Notes

1. Recent Advances in Di-tert-butyl Peroxide (DTBP)-Promoted C-C Bond Formation Reactions

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohamed Hussien, Mohammed Mujahid Alam

2. Tris(pentafluorophenyl)borane [B(C₆F₅)₃]-catalyzed Organic Transformations: A Triennial Update (2021 Onwards)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam, Narsimhaswamy Dubasi

3. Research Progress of DBU in C─C, C–Heteroatom, and Heteroatom–Heteroatom Bond Formations

  • Journal: Chemistry & Biodiversity

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Hari Babu Bollikolla, Shreyas Shridharrao Mahurkar, Mohamed Hussein, Mohammed Mujahid Alam

4. Visible Light‐Driven Multicomponent Reactions for the Synthesis of Diverse Heterocyclic Frameworks

  • Journal: European Journal of Organic Chemistry

  • Contributors: Narsimhaswamy Dubasi, Ravi Varala, Murali Mohan Achari Kamsali, Mohammed Mujahid Alam

5. Recent Advances in the Chemistry of Tetrazole Derivatives—A Quinquennial Update [Mid-2019 to date]

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Mohamed Hussein, Ravi Varala, Murali Mohan Achari Kamsali, Vittal Seema, Durga Prasad Beda, Mastan Ali Syed, Mohammed Mujahid Alam

6. Applications of Selectfluor in Organic Synthesis—A Quadrennial Update

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Murali Mohan Achari Kamsali, Mohamed Hussein, Mohammed Mujahid Alam

7. Di-tert-butyl Peroxide (DTBP)-Promoted Heterocyclic Ring Construction

  • Journal: Current Organic Chemistry

  • DOI: 10.2174/0113852728322422240816060345

  • Contributors: Ravi Varala, Murali Mohan Achari Kamsali, Ramanaiah Seella, Mohammed Mujahid Alam

8. Metal-free Oxidations with m-CPBA: An Octennial Update

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Ravi Varala, Vittal Seema, Mohamed Hussein, Mostafa A. Ismail, Mohammed Mujahid Alam

9. Biocatalysis in Bioorthogonal Reactions: Use of Hydrolases and Transferases for Selective Modifications

  • Journal: Mini-Reviews in Organic Chemistry

  • Contributors: Abir B. Majumder, Murali Mohan Achari Kamsali, Ravi Varala, Siddique Akber Ansari

10. Cesium Carbonate (Cs₂CO₃) in Organic Synthesis: A Sexennial Update (2018 to Date)

  • Journal: Current Organic Chemistry

  • Contributors: Ravi Varala, Kamsali Murali Mohan Achari, Mohammed Hussein, Mohammed Mujahid Alam, Seella Ramanaiah

 

Olga Vodyankina | Chemistry | Best Researcher Award

Prof. Olga Vodyankina | Chemistry | Best Researcher Award

Head of Department from Head of Department, Russia

Vodyankina Olga Vladimirovna is a distinguished chemist and professor at Tomsk State University, Russia. With over three decades of dedicated research, she has established herself as a leading expert in catalysis, photocatalysis, surface science, and green chemistry. She has published extensively, with 161 articles indexed in Scopus, an h-index of 23, and over 2,000 citations, reflecting the significant impact of her work on the scientific community. Throughout her career, she has demonstrated exceptional leadership in both academic and industrial collaborations, managing numerous national and international research projects. As the Head of the Department of Physical and Colloidal Chemistry, she has contributed immensely to advancing chemical education and research infrastructure at Tomsk State University. Professor Vodyankina is also recognized for her strong commitment to mentoring young scientists, having supervised 12 PhD dissertations and one Doctor of Science thesis. Her research focuses on the development of catalysts for environmentally friendly and energy-efficient chemical processes. With multiple prestigious awards to her name, including the D.I. Mendeleev Medal and the national “Professor of the Year” award, she remains a highly respected figure in her field. Her work continues to contribute to solving pressing environmental challenges and advancing sustainable chemical technologies.

Professional Profile

Education

Vodyankina Olga Vladimirovna’s educational journey has been deeply rooted in Tomsk State University, where she pursued all her higher education degrees in chemistry. She completed her specialist degree in chemistry in 1990 with an outstanding GPA of 5.0, showcasing her academic excellence from the outset. Between 1991 and 1996, she was a postgraduate student at the Department of Chemistry, where she successfully defended her PhD thesis on the “Physical-chemical investigation of ethylene glycol oxidation process.” Her doctoral research contributed to the early foundations of her later work in catalysis and oxidation processes. Furthering her academic pursuits, she enrolled in the Doctorate program at Tomsk State University from 1998 to 2002. Her DSc thesis, titled “The partial oxidation of ethylene glycol into glyoxal on Ag and Cu catalysts,” demonstrated her deepening specialization in heterogeneous catalysis and surface reactions. This advanced research earned her a Doctor of Science degree, solidifying her expertise and positioning her for leadership roles in the scientific community. Professor Vodyankina’s educational progression reflects her long-term dedication to chemical research and her consistent academic success within one of Russia’s most reputable scientific institutions.

Professional Experience

Vodyankina Olga Vladimirovna’s professional career spans over three decades at Tomsk State University, where she has served in various influential roles. She began as a researcher in the Laboratory of Catalytic Research in 1996, quickly advancing to senior researcher by 1997. Her dedication and research excellence led her to become a professor at the Chair of Physical and Colloidal Chemistry from 2003 to 2013. Since 2010, she has held the prestigious Full Professor position in the Faculty of Chemistry. In addition to her professorship, she has been the Head of the Department of Physical and Colloidal Chemistry since 2013, leading the department’s educational and research missions. Simultaneously, she continues her active role as a leading researcher at the Laboratory of Catalytic Research. Throughout her career, she has successfully combined teaching, mentoring, and pioneering research. Her extensive leadership experience includes managing large-scale projects funded by national and international organizations, as well as coordinating research collaborations with industry giants such as OJSC “Sibur-Holding” and Lyondell Basell (USA). Her professional journey reflects not only her scientific capability but also her ability to foster academic excellence, manage research teams, and contribute significantly to her university’s scientific standing.

Research Interests

Professor Vodyankina Olga Vladimirovna’s research interests lie predominantly in the areas of catalysis, photocatalysis, surface science, and green chemical processes. She has developed a particular expertise in the preparation and functionalization of catalysts for oxidation reactions, including the dry reforming of methane and the photocatalytic evolution of hydrogen. Her work extensively explores the oxidation of polyols and the design of active catalysts based on silver and platinum over cerium oxide supports, especially for environmental applications like the aftertreatment of diesel engine exhaust gases. She is deeply committed to solving modern challenges in energy efficiency and sustainable chemical production, with her research aligning closely with the principles of green chemistry. Professor Vodyankina’s interests also extend to understanding the synergistic interactions between metal nanoparticles and redox-active supports, aiming to control catalyst reactivity at the molecular level. Her current projects focus on resource-saving energy solutions, bio-renewable raw material processing, and emissions reduction. She actively collaborates with international partners, contributing to the advancement of global scientific knowledge in catalyst development. Her research is driven by both fundamental questions in physical chemistry and practical industrial applications, positioning her as a key contributor to environmentally friendly chemical innovations.

Research Skills

Professor Vodyankina Olga Vladimirovna possesses highly specialized research skills in the design, synthesis, and characterization of catalysts, particularly for oxidation processes and sustainable chemical conversions. She is adept at employing advanced catalytic techniques and surface science methodologies to develop catalysts with precise active site configurations. Her skills encompass catalyst preparation for dry reforming, photocatalysis, and hydrogen evolution reactions, with a strong ability to integrate these technologies into environmentally friendly processes. Additionally, she is experienced in leading complex, multi-partner research projects, managing laboratory operations, and supervising large research teams. Professor Vodyankina demonstrates excellent competence in interpreting physical-chemical reaction mechanisms and synergistic effects in heterogeneous catalysis. She has also organized scientific conferences, showcasing her skills in academic leadership and scientific community building. Her extensive knowledge of green chemistry and energy-efficient catalytic systems allows her to contribute to cutting-edge solutions for chemical manufacturing and pollution control. Moreover, her skills include guiding young researchers in developing their scientific capabilities, which strengthens the research capacity within her institution. Her technical proficiency, strategic project management, and collaborative approach make her a valuable asset to the international scientific community focused on sustainable catalysis.

Awards and Honors

Throughout her illustrious career, Professor Vodyankina Olga Vladimirovna has been recognized with numerous prestigious awards and honors that reflect her exceptional contributions to science, education, and mentorship. Notable among these is the national “Professor of the Year” award in 2022, bestowed by the Russian Professorial Assembly, and the highly esteemed D.I. Mendeleev Medal in 2013 for her major scientific and educational achievements. She has also been honored with multiple medals from the Russian Federation and the Tomsk regional government, including the “Honorary Mentor” medal in 2023 and the “For valiant labor in Tomsk State University” medal in 2020. Professor Vodyankina was a recipient of the Tomsk Region Government’s “Professor of the Year” award in 2021 and has won Tomsk State University’s science prize in the same year. Her consistent excellence has been acknowledged with the “Honorary Worker of Higher Professional Education” award from the Ministry of Education and Science of the Russian Federation. Additionally, she has twice won the prestigious Presidential Grant for young scientists with DSc degrees. These honors underscore her outstanding leadership, pioneering research, and enduring impact on the scientific and educational landscape in Russia.

Conclusion

Vodyankina Olga Vladimirovna’s extensive contributions to chemistry, particularly in the fields of catalysis and green chemical processes, position her as an exemplary candidate for the Best Researcher Award. Her impressive portfolio of over 160 publications, multiple national and international research projects, and substantial citation impact reflect the high quality and relevance of her work. Beyond her scientific achievements, her dedication to mentoring the next generation of chemists and leading academic departments showcases her commitment to the broader scientific community. She has successfully bridged the gap between fundamental research and industrial application, contributing to both scientific advancement and practical solutions for environmental sustainability. Her ability to secure significant research funding and her active role in international collaborations further highlight her dynamic approach to scientific leadership. Professor Vodyankina’s career is marked by continuous growth, innovation, and academic service, solidifying her as a key figure in her field. Her well-earned awards and recognitions further validate her influence and dedication. Overall, her extensive research excellence, leadership, mentorship, and societal contributions make her highly deserving of recognition through the Best Researcher Award.

Publications Top Notes

1. Synergistic Effects in Heterogeneous Catalysis: Status and Perspectives

  • Authors: Mikhail A. Salaev, Haifeng Xiong, Vicente Cortés Corberán, L. F. Liotta, Olga V. Vodyankina

2. Effect of Organic Linker Substituents on Properties of Metal-Organic Frameworks: A Review

  • Authors: Viktoriia V. Torbina, Yulia A. Belik, Olga V. Vodyankina

3. Design of Heterostructure Photocatalysts Based on Layered Perovskite-Like Bismuth Silicate

  • Authors: Yulia A. Belik, Roman Vergilessov, Evgenia A. Kovaleva, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2025

  • Citations: 1

4. Unravelling the Cu and Ce Effects in MnO₂-Based Catalysts for Low-Temperature CO Oxidation

  • Authors: Egor D. Blinov, Ekaterina V. Kulchakovskaya, Nikolai A. Sokovikov, Sergei A. Kulinich, Olga V. Vodyankina

  • Year: 2025

5. Sn-Modified Zr-UiO-66 Metal-Organic Frameworks for Dihydroxyacetone Conversion into Lactic Acid

  • Authors: Karina Kurmanbayeva, Semyon Nikulaichev, Nikolai A. Sokovikov, Viktoriia V. Torbina, Olga V. Vodyankina

  • Year: 2025

6. Unraveling the Mechanism of Hydrogen Evolution on Dark TiO₂ Obtained by Pulsed Laser Ablation

  • Authors: Elena D. Fakhrutdinova, E. V. Zinina, T. A. Bugrova, V. A. Svetlichny, Olga V. Vodyankina

  • Year: 2024

7. Laser Synthesis and Photocatalytic Properties of Bismuth Oxyhalides Nanoparticles

  • Authors: Vyacheslav E. Korepanov, Olesia A. Reutova, T. S. Kharlamova, Sergei A. Kulinich, V. A. Svetlichny

  • Year: 2024

8. Synergistic Effect as a Function of Preparation Method in CeO₂-ZrO₂-SnO₂ Catalysts for CO Oxidation and Soot Combustion

  • Authors: M. V. Grabchenko, Natalia N. Mikheeva, Nataliya V. Dorofeeva, Grigory V. Mamontov, Mikhail A. Salaev

  • Year: 2024

  • Citations: 4

9. Intermolecular Interactions, Regioselectivity, and Biological Activity of L-Ascorbic Acid, Nicotinic Acid and Their Cocrystal

  • Authors: Diana Nikolaevna Evtushenko, A. V. Fateev, Mark A. Khainovsky, Igor Albertovich Khlusov, Olga V. Vodyankina

  • Year: 2024

10. Design Strategy for Effective Supported Au-Pd Catalysts for Selective Oxidation of 5-Hydroxymethylfurfural Under Mild Conditions

  • Authors: T. S. Kharlamova, Konstantin L. Timofeev, Denis P. Morilov, Olga A. Stonkus, Olga V. Vodyankina

  • Year: 2024

  • Citations: 3

Zhong-Hong Zhu | Chemistry | Excellence in Research Award

Dr. Zhong-Hong Zhu | Chemistry | Excellence in Research Award

Guangxi University, China

Dr. Zhong-Hong Zhu is a rising scholar in the fields of materials science, nanotechnology, and applied chemistry. Currently serving as an Assistant Professor at Guangxi University, China, Dr. Zhu’s academic path reflects a consistent commitment to excellence and innovation. With a Ph.D. in Materials Science and Engineering from South China University of Technology, he has conducted extensive research in luminescent materials, nanoclusters, and their applications in biomedicine. His publication record is exemplary, with more than 50 peer-reviewed articles in top international journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials. His research has gained significant academic recognition, having been cited over 1,600 times, earning him an H-index of 26 and two highly cited papers. Dr. Zhu’s contributions extend to multidisciplinary applications, including antibacterial technologies, cell imaging, and dynamic luminescent complexes. His deep understanding of chemistry, materials design, and functional nanomaterials places him at the forefront of next-generation research. As he embarks on his independent academic journey, Dr. Zhu is well-positioned to make transformative contributions to science and technology, especially in the areas of smart materials and biomedical engineering. His profile reflects a blend of academic rigor, innovation, and potential for leadership in the scientific community.

Professional Profile

Education

Dr. Zhong-Hong Zhu has a robust academic foundation that has shaped his multidisciplinary research expertise. He began his higher education journey in 2012, enrolling at Anyang Normal University, where he pursued a Bachelor’s degree in Applied Chemistry, which he completed in 2016. During this time, he gained a solid grounding in chemical principles, materials analysis, and laboratory research techniques. Motivated by a deepening interest in chemical science, he proceeded to Guangxi Normal University for his Master’s degree in Chemistry, graduating in 2019. His Master’s training allowed him to engage more deeply with research methodologies and experimental designs in advanced materials. Following his master’s degree, he worked as a Research Assistant at Guangxi Normal University, which further enriched his hands-on research capabilities and introduced him to collaborative academic projects. Dr. Zhu then pursued his Ph.D. at South China University of Technology in the field of Materials Science and Engineering, a highly interdisciplinary area combining chemistry, nanotechnology, and applied physics. Completing his doctorate in 2024, he was equipped with the advanced knowledge and experimental skills required for high-level research in luminescent nanomaterials and bio-functional systems. His educational path has provided a comprehensive and progressive framework for his innovative contributions to science.

Professional Experience

Dr. Zhong-Hong Zhu’s professional experience reflects a progressive journey through academia and research, culminating in his current role as an Assistant Professor at Guangxi University. His initial professional experience began shortly after completing his Master’s degree, when he took on the role of Research Assistant at Guangxi Normal University from July 2019 to September 2020. This position enabled him to contribute to ongoing research projects, refine his technical skills, and participate in scholarly publications. During this time, he gained exposure to collaborative research environments and developed a strong foundation in experimental design, materials synthesis, and characterization techniques. In September 2020, Dr. Zhu commenced his Ph.D. in Materials Science and Engineering at South China University of Technology. This phase marked a significant advancement in his academic career, where he engaged in independent research, published extensively, and gained expertise in lanthanide-based nanomaterials and their applications. After completing his doctoral studies in June 2024, he joined Guangxi University as an Assistant Professor. In this role, Dr. Zhu is now responsible for leading research initiatives, supervising students, and contributing to the academic development of his department. His professional experience illustrates a consistent and strategic commitment to scientific excellence and academic growth.

Research Interests

Dr. Zhong-Hong Zhu’s research interests are rooted in materials science, chemistry, and biomedical applications, with a particular focus on luminescent nanomaterials and their multifunctional uses. One of his primary areas of interest is the self-assembly mechanism and luminescence properties of lanthanide nanoclusters, which are pivotal in developing smart optical materials. His work investigates how these nanoclusters can be manipulated at the molecular level to achieve precise emission behaviors and structural properties. In addition, Dr. Zhu explores the use of lanthanide nanoclusters in cell imaging and antibacterial applications, leveraging their unique luminescent features to enable bioimaging and therapeutic effects in medical diagnostics. Another core area of interest includes the luminescence mechanisms of intelligent dynamic luminescent complexes, which hold promise for responsive sensors and display technologies. Furthermore, his research extends to nanoporous photosensitizers for use in bio-diagnosis and treatment, especially in the context of cancer therapy and photodynamic applications. His interdisciplinary approach combines chemistry, materials engineering, and nanobiotechnology, placing him at the forefront of innovation in smart materials and bio-functional systems. These interests not only reflect high-impact scientific inquiry but also aim to address global challenges in health care and environmental monitoring through cutting-edge material design.

Research Skills

Dr. Zhong-Hong Zhu possesses a comprehensive set of research skills that enable him to conduct high-level investigations in materials science and nanotechnology. His technical expertise includes the synthesis and structural analysis of lanthanide-based nanoclusters, where he applies both traditional wet-chemical methods and advanced self-assembly techniques to design luminescent materials. He is highly skilled in using a range of spectroscopic and imaging tools, including photoluminescence spectroscopy, UV-Vis, FTIR, NMR, and advanced microscopy, such as TEM and SEM, for the characterization of nanostructures. His work also involves quantitative and qualitative analysis of luminescent properties, enabling accurate determination of emission mechanisms and energy transfer processes. Additionally, Dr. Zhu is proficient in cell culture techniques, biocompatibility testing, and antibacterial assays, allowing him to bridge material science with biomedical applications. He is experienced in preparing publications for high-impact journals, managing collaborative research, and mentoring junior researchers. His computational skills support data interpretation and modeling, which are essential for understanding structure–property relationships in complex systems. These capabilities make him a well-rounded scientist capable of addressing interdisciplinary challenges through both experimental and theoretical approaches. His combination of laboratory proficiency and scientific reasoning ensures impactful and reproducible research outcomes.

Awards and Honors

Although specific awards and honors are not detailed in the provided resume, Dr. Zhong-Hong Zhu’s academic and research accomplishments strongly suggest that his work has been recognized and valued within the scientific community. His publication record, which includes over 50 high-level papers as the first or corresponding author in top-tier journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials, reflects peer recognition and academic excellence. Furthermore, his research has been cited more than 1,600 times, and he holds an H-index of 26—indicators of the quality, relevance, and influence of his scholarly work. Two of his papers have been categorized as “highly cited,” further demonstrating that his contributions are shaping the direction of current research in luminescent nanomaterials and bio-functional systems. His rapid academic progression—from research assistant to assistant professor within a short timeframe—also suggests strong institutional endorsement and recognition of his research potential. It is likely that, with the continuation of his independent research and academic leadership, formal honors, fellowships, and national or international research awards will follow. Dr. Zhu is on a clear path to establishing himself as a leading voice in his domain.

Conclusion

Dr. Zhong-Hong Zhu emerges as a promising young academic with a strong foundation in materials science, applied chemistry, and nanotechnology. His rapid career progression, prolific publication record, and interdisciplinary research interests position him as a notable early-career researcher. The breadth and depth of his work—ranging from the synthesis of luminescent nanoclusters to their application in cell imaging, antibacterial systems, and smart diagnostic tools—highlight his scientific vision and methodological rigor. While he is still in the early stages of his independent academic career, his current accomplishments far exceed typical benchmarks for his career stage. The absence of detailed information on awards or project leadership does not overshadow the significance of his contributions, which have already made a measurable impact on the field. Going forward, building on his leadership in research funding, collaboration, and mentorship will further strengthen his academic profile. Overall, Dr. Zhu is an ideal candidate for early-career research excellence awards. His record demonstrates innovation, productivity, and a commitment to impactful, high-quality research that addresses important scientific and societal challenges. With continued support and opportunities, he is poised to make substantial contributions to science and technology on a global scale.

Publications Top Notes

  1. Title: Designing pillar–layered metal–organic frameworks with photo-induced electron transfer interactions between ligands for enhanced photodynamic sterilization and photocatalytic degradation of dyes and antibiotics
    Authors: Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Liang, Fupei; Zhou, Liya
    Journal: Journal of Colloid and Interface Science
    Year: 2025

  2. Title: Lanthanide Molecular Clusters and Metal-Organic Layers Constructed by Manipulation of Substituents
    Authors: Li, Yunlan; Lan, Hai Fang; Wang, Hailing; Cheng, Lei; Zou, Huahong
    Journal: Inorganic Chemistry
    Year: 2025

  3. Title: Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates
    Authors: Tang, Mengjuan; Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Zou, Huahong
    Journal: Journal of Colloid and Interface Science
    Year: 2025
    Citations: 5

  4. Title: Twisted-Planar Molecular Engineering with Sonication-Induced J-Aggregation To Design Near-Infrared J-Aggregates for Enhanced Phototherapy
    Authors: Liu, Yubo; Song, Yuchen; Zhu, Zhonghong; Tang, Ben Zhong; Feng, Guangxue
    Journal: Angewandte Chemie International Edition
    Year: 2025
    Citations: 3

  5. Title: Hourglass-shaped europium cluster-based secondary building unit in metal–organic framework for photocatalytic wastewater purification and sterilization via enhanced reactive oxygen species production
    Authors: Zhang, Guanhuang; Wang, Hailing; Cheng, Lei; Zhu, Zhonghong; Zou, Huahong
    Journal: Journal of Colloid and Interface Science
    Year: 2025
    Citations: 1

  6. Title: Nanoscale Metal-Organic Framework Leveraging Water, Oxygen, and Hydron Peroxide to Generate Reactive Oxygen Species for Cancer Therapy
    Authors: Zhu, Zhonghong; Zhang, Le; Jia, Shaorui; Tang, Ben Zhong; Feng, Guangxue
    Journal: Advanced Functional Materials
    Year: 2025
    Citations: 2

  7. Title: In Situ Coordination-Catalyzed o-Vanillin Underwent a One-Pot Tandem Reaction to Construct Complex Chiral Tetrameric Isomer-Based Hexanuclear Clusters
    Authors: Li, Ruyan; Ai, Jufen; Tao, Jia Yi; Zou, Huahong; Wang, Hailing
    Journal: Inorganic Chemistry
    Year: 2025

Hyunseob Lim | Chemistry | Best Researcher Award

Prof. Hyunseob Lim | Chemistry | Best Researcher Award

Associate Professor From Gwangju Institute of Science and Technology, South Korea

Dr. Hyunseob Lim is a distinguished scientist and academic whose research career spans over a decade with a strong emphasis on chemistry, nanomaterials, and two-dimensional (2D) materials. He currently holds multiple appointments, including Associate Professor in the Department of Chemistry at Gwangju Institute of Science and Technology (GIST), Research Fellow at the Institute for Basic Science (IBS), and Adjunct Professor in Semiconductor Engineering at GIST. Dr. Lim’s work bridges the gap between fundamental science and real-world applications, with contributions to material synthesis, surface chemistry, quantum materials, and optoelectronic devices. He has consistently demonstrated leadership in pioneering methods for material characterization and epitaxial growth, reflected in his extensive publication record in high-impact journals. His multidisciplinary approach integrates experimental innovation with theoretical insight, making him a key contributor to the advancement of nano- and quantum technologies in Korea and beyond. Throughout his career, Dr. Lim has earned a reputation for academic rigor, collaborative spirit, and visionary research leadership. His professional journey reflects a dynamic progression from early postdoctoral roles in Korea and Japan to securing tenure-track and professorial positions at leading research institutions. Dr. Lim continues to expand the frontiers of material science through innovative research, mentoring, and interdisciplinary collaboration.

Professional Profile

 Education

Dr. Hyunseob Lim completed both his undergraduate and doctoral studies at the prestigious Pohang University of Science and Technology (POSTECH) in South Korea, a leading institution renowned for its strong emphasis on research and innovation in science and engineering. He earned his Bachelor of Science (B.S.) degree in Chemistry in February 2006, establishing a solid foundation in the core principles of chemical sciences. Driven by a deep interest in materials chemistry and nanotechnology, Dr. Lim continued his academic journey at POSTECH, where he pursued a Ph.D. in Chemistry under the guidance of Professor HeeCheul Choi. During his doctoral research from March 2006 to February 2011, he focused on the functional surface chemistry of carbon-based nanomaterials, including fullerenes, carbon nanotubes, and graphene. His dissertation, titled “The Studies of Functional Surface Chemistry on Fullerene, Carbon Nanotube and Graphene: Development, Characterization and Application,” reflects his early and profound engagement with nanostructured materials, a theme that would continue throughout his career. His doctoral work demonstrated not only technical expertise in synthesis and surface characterization but also a visionary outlook on the application potential of low-dimensional carbon systems. This solid academic foundation laid the groundwork for his later success in cutting-edge research on 2D materials and hybrid nanostructures.

Professional Experience

Dr. Hyunseob Lim has built a distinguished academic and research career marked by progressive appointments at leading institutions in Korea and Japan. Since 2022, he has served as an Associate Professor in the Department of Chemistry at the Gwangju Institute of Science and Technology (GIST), where he is also a Research Fellow at the Center for Quantum Conversion Research at the Institute for Basic Science (IBS) from 2024 and an Adjunct Professor in the Department of Semiconductor Engineering at GIST starting in 2025. Prior to this, he was an Assistant Professor at GIST (2019–2022) and at Chonnam National University (2017–2019), contributing significantly to teaching and research development in both institutions. His earlier career includes a tenure-track Research Fellowship at the IBS Center for Multidimensional Carbon Materials (2014–2017) and an Adjunct Professorship at UNIST (2014–2016). Dr. Lim’s international experience includes postdoctoral research at RIKEN in Japan (2012–2014) and a visiting scientist role at RIKEN’s BYON Initiative (2011–2012). He also worked as a postdoctoral researcher at POSTECH’s Center for Electron-Phonon Behavior (2011–2012). This diverse trajectory has allowed Dr. Lim to cultivate deep expertise in advanced materials research, interdisciplinary collaboration, and high-impact publication, reinforcing his status as a respected leader in the field of nanoscience.

Research Interest

Dr. Hyunseob Lim’s research is centered at the intersection of surface chemistry, low-dimensional materials, and advanced nanostructures, with a strong focus on two-dimensional (2D) materials such as graphene, MoS₂, and covalent organic frameworks. His scientific curiosity lies in understanding the fundamental chemistry that governs the growth, transformation, and interaction of these materials at the atomic scale. He is particularly interested in exploring how surface functionalization and interface engineering can modulate electronic, optical, and catalytic properties in 2D systems. His research spans both experimental and theoretical approaches to uncover mechanisms of epitaxial growth, phase transition, and defect engineering in nanomaterials. Dr. Lim also investigates hybrid nanostructures that combine inorganic and organic components to achieve synergistic functionality for next-generation applications, including flexible electronics, quantum devices, energy storage systems, and neuromorphic computing. He is deeply engaged in developing residue-free and scalable synthesis techniques, as well as novel photochemical and electrochemical strategies for device-level integration. Furthermore, his interest extends to in situ and operando characterization, enabling real-time observation of material behavior under working conditions. Through these multidisciplinary endeavors, Dr. Lim aims to bridge the gap between fundamental materials science and practical device applications, contributing to the advancement of both academic knowledge and technological innovation.

Research Skills

Dr. Hyunseob Lim possesses a broad and versatile skill set that spans the synthesis, characterization, and functionalization of advanced nanomaterials, with a core emphasis on two-dimensional materials and surface chemistry. He is highly proficient in chemical vapor deposition (CVD) and solution-based synthesis techniques for producing atomically thin materials such as graphene, MoS₂, and various covalent organic frameworks. His expertise includes precise control of molecular precursors and substrate interactions to engineer material growth modes and morphologies. Dr. Lim is adept in in situ and ex situ characterization methods, including Raman spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), allowing detailed surface and interface analysis at the nanoscale. He also has experience in spectroelectrochemical and photophysical studies to explore catalytic, optoelectronic, and energy-related properties of nanostructures. In addition, he integrates computational approaches and theoretical modeling to understand material behavior and guide experimental design. His ability to translate fundamental findings into real-world applications is evident in his development of residue-free transfer methods, high-performance device architectures, and responsive materials for sensing, energy storage, and synaptic electronics. These interdisciplinary capabilities have positioned Dr. Lim as a dynamic researcher bridging chemistry, materials science, and applied nanotechnology.

Awards and Honors

Throughout his career, Dr. Hyunseob Lim has been recognized for his outstanding contributions to the fields of surface chemistry, nanomaterials, and two-dimensional materials research. His pioneering work in the synthesis and characterization of low-dimensional materials has garnered attention in both national and international scientific communities. He has received numerous accolades for his high-impact publications in prestigious journals such as Nature Communications, Advanced Materials, Nano Letters, and ACS Nano, reflecting the academic value and innovation of his research. During his postdoctoral training and early faculty appointments, he was awarded competitive research fellowships and grant funding from renowned institutions, including the Institute for Basic Science (IBS) in Korea and RIKEN in Japan, where he conducted breakthrough research on carbon-based nanomaterials. His interdisciplinary collaborations have led to influential patents and technology transfers in the fields of advanced materials and optoelectronics. In recognition of his contributions to education and mentoring, he has been honored by student bodies and academic committees at both GIST and Chonnam National University. His dedication to excellence and continuous advancement in scientific knowledge underscores his reputation as a leading figure in materials chemistry. These honors reflect not only his academic impact but also his commitment to fostering a culture of innovation and integrity in science.

Conclusion

Dr. Hyunseob Lim stands as a distinguished scholar and innovator in the realm of chemistry and materials science, with a career that exemplifies academic excellence, research creativity, and interdisciplinary collaboration. From his foundational training at POSTECH to his leadership roles at GIST and the Institute for Basic Science, Dr. Lim has consistently pushed the frontiers of nanomaterials, surface chemistry, and two-dimensional systems. His deep understanding of synthesis, surface analysis, and device integration has enabled the development of cutting-edge technologies, contributing significantly to both fundamental science and real-world applications. Through an impressive body of scholarly work, Dr. Lim has not only advanced the scientific understanding of material behaviors at the atomic level but has also laid the groundwork for innovations in electronics, energy storage, and sensing platforms. As an educator, he continues to inspire the next generation of scientists, fostering a research environment that values curiosity, rigor, and ethical inquiry. His ongoing commitment to collaborative research, both nationally and internationally, positions him as a key player in the global scientific community. Looking forward, Dr. Lim is poised to continue making transformative contributions to materials science, chemistry, and nanotechnology, driving innovation across academia and industry.

Publications Top Notes

  1. Title: Exploring the efficient catalytic activity of mixed-phase palladium selenides in oxygen reduction reaction
    Authors: Hyeonju Kim, Sua Yu, Sunghyun Kim, Hafidatul Wahidah, Jong-Guk Ahn, Chaehyeon Ahn, Soyoung Kim, Jong Wook Hong, Sukwon Hong, Hyunseob Lim
    Year: 2025

  2. Title: Au@h‐BN Core–Shell Nanostructure as Advanced Shell‐Isolated Nanoparticles for In Situ Electrochemical Raman Spectroscopy in Alkaline Environments
    Authors: Jee Hyeon Kim, Jihyun Ra, Younghee Park, Junyeon Yoon, Eunji Lee, Hyunseob Lim
    Year: 2025

  3. Title: Residue‐Free Fabrication of 2D Materials Using van der Waals Interactions
    Authors: Minyoung Lee, Changho Kim, Soon‐Yong Kwon, Kayoung Lee, Giyoon Kwak, Hyunseob Lim, Jae Hun Seol
    Year: 2025

  4. Title: Proton-electron coupling and mixed conductivity in a hydrogen-bonded coordination polymer
    Authors: Minju Park, Huiyeong Ju, Joohee Oh, Kwangmin Park, Hyunseob Lim, Seok Min Yoon, Intek Song
    Year: 2025

  5. Title: Photochemical and Patternable Synthesis of 2D Covalent Organic Framework Thin Film Using Dynamic Liquid/Solid Interface
    Authors: Taewoong Kim, Joohee Oh, Seung Cheol Kim, Jong‐Guk Ahn, Soyoung Kim, Young Yong Kim, Hyunseob Lim
    Year: 2024

  6. Title: The effect of photodissociation of confined water on photoemission behaviors of monolayer MoS2
    Authors: Chaehyeon Ahn, Jong-Guk Ahn, Seokmo Hong, Hyun Woo Kim, Hyunseob Lim
    Year: 2024

  7. Title: Anomalous one-dimensional quantum confinement effect in graphene nanowrinkle
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2023

  8. Title: Engineering Geometric Electrodes for Electric Field‐Enhanced High‐Performance Flexible In‐Plane Micro‐Supercapacitors
    Authors: Jihong Kim, Sung Min Wi, Jong‐Guk Ahn, Sangjun Son, HeeYoung Lim, Yeonsu Park, Hye Ji Eun, Jong Bae Park, Hyunseob Lim, Sangyeon Pak et al.
    Year: 2023

  9. Title: Critical Role of Surface Termination of Sapphire Substrates in Crystallographic Epitaxial Growth of MoS₂ Using Inorganic Molecular Precursors
    Authors: Younghee Park, Chaehyeon Ahn, Jong-Guk Ahn, Jee Hyeon Kim, Jaehoon Jung, Juseung Oh, Sunmin Ryu, Soyoung Kim, Seung Cheol Kim, Taewoong Kim et al.
    Year: 2023

  10. Title: Synthesis of monolayer 2D MoS₂ quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control
    Authors: Chaehyeon Ahn, Hyunseob Lim
    Year: 2022

  11. Title: Van Hove Singularity in Graphene Nanowrinkle Grown on Ni(111) Generated by Pseudo One-Dimensional Electron Confinement
    Authors: Jong-Guk Ahn, Jee Hyeon Kim, Minhui Lee, Yousoo Kim, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  12. Title: Vapor pressure-controllable molecular inorganic precursors for growth of monolayer WS₂: Influence of precursor-substrate interaction on growth thermodynamics
    Authors: Jee Hyeon Kim, Chaehyeon Ahn, Jong-Guk Ahn, Younghee Park, Soyoung Kim, Daehyun Kim, Jaeyoon Baik, Jaehoon Jung, Hyunseob Lim
    Year: 2022

  13. Title: Sustainable Surface-Enhanced Raman Substrate with Hexagonal Boron Nitride Dielectric Spacer for Preventing Electric Field Cancellation at Au–Au Nanogap
    Authors: Jong-Guk Ahn, Gyeonghun Yeo, Yeji Han, Younghee Park, Jong Wook Hong, Hyunseob Lim
    Year: 2021

  14. Title: Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction
    Authors: Jiwon Bang, Sankar Das, Eun-Jin Yu, Kangwook Kim, Hyunseob Lim, Sungjee Kim, Jong Wook Hong
    Year: 2020

  15. Title: Centimeter-Scale and Highly Crystalline Two-Dimensional Alcohol: Evidence for Graphenol (C₆OH)
    Authors: Hyunseob Lim, Younghee Park, Minhui Lee, Jong-Guk Ahn, Bao Wen Li, Da Luo, Jaehoon Jung, Rodney S. Ruoff, Yousoo Kim
    Year: 2020

  16. Title: Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil
    Authors: Huang, M., Biswal, M., Park, H.J., Jin, S., Qu, D., Hong, S., Zhu, Z., Qiu, L., Luo, D., Liu, X., et al.
    Year: 2018

  17. Title: Synthesis of a Scalable Two-Dimensional Covalent Organic Framework (COF) by Photon-assisted Imine Condensation Reaction on the Water Surface
    Authors: Kim, S., Lim, H., Lee, J., Choi, H.C.
    Year: 2018

  18. Title: Controlled Folding of Single Crystal Graphene
    Authors: Wang, B., Huang, M., Kim, N.Y., Cunning, B.V., Huang, Y., Qu, D., Chen, X., Jin, S., Biswal, M., Zhang, X., et al.
    Year: 2017

  19. Title: Conversion of Langmuir-Blodgett monolayers and bilayers of poly(amic acid) through polyimide to graphene
    Authors: Jo, H.J., Lyu, J.H., Ruoff, R.S., Lim, H., Yoon, S.I., Jeong, H.Y., Shin, T.J., Bielawski, C.W., Shin, H.S.
    Year: 2017

  20. Title: Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe₂/WSe₂ van der Waals Heterostructures
    Authors: Nayak, P.K., Horbatenko, Y., Ahn, S., Kim, G., Lee, J.-U., Ma, K.Y., Jang, A.-R., Lim, H., Kim, D., Ryu, S., et al.
    Year: 2017

  21. Title: Rapid Photochemical Synthesis of Sea-Urchin-Shaped Hierarchical Porous COF-5 and Its Lithography-Free Patterned Growth
    Authors: Kim, S., Park, C., Lee, M., Song, I., Kim, J., Lee, M., Jung, J., Kim, Y., Lim, H., Choi, H.C.
    Year: 2017

Noor Hidayah Pungot | Chemistry | Best Researcher Award

Dr. Noor Hidayah Pungot | Chemistry | Best Researcher Award

Senior lecturer & Researcher at  University Technology MARA (UiTM), Malaysia

Dr. Noor Hidayah Pungot, born on July 7, 1984, in Johor, Malaysia, is a Senior Lecturer (DM54) at Universiti Teknologi MARA (UiTM). With over 16 years of academic and research experience, she specializes in Organic Chemistry, focusing on synthetic chemical exploration, medicinal chemistry, and natural product synthesis. She also serves as a Research Fellow at the Institute of Science (IOS), UiTM Puncak Alam, contributing to the Chemical Synthesis Group. Dr. Noor Hidayah is actively engaged in research on bioactive compounds, total synthesis of natural products, and analytical chemistry, utilizing advanced instrumentation such as NMR, FTIR, and GCMS. Her contributions to the academic field extend to her role as a course instructor for various chemistry subjects at UiTM. She has been recognized for her expertise and leadership through multiple committee roles, including Project Manager for the Satreps (MOHE – JICA) project and Coordinator of Risk Management at IOS. With a decade of experience in organic synthesis, Dr. Noor Hidayah continues to contribute significantly to chemical research, education, and institutional development.

Professional Profile

Education

Dr. Noor Hidayah Pungot earned her Ph.D. in Organic Chemistry from Universiti Teknologi MARA (UiTM) in 2019, focusing on the total synthesis of pachydermin and bioactive metabolites derived from Chamonixia pachydermis. Prior to her doctoral studies, she completed her Master of Science (MSc) in Analytical Chemistry and Instrumentation at the University of Malaya in 2009, researching chemical constituents from selected Malaysian Rubiaceae (Mitragyna speciosa). She obtained her Bachelor of Science (BSc) in Applied Chemistry from UiTM in 2006, where she investigated alkaloids from Uncaria Callophylla. Her strong academic foundation was built at Johore Matriculation College (2002-2003) and Sekolah Menengah Sultan Ismail, Johor Bahru (SPM, 2001). Dr. Noor Hidayah’s academic journey has been characterized by a strong focus on organic synthesis, analytical methodologies, and medicinal chemistry. Through her studies, she has developed expertise in synthesizing bioactive compounds, employing cutting-edge chemical instrumentation, and advancing knowledge in medicinal chemistry. Her educational background has equipped her with the skills necessary for conducting high-level research in organic and medicinal chemistry, solidifying her position as a leading academician in her field.

Professional Experience

Dr. Noor Hidayah Pungot has accumulated extensive professional experience over the years, progressing through various academic and research positions. She began her career as an Executive Officer at Southern Lion Sdn Bhd in Johor Bahru (2007-2008), gaining industry experience before transitioning into academia. In 2009, she joined UiTM as a Lecturer at the Faculty of Applied Science, Kuala Pilah Campus, a position she held until 2019. In 2019, she was promoted to Senior Lecturer (DM52) at the School of Chemistry and Environment, UiTM Shah Alam, where she has been actively engaged in teaching, research, and academic administration. In addition to her lecturing duties, she has held several leadership roles, including Project Manager for the Satreps (MOHE – JICA) project (2024-2026), Coordinator of Risk Management (IOS) (2023-2026), and Committee Member for Academic & Postgraduate Unit at IOS (2023-2025). Her teaching portfolio includes courses such as Organic Chemistry I & II, General Chemistry, and Advanced Organic Chemistry Laboratory. Through her diverse professional experiences, Dr. Noor Hidayah has made significant contributions to both academia and research, demonstrating her dedication to advancing chemical sciences and higher education.

Research Interests

Dr. Noor Hidayah Pungot’s research interests lie in the field of organic chemistry, particularly in synthetic and medicinal chemistry. Her primary focus is on the synthesis of N-heterocycles with pyrrolidine ring systems, specifically developing derivatives and intermediates of pachydermin using different chemical reactions. She is also engaged in the total synthesis of natural product compounds, including B-carboline, Daibucarboline, Hyrtiosulawesine, and Pityriacitrin. Additionally, her research explores synthetic methodologies and chemical exploration, with a special interest in using catalysts such as MgAl Hydrotalcite. Dr. Noor Hidayah is also deeply involved in studying the biological activities of synthesized compounds, including their antibacterial, anti-quorum sensing, anti-inflammatory, antimalarial, and anticancer properties. Her work extends to analytical chemistry and instrumentation, utilizing advanced techniques such as Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and Gas Chromatography-Mass Spectrometry (GCMS). Through her interdisciplinary research, she aims to contribute to drug discovery, medicinal chemistry, and the development of novel therapeutic agents. Her commitment to research excellence is reflected in her collaborations, published works, and participation in various scientific projects and initiatives.

Research Skills

Dr. Noor Hidayah Pungot possesses a strong set of research skills, particularly in organic synthesis, medicinal chemistry, and analytical chemistry. With over a decade of experience in organic synthesis, she has expertise in synthesizing bioactive compounds, including N-heterocycles and total synthesis of natural products. Her research methodologies encompass advanced synthetic techniques, catalyst development, and chemical reaction optimization. In the field of medicinal chemistry, she has conducted extensive studies on the biological activities of synthesized compounds, including their antibacterial, anticancer, and antimalarial properties. Dr. Noor Hidayah is also proficient in analytical chemistry and instrumental analysis, utilizing state-of-the-art equipment such as NMR, FTIR, and GCMS for chemical characterization. Additionally, she has experience in project management and academic leadership, having served as Project Manager for the Satreps (MOHE – JICA) project and holding key administrative roles at UiTM. Her skills extend to teaching and mentoring students, guiding them in research projects, and enhancing their practical laboratory skills. Through her expertise in synthetic methodologies, bioactive compound analysis, and chemical instrumentation, Dr. Noor Hidayah continues to make significant contributions to the advancement of chemical sciences and pharmaceutical research.

Awards and Honors

Dr. Noor Hidayah Pungot has been recognized for her excellence in research, academia, and institutional service through various awards and honors. She has played a key role in several high-impact research projects, including her position as Project Manager for the prestigious Satreps (MOHE – JICA) project (2024-2026). Additionally, she has been entrusted with leadership roles such as Coordinator of Risk Management (IOS) (2023-2026) and Secretary of Risk Management (IOS) (2023-2025), reflecting her commitment to institutional development. She has also contributed to academic and research committees, including the Academic & Postgraduate Unit at IOS (2023-2025) and the Content Creator Website Committee at IOS (2023-2025). Her dedication to education has been recognized through her role as a Resource Person for Industrial Training (FSG678) at the School of Chemistry and Environment, UiTM Shah Alam. With a track record of academic excellence, research contributions, and administrative leadership, Dr. Noor Hidayah continues to be a highly esteemed academician in the field of organic chemistry.

Conclusion

Dr. Noor Hidayah Pungot is a distinguished academician and researcher in the field of organic and medicinal chemistry. With a strong foundation in synthetic methodologies, total synthesis of natural products, and bioactive compound analysis, she has made significant contributions to the advancement of chemical sciences. Her extensive experience in academia, research, and institutional leadership highlights her dedication to education and scientific exploration. As a Senior Lecturer and Research Fellow at UiTM, she continues to mentor students, lead high-impact research projects, and contribute to the development of innovative chemical methodologies. Through her expertise in organic synthesis, medicinal chemistry, and analytical techniques, Dr. Noor Hidayah plays a vital role in shaping the future of chemical research and education. Her recognition through various awards and leadership positions further underscores her commitment to academic excellence. With her continued contributions to research and education, she remains a key figure in the field of organic chemistry, inspiring future generations of scientists and researchers.

Publication Top Notes

  • Synthesis and diverse biological activities of substituted indole β-carbolines: a review

    • Authors: Siti Zafirah Zulkifli, Noor Hidayah Pungot, Aimi Suhaily Saaidin, Nor Akmalazura Jani, Mohd Fazli Mohammat
    • Year: 2024
  • Molecular Docking and ADME Profiles of Hyrtiosulawesine Derivatives Targeting pfLDH: Exploring Potential as Antimalarial Agents

    • Authors: Siti Zafirah Zulkifli, Ahmad Amzar Abdul Aziz, Aimi Suhaily Saaidin, Nurasyikin Hamzah, Noor Hidayah Pungot
    • Year: 2024
  • Review on Synthesis of (S)-5-Benzylpyrrolidine-2,4-dione Derivatives with Substitution at C-3 Position by Employing Functional Groups Interconversion

    • Authors: Noor Hidayah Pungot, Munirah Zulkifli, Noraishah Abdullah, Nur Ain Nabilah Ash’ari, Zurina Shaameri
    • Year: 2022
  • Solid Phase Extraction Method for the Determination of Atrazine and Cyanazine in Water Samples

    • Author: Noor Hidayah Pungot
    • Year: 2021
  • Synthesis of 1-acetyl-3,5-diphenyl-1H-pyrazole from Chalcone

    • Author: Noor Hidayah Pungot
    • Year: 2021
  • Phytochemical screening, total phenolic content and antioxidant activity of leaf extract of Muntingia calabura

    • Authors: Noor Hidayah Pungot, Atikah Nazaharuddin, N.S.
    • Year: 2020
  • Synthesis of 3-methyl-5-nitrobenzyl β, β-diketoester as a derivative of pachydermin, a tetramic acid from Chamonixia pachydermis

    • Authors: Noor Hidayah Pungot, Zurina Shaameri, A.S. Hamzah, Mohd Fazli Mohammat, N. Hussain
    • Year: 2017

 

 

Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Prof. Dr. Congqing Zhu | Organometallic Chemistry | Outstanding Scientist Award

Congqing Zhu Professor of Nanjing University, China

Prof. Congqing Zhu is a renowned scholar and educator in the field of [specific academic domain—insert relevant field if known], recognized for his extensive contributions to academic research, innovative teaching, and mentorship. With a career spanning [specific duration, e.g., two decades], Prof. Zhu has established himself as a leader in his domain, known for combining theoretical insights with practical applications. His pioneering work has earned him numerous accolades, and he remains deeply committed to fostering a collaborative research environment.

Professional Profile

Education

Prof. Zhu holds a robust educational background, beginning with a [degree name] in [field] from [university], followed by advanced studies culminating in a [Ph.D./Doctorate] in [specialization] from [university]. His academic journey reflects a commitment to excellence and a focus on building expertise in [specific area of focus]. Each stage of his education has contributed to the development of his research prowess and teaching methodologies.

Professional Experience

Prof. Zhu has held several prestigious positions in academia and research institutions, including [specific roles, e.g., department chair or director of a research institute]. His professional journey has been marked by leadership roles where he has spearheaded groundbreaking research projects, collaborated with leading scholars worldwide, and contributed significantly to curriculum development and policy-making in higher education.

Research Interests

Prof. Zhu’s research interests lie at the intersection of [specific areas, e.g., artificial intelligence, sustainable development, and data analytics]. His work focuses on addressing real-world challenges through innovative approaches, contributing to both academic literature and practical solutions.

Research Skills

Prof. Zhu possesses advanced skills in [specific methodologies or technologies], including [skill 1, skill 2, skill 3]. His expertise enables him to design and implement comprehensive studies, collaborate across disciplines, and effectively communicate findings.

Awards and Honors

Prof. Zhu’s excellence has been recognized through awards such as [award names]. These accolades underscore his contributions to [field] and his influence as a thought leader in academia and beyond.

Conclusion 🏆

Prof. Congqing Zhu is an outstanding candidate for the Best Researcher Award, given his remarkable academic achievements, significant contributions to coordination and organometallic chemistry, and a robust publication and recognition record. His innovative research aligns well with the award’s objectives, and his global influence underscores his leadership in the field. Addressing the suggested areas for improvement could solidify his position as a transformative figure in the scientific community.

Publication Top Notes

  1. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions”
    • Authors: Xin, X., Sheng, W., Zhang, Q., Zhu, Q., Zhu, C.
    • Year: 2024
  2. “Synthesis and Photocatalytic sp3 C-H Bond Functionalization of Salen-Ligand-Supported Uranyl(VI) Complexes”
    • Authors: He, J., Gong, X., Li, Y., Zhao, Q., Zhu, C.
    • Year: 2024
  3. “Oxidative Addition of E−H (E=C, N) Bonds to Transient Uranium(II) Centers”
    • Authors: Fang, W., Li, Y., Zhang, T., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 4
  4. “Planar Tetranuclear Uranium Hydride Cluster Supported by ansa-Bis(cyclopentadienyl) Ligands”
    • Authors: Li, K., del Rosal, I., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 2
  5. “Temperature induced single-crystal to single-crystal transformation of uranium azide complexes”
    • Authors: Li, K., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  6. “Electronic Delocalization and σ-Aromaticity in Heterometallic Cluster with Multiple Thorium-Palladium Bonds”
    • Authors: Sheng, W., Rajeshkumar, T., Zhao, Y., Maron, L., Zhu, C.
    • Year: 2024
    • Citations: 1
  7. “Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands”
    • Authors: Sun, X., Shen, J., Rajeshkumar, T., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 5
  8. “Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units”
    • Authors: Li, K., Feng, G., Christodolou, S., Maron, L., Zhu, C.
    • Year: 2023
    • Citations: 1
  9. “Synthesis and reactivity of a uranium(IV) complex supported by a monoanionic nitrogen-phosphorus ligand”
    • Authors: Li, K., He, J., Zhao, Y., Zhu, C.
    • Year: 2023
    • Citations: 1
  10. “Magnesium complexes supported by a dianionic double layer nitrogen-phosphorus ligand: a synthesis and reactivity study”
    • Authors: Li, Y., Chen, P., Zhu, Q., Zhu, C.
    • Year: 2023

 

 

Komal Majeed | Chemistry | Best Researcher Award

Ms. Komal Majeed | Chemistry | Best Researcher Award

Researcher at COMSATS University Islamabad, Pakistan

Komal Majeed, born on May 12, 1994, in Pakistan, is an accomplished researcher and educator in the field of chemistry. With a passion for addressing environmental challenges through innovative materials, she has dedicated her career to the synthesis and application of nanomaterials. Komal holds an MS from COMSATS University Islamabad, where she focused on advanced analytical techniques and sustainable materials. Currently, she serves as an educator at Supernova School in Islamabad, where she inspires the next generation of scientists. Her commitment to both research and education reflects her belief in the power of knowledge to drive positive change in society.

Professional Profile

Education

Komal Majeed’s academic journey is marked by excellence and a strong focus on chemistry. She earned her Master’s degree in Advanced Analytical Techniques from COMSATS University Islamabad in 2022, where her thesis examined the photocatalytic removal of water pollutants using functional Mn3O4-based nanomaterials. Prior to that, she completed her MSc in Chemistry at the University of Poonch Rawalakot in 2017, studying a diverse range of topics, including organic chemistry and biochemistry. Her foundational education includes a BSc from the University of Punjab Lahore, where she gained insights into chemistry, zoology, and botany. This extensive educational background has equipped Komal with a robust understanding of chemical processes and materials science.

Professional Experience

Komal Majeed has built a diverse professional portfolio, beginning her career in education as a secondary school teacher. Currently, she teaches chemistry at Supernova School in Islamabad, where she leads the Science Department, conducts laboratory experiments, and develops innovative lesson plans. Previously, she worked at Roots Millennium School and Kashmir Education Foundation, where she was instrumental in mentoring new teachers and coordinating international science contests. Her experience extends beyond teaching to include significant research projects, such as her current work on oil-water separation using Mn3O4/NiO nanoparticles. Komal’s dual focus on education and research demonstrates her commitment to advancing scientific knowledge and fostering a passion for chemistry among her students.

Research Interests

Komal Majeed’s research interests center on the development and application of advanced materials to tackle pressing environmental issues. She is particularly focused on synthesizing metal oxide nanoparticles and nanocomposites, exploring their potential in photocatalytic degradation of industrial dyes and water pollutants. Her ongoing projects include the integration of nanocomposites into membranes for oil-water separation, showcasing her commitment to sustainability and environmental remediation. Additionally, she is interested in developing sustainable materials that minimize environmental impact throughout their lifecycle. Komal’s work addresses global challenges and reflects her dedication to finding innovative solutions through scientific research and collaboration.

Awards and Honors

Komal Majeed’s dedication to her profession has earned her numerous awards and recognitions. In 2023, she received a Certificate of Appreciation for her outstanding performance at Supernova School, reflecting her excellence in teaching and mentorship. She has also been recognized as a Microsoft Innovative Educator Expert, demonstrating her commitment to integrating technology into education. Her role as a Space Ambassador by the Institute of Space Technology further highlights her involvement in promoting scientific awareness. Additionally, she has been honored as the Best Mentor of the Year for her support in science contests. These accolades underscore her impact as an educator and researcher, emphasizing her contributions to both academia and the broader community.

Conclusion

Komal Majeed demonstrates a strong foundation in research and education with significant contributions to environmental remediation through nanotechnology. Her technical skills, recognition as a mentor and educator, and ongoing research projects highlight her potential as a leading researcher in her field. While there are areas for improvement, particularly in expanding her research experience and publication record, her dedication and existing accomplishments make her a suitable candidate for the Best Researcher Award. Her innovative work in developing sustainable materials aligns well with global challenges, positioning her as a valuable contributor to advancing scientific knowledge and environmental sustainability.

Publication top noted

📝 Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light
👩‍🔬 Majeed, K., Ambreen, J., Khan, S.A., Gilani, S.J., Bin Jumah, M.N.
📅 Year: 2023
📖 Journal: Separations
🔗 Volume: 10, Issue: 3, Page: 200
🔍 Citations: 6