Cong Lin | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Cong Lin | Chemistry | Best Researcher Award

Professor from Jiangxi Science & Technology Normal University, China

Cong Lin is an Associate Professor at the College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University. With a strong background in organic chemistry, Lin has made significant contributions to the field through extensive research in transition metal-catalyzed reactions and selective functionalization of organic molecules. Lin has published numerous articles in high-impact journals such as Organic Letters, Advanced Synthesis & Catalysis, and ACS Applied Polymer Materials. His research is widely recognized for its innovation and practical applications in synthetic chemistry and material science. Over the years, Lin has collaborated with multiple researchers, demonstrating strong teamwork and interdisciplinary research skills. His rapid academic progression from lecturer to associate professor reflects his commitment to academic excellence and research leadership.

Professional Profile

Education

Cong Lin completed his Bachelor of Science in Chemistry from Jiangxi Normal University in 2013. He then pursued a Ph.D. in Organic Chemistry at Zhejiang University, one of China’s leading institutions, and graduated in June 2018. His doctoral research focused on transition metal-catalyzed organic synthesis, particularly in selective bond activation and functionalization strategies. His educational background has provided him with a strong foundation in synthetic methodologies, catalysis, and reaction mechanisms, shaping his research direction and contributions to the field.

Professional Experience

After earning his Ph.D., Cong Lin began his academic career as a Lecturer at Jiangxi Science & Technology Normal University in July 2018. Within two years, he was promoted to Associate Professor in June 2020 due to his outstanding research contributions and teaching performance. As an Associate Professor, Lin has been involved in mentoring students, supervising research projects, and conducting innovative studies in organic chemistry. His academic career demonstrates a steady progression, reflecting his dedication to advancing scientific knowledge.

Research Interest

Cong Lin’s research interests lie in transition metal-catalyzed reactions, organic synthesis, and polymer chemistry. His work primarily focuses on the selective functionalization of alkenes and aromatic compounds using metal catalysts such as nickel, palladium, and cobalt. He is particularly interested in developing new methodologies for carbon-carbon and carbon-heteroatom bond formation. His research also explores post-polymerization modifications and sustainable catalytic processes, contributing to advancements in both synthetic chemistry and materials science.

Research Skills

Cong Lin possesses expertise in organic synthesis, transition metal catalysis, and reaction mechanism analysis. He is skilled in designing and optimizing catalytic reactions for efficient bond formation. His research involves advanced spectroscopic and chromatographic techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, and gas chromatography. Lin is also proficient in computational chemistry for reaction pathway predictions and mechanistic studies. His ability to integrate experimental and theoretical approaches enhances the impact of his research.

Awards and Honors

Cong Lin has received recognition for his contributions to organic chemistry through various awards and honors. His research articles have been featured as cover stories in high-impact journals, and some of his works have been listed as highly cited papers. He has been invited to present his findings at academic conferences and has collaborated on prestigious projects. His rapid career advancement to Associate Professor further highlights the recognition of his scientific contributions within the academic community.

Conclusion

Cong Lin is a distinguished researcher with a strong academic background, impressive publication record, and expertise in transition metal-catalyzed synthesis. His research has significantly contributed to the field of organic chemistry, particularly in selective bond functionalization and catalysis. While his work is widely recognized, expanding international collaborations, securing more research funding, and increasing involvement in mentorship and patenting would further enhance his impact. Overall, Lin’s dedication to research and academic excellence makes him a strong candidate for prestigious research awards.

Publications Top Notes

  1. Title: Post-Polymerization Modification of Polystyrene through Mn-Catalyzed Phosphorylation of Aromatic C(sp²)-H Bonds
    Authors: R. Liu, Ruixing; C. Lin, Cong; Y. Zou, Yubai; J. Zhong, Jiang; L. Shen, Liang
    Year: 2024
    Citations: 1

  2. Title: Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air
    Authors: Y. Wang, Yihua; C. Lin, Cong; Z. Zhang, Zongxu; L. Shen, Liang; B. Zou, Boya
    Year: 2023
    Citations: 2

  3. Title: Room temperature-curable, easily degradable, and highly malleable and recyclable vanillin-based vitrimers with catalyst-free bond exchange
    Authors: M. Liu, Min; F. Gao, Fei; X. Guo, Xinru; F. Lin, Faman; L. Shen, Liang
    Year: 2022
    Citations: 11

Nadezhda Markova | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Nadezhda Markova | Chemistry | Best Researcher Award

Theoretical chemistry at Institute of Organic Chemistry with Centre of Phytochemistry (IOCCP), Bulgarian 

Nadezhda Vasileva Markova is a distinguished Bulgarian scientist specializing in theoretical chemistry. She currently holds the position of Associate Professor at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. With a rich academic and professional background, she is renowned for her expertise in quantum chemical calculations, tautomerism, and the application of theoretical models to elucidate the structure and biological activity of plant-derived compounds. Throughout her career, she has demonstrated a strong commitment to advancing scientific knowledge through extensive research, mentoring, and collaboration with international scientific partners. Markova has co-authored 44 published and 2 accepted scientific articles, receiving over 600 citations. Her impactful research focuses on proton transfer reactions, solvent effects, and the molecular modeling of biologically active compounds. She is also recognized for her collaborative spirit and organizational skills in leading scientific projects. Her notable achievements include winning first place in the competition for high scientific achievements by the Union of Scientists in Bulgaria in 2011. Markova’s contributions continue to shape the field of theoretical and quantum chemistry, making her a leading figure in the Bulgarian scientific community.

Professional Profile

Education

Nadezhda Markova has a strong educational background in chemistry, with a focus on theoretical and organic chemistry. She earned her PhD in Theoretical Chemistry from the Bulgarian Academy of Sciences’ Institute of Organic Chemistry with Centre of Phytochemistry, where she honed her expertise in quantum chemical calculations and molecular modeling. Prior to her doctoral studies, she completed her Master of Science in Organic Chemistry at Shoumen University “Konstantin Preslavsky” between 1995 and 2000. Her master’s studies equipped her with a solid foundation in organic synthesis, analytical methods, and computational chemistry. Markova’s academic training emphasized both experimental and theoretical approaches, enabling her to develop skills in applying quantum chemical models to real-world molecular challenges. Her education has been instrumental in her ability to explore complex chemical processes, particularly in the areas of tautomerism, proton transfer reactions, and the interaction of biological molecules. With a robust academic foundation, she has continued to build on her expertise, contributing significantly to scientific research and publications in the field of theoretical chemistry.

Professional Experience

Nadezhda Markova’s professional career spans nearly two decades, during which she has held various academic and research positions at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. Since 2020, she has served as an Associate Professor, where she leads research projects, supervises doctoral students, and conducts cutting-edge studies in theoretical chemistry. From 2006 to 2020, she worked as an Assistant Professor, actively engaging in research focused on quantum chemical modeling, solvent effects, and the molecular structure of biologically active compounds. During her early career (2005–2006), she held the position of Chemist at the same institute, gaining hands-on experience in experimental and computational chemistry. Throughout her career, Markova has excelled in applying specialized software for quantum chemical calculations, such as GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her professional journey highlights her dedication to advancing theoretical chemistry through meticulous research, scientific publications, and collaborative projects.

Research Interest

Nadezhda Markova’s research interests center around theoretical and quantum chemistry, with a particular focus on molecular modeling, proton transfer reactions, and solvent effects. She is deeply engaged in the study of tautomerism and its impact on the biological activity of various chemical compounds. Her work frequently explores the application of quantum chemical calculations in phytochemistry to elucidate the structure and biological action of plant-derived compounds. Additionally, Markova investigates the interactions of biologically significant molecules with nucleic acids, exploring their potential as fluorescent probes and antiviral agents. Her recent studies include the quantum chemical and metabolomic characterization of plant compounds against SARS-CoV-2 and Herpes Simplex Virus DNA polymerase, showcasing her contribution to medicinal chemistry. She is also interested in the effects of external electric fields on molecular tautomeric equilibrium, highlighting her innovative approach to molecular dynamics. Through her research, Markova aims to bridge the gap between computational models and experimental validation, offering valuable insights into molecular behavior and drug development.

Research Skills

Nadezhda Markova possesses an extensive set of research skills, particularly in the field of quantum chemical modeling and computational chemistry. She is highly proficient in utilizing specialized software for quantum chemical calculations, including GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her expertise lies in conducting complex simulations to study proton transfer reactions, solvent effects, and tautomeric equilibria. Markova is skilled in applying hybrid statistical mechanics and quantum chemical models to investigate molecular interactions, making her a leader in the field of theoretical chemistry. Additionally, she is adept at using molecular docking and metabolomic profiling techniques to explore the inhibitory potential of natural compounds against viral enzymes. Her research skills extend to scientific writing, data analysis, and result interpretation, as evidenced by her numerous peer-reviewed publications. Furthermore, she excels in collaborating with multidisciplinary teams, organizing research projects, and mentoring doctoral students. Her technical proficiency and analytical capabilities have contributed to significant advancements in the study of molecular structure and biological activity.

Awards and Honors

Nadezhda Markova’s scientific excellence has been recognized through various awards and honors. In 2011, she achieved first place in the competition for high scientific achievements organized by the Union of Scientists in Bulgaria. This prestigious accolade highlighted her impactful contributions to the field of theoretical chemistry. Additionally, Markova’s extensive publication record—comprising 44 published and 2 accepted scientific articles—has received over 600 citations, underscoring the influence and recognition of her research within the scientific community. Her collaborative work with international research teams and participation in high-impact scientific projects further demonstrate her reputation as a leading figure in her field. Through her dedication to scientific innovation and knowledge dissemination, Markova has earned respect and recognition from peers and institutions alike. Her contributions continue to inspire and drive advancements in quantum chemical research and its applications in medicinal and organic chemistry.

Conclusion

Nadezhda Markova is a highly accomplished scientist whose expertise in theoretical chemistry has made a significant impact on the scientific community. Her academic background, extensive research experience, and proficiency in quantum chemical calculations have positioned her as a leading figure in her field. With a strong focus on molecular modeling, proton transfer reactions, and phytochemistry, she continues to push the boundaries of scientific knowledge. Markova’s dedication is reflected in her numerous publications, collaborations, and mentoring of young researchers. Her innovative work has earned her prestigious awards and widespread recognition, highlighting her role as a pioneer in quantum chemistry. As she continues to contribute to the advancement of scientific research, Markova’s legacy of excellence will undoubtedly inspire future generations of scientists and researchers.

Publications Top Notes

  1. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model

    • Authors: Shweta Sinha, Bikash Medhi, B. D. Radotra, Daniela Batovska, Nadezhda Markova, Rakesh
    • Year: 2023
  2. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting herpes simplex virus DNA polymerase – metabolome profiling, molecular docking, and quantum-chemical analysis

    • Authors: Nadezhda Todorova, Miroslav Rangelov, Ivayla Dincheva, Ilian Badjakov, Venelin Enchev, Nadezhda Markova
    • Year: 2022
  3. Potential of Hydroxybenzoic Acids From Graptopetalum paraguayense for Inhibiting Herpes Simplex Virus DNA Polymerase – Metabolome Profiling, Molecular Docking and Quantum-chemical Analysis

    • Authors: Nadezhda Hristova Todorova, Miroslav Angelov Rangelov, Ivayla Nedyalkova Dincheva, Ilian Kostadinov Badjakov, Venelin Georgiev Enchev, Nadezhda Vasileva Markova
    • Year: 2021
  4. Binding Expedient of 2‐carbamido‐1,3‐indandione to Nucleic Acids: Potential Fluorescent Probe

    • Authors: Nina Stoyanova, Nadezhda Markova, Ivan Angelov, Irena Philipova, Venelin Enchev
    • Year: 2021
  5. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives

    • Authors: Shweta Sinha, B.D. Radotra, Bikash Medhi, Daniela Batovska, Nadezhda Markova, Rakesh Sehgal
    • Year: 2020
  6. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study

    • Authors: Margarita Zaharieva, Penka Genova-Kalоu, Ivayla Dincheva, Ilian Badjakov, Svetla Krumova, Venelin Enchev, Hristo Najdenski, Nadezhda Markova
    • Year: 2019
  7. Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold

    • Authors: Nadezhda V. Markova, Milen I. Rogojerov, Valentina T. Angelova, Nikolay G. Vassilev
    • Year: 2019
  8. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes

    • Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B.D. Radotra, Anil Bhalla, Nadezhda Markova, Rakesh Sehgal
    • Year: 2019
  9. Synthesis, characterization, quantum-chemical calculations, and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids

    • Authors: Ekaterina D. Naydenova, Milen N. Marinov, Georgi T. Momekov, Ralitsa Y. Prodanova, Nadezhda V. Markova, Yavor T. Voynikov, Nikolay M. Stoyanov
    • Year: 2019
  10. Tautomerism of Inosine in Water: Is It Possible?

  • Authors: Nadezhda Markova, Venelin Enchev
  • Year: 2019
  1. 2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution
  • Authors: Venelin Enchev, Nadezhda Markova, Milen Marinov, Nikolay Stoyanov, Milen Rogojerov, Aleksandr Ugrinov, Ireneusz Wawer, Dorota M. Pisklak
  • Year: 2017
  1. Green synthesis, structure and fluorescence spectra of new azacyanine dyes
  • Authors: Venelin Enchev, Nikolay Gadjev, Ivan Angelov, Stefka Minkovska, Atanas Kurutos, Nadezhda Markova, Todor Deligeorgiev
  • Year: 2017
  1. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir
  • Authors: Nadezhda Markova, Ljupco Pejov, Nina Stoyanova, Venelin Enchev
  • Year: 2017
  1. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides – Structural characterization and antimicrobial evaluation
  • Authors: Borislava Stoykova, Mariya Chochkova, Gergana Ivanova, Nadezhda Markova, Venelin Enchev, Ivanka Tsvetkova, Hristo Najdenski, Miloslav Štícha, Tatiana Milkova
  • Year: 2017
  1. 2-Carbamido-1,3-indandione – A Fluorescent Molecular Probe and Sunscreen Candidate
  • Authors: Venelin Enchev, Ivan Angelov, Violeta Mantareva, Nadezhda Markova
  • Year: 2015
  1. A hybrid statistical mechanics – Quantum chemical model for proton transfer in 5-azauracil and 6-azauracil in water solution
  • Authors: Nadezhda Markova, Ljupco Pejov, Venelin Enchev
  • Year: 2015
  1. Synthesis of 3′,4′-Dihydro-2H,2′H,5H-spiro [imidazolidine-4,1′-naphthalene]-2,5-dione and its Derivatives
  • Authors: Milen Marinov, Plamena Marinova, Nikolay Stoyanov, Nadezhda Markova, Venelin Enchev
  • Year: 2014
  1. A model system with intramolecular hydrogen bonding: Effect of external electric field on the tautomeric conversion and electronic structures
  • Authors: Venelin Enchev, Vasil Monev, Nadezhda Markova, Milen Rogozherov, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Excited state proton transfer in 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1, 2-diol
  • Authors: Venelin Enchev, Nadezhda Markova, Milena Stoyanova, Plamen Petrov, Milen Rogozherov, Natalia Kuchukova, Ivanka Timtcheva, Vasil Monev, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Tautomeric equilibria of 5-fluorouracil anionic species in water
  • Authors: Nadezhda Markova, Venelin Enchev, Gergana Ivanova
  • Year: 2010
  1. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles
  • Authors: Maria Simeonova, Gergana Ivanova, Venelin Enchev, Nadezhda Markova, Milen Kamburov, Chavdar Petkov, Aidan Devery, Rod O’Connor, Declan Brougham
  • Year: 2009
  1. Ab initio and DFT study of the structure of metal ion complexes with N-benzalaniline-15-crown-5
  • Authors: Venelin Enchev, Snezhina Angelova, Nadezhda Markova, Ireneusz Wawer, Evgenia Stanoeva, Mariana Mitewa
  • Year: 2008
  1. Ab initio study of 2,4-substituted azolidines. II. Amino-imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution
  • Authors: Venelin Enchev, Nadezhda Markova, Snezhina Angelova
  • Year: 2005

Jiakang Zhang | Chemistry | Best Researcher Award

Dr. Jiakang Zhang | Chemistry | Best Researcher Award

Doctor at Qingdao university of science and technology, China

Dr. Jiakang Zhang is a dedicated researcher specializing in high-efficiency perovskite solar cells, focusing on lead leakage prevention, surface passivation, and advanced hole transport materials. As the first and corresponding author, he has published multiple high-impact research papers in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. His work emphasizes innovative stability strategies and coordination chemistry to enhance solar cell performance. Through collaborative research, Dr. Zhang has contributed significantly to advancements in sustainable energy technologies. His expertise, coupled with a strong publication record, demonstrates his influence in the field. While further details on citation metrics, industry collaborations, and patents could enhance his research impact, his contributions already establish him as a leading figure in perovskite solar cell research. Dr. Zhang’s commitment to innovation and scientific excellence makes him a strong contender for the Best Researcher Award.

Professional Profile

Education

Dr. Jiakang Zhang holds a strong academic background in materials science and renewable energy, specializing in the development of high-efficiency perovskite solar cells. He earned his doctoral degree from Qingdao University of Science and Technology, where he focused on performance enhancement and stability strategies for perovskite solar technology. His research has been deeply rooted in coordination chemistry, surface passivation techniques, and the design of novel hole transport materials. Throughout his academic journey, Dr. Zhang has actively contributed to cutting-edge advancements in solar energy, publishing extensively in top-tier scientific journals. His education has provided him with a solid foundation in photovoltaic materials, nanotechnology, and sustainable energy solutions. Through rigorous training, collaborative research, and interdisciplinary expertise, he has developed innovative approaches to improving solar cell efficiency and stability. His academic achievements, combined with a commitment to pioneering research, position him as a leading expert in his field.

Professional Experience

Dr. Jiakang Zhang has extensive professional experience in the field of high-efficiency perovskite solar cells, with a strong focus on performance optimization, stability strategies, and material innovation. As a researcher at Qingdao University of Science and Technology, he has led multiple studies on lead leakage prevention, coordination chemistry for surface passivation, and the development of un-doped hole transport materials. His expertise is reflected in his role as the first and corresponding author of several high-impact publications in renowned journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy. Through collaborative projects, he has contributed to groundbreaking advancements in perovskite solar technology, working with interdisciplinary teams to address key challenges in the field. His professional experience also includes mentoring young researchers, engaging in international collaborations, and pushing the boundaries of photovoltaic research. Dr. Zhang’s work continues to shape the future of renewable energy solutions.

Research Interests

Dr. Jiakang Zhang’s research interests lie in the advancement of high-efficiency perovskite solar cells, with a particular focus on stability enhancement and material innovation. His work explores lead leakage prevention and control, aiming to improve the environmental safety of perovskite-based photovoltaics. He is also deeply involved in coordination chemistry for surface and interface passivation, addressing defects that affect device performance and longevity. Additionally, Dr. Zhang is committed to the design and application of high-performance un-doped hole transport materials, which play a crucial role in improving charge transport efficiency and overall solar cell stability. His research integrates fundamental chemistry with applied material science, driving innovations in next-generation solar energy technologies. Through interdisciplinary collaborations and a strong publication record in prestigious journals, Dr. Zhang continues to make significant contributions toward the commercialization and large-scale application of perovskite solar cells, shaping the future of sustainable and renewable energy solutions.

Awards and Honors

Dr. Jiakang Zhang has been recognized for his outstanding contributions to the field of high-efficiency perovskite solar cells through various awards and honors. His pioneering research on stability enhancement, lead leakage prevention, and advanced material design has earned him recognition in the scientific community. As the first and corresponding author of multiple high-impact publications in prestigious journals such as Angewandte Chemie International Edition, Advanced Science, Advanced Materials, and Nano Energy, Dr. Zhang has gained significant academic acclaim. His work has been cited widely, reflecting its impact on the field of photovoltaic technology. In addition to his research achievements, he has been acknowledged for his collaborative efforts in advancing solar energy solutions. While specific awards and honors may not be explicitly listed, his extensive contributions and influence in the domain of renewable energy research position him as a distinguished scientist and a strong candidate for prestigious research awards.

Research Skills

Dr. Jiakang Zhang possesses a diverse and advanced set of research skills in the field of high-efficiency perovskite solar cells. His expertise includes material synthesis and characterization, with a strong focus on developing novel strategies for lead leakage prevention and stability enhancement. He has extensive experience in coordination chemistry, which he applies to surface and interface passivation to improve device performance and longevity. Dr. Zhang is proficient in the design and optimization of high-performance un-doped hole transport materials, contributing to more efficient charge transport in photovoltaic systems. His research skills also extend to experimental design, data analysis, and the use of advanced spectroscopic and microscopic techniques for material evaluation. Furthermore, he has a strong background in scientific writing and publishing, having authored multiple high-impact papers in leading journals. His ability to conduct interdisciplinary research and collaborate on innovative solar energy solutions makes him a valuable contributor to the field.

Conclusion

Dr. Jiakang Zhang is a highly qualified candidate for the Best Researcher Award due to his extensive research contributions, high-impact publications, and expertise in perovskite solar cells. Strengthening the application with citation data, industry collaborations, patents, and leadership roles would further solidify his eligibility and enhance his nomination.

Publications Top Notes

  • Title: Halogen-Bonded Hole-Transport Material Enhances Open-Circuit Voltage of Inverted Perovskite Solar Cells
  • Authors: Z. Chen, Zhaoyang; J. Zhang, Jiakang; Z. Chen, Zilong; H. Zhang, Haichang; M. Liu, Maning, et al.
  • Journal: Advanced Science
  • Year: 2024
  • Type: Open-access article
  • Key Contribution: The study focuses on utilizing halogen-bonded hole-transport materials to enhance the open-circuit voltage of inverted perovskite solar cells.

Ishika Pal | Chemistry | Best Scholar Award

Ms. Ishika Pal | Chemistry | Best Scholar Award

Ex-Student at Chandigarh University, India

Ishika Pal is an enthusiastic and dedicated chemistry student with a strong academic background and a passion for advancing research in chemical sciences. She holds both a Master of Science (M.Sc.) in Chemistry and a Bachelor of Science and Education (B.Sc. B.Ed.) from Chandigarh University. With hands-on training in quality control at Verka, she has developed a solid understanding of industrial standards and laboratory protocols. Her expertise spans organic synthesis, spectroscopy, and data analysis, making her a capable researcher in the field of chemistry. Ishika has contributed to scientific knowledge through her research on novel hydrolyzed products for dye exclusion and a comprehensive review on guar gum-based hydrogels for environmental remediation. She is proficient in using specialized software such as Gauss View and ChemDraw, which supports her computational chemistry work. Beyond technical skills, her strong communication abilities and problem-solving mindset enable her to present complex scientific concepts effectively. Ishika’s dedication to advancing chemical research and her commitment to maintaining laboratory precision position her as a promising candidate for future research excellence. With a keen interest in industrial quality control, chemosensors, and positive psychology, she aims to contribute significantly to innovative solutions in chemical sciences.

Professional Profile

Education

Ishika Pal holds distinguished academic qualifications in the field of chemistry, reflecting her commitment to both scientific inquiry and educational excellence. She earned a Master of Science (M.Sc.) degree in Chemistry from Chandigarh University, where she developed advanced knowledge of chemical principles and laboratory methodologies. Prior to this, she completed a Bachelor of Science and Education (B.Sc. B.Ed.) degree from the same institution, combining scientific rigor with pedagogical training. This dual qualification not only deepens her understanding of complex chemical processes but also enhances her ability to communicate scientific concepts effectively. Throughout her academic journey, Ishika has actively engaged in practical laboratory work, mastering various analytical techniques, including UV spectroscopy, IR spectroscopy, and chromatography. Her coursework and research projects have provided her with a comprehensive understanding of organic synthesis, data analysis, and chemical modeling. Ishika’s education also encompasses extensive training in laboratory management and quality control, equipping her with the technical precision required for professional research environments. Her academic record reflects a balance between theoretical knowledge and practical application, positioning her to contribute meaningfully to contemporary chemical research. Ishika’s academic foundation in chemistry continues to guide her pursuit of innovative solutions and excellence in scientific exploration.

Professional Experience

Ishika Pal’s professional experience is anchored in her practical training and research contributions within the field of chemistry. She undertook a comprehensive quality control training program at Verka, where she gained firsthand exposure to industrial processes and laboratory protocols. During this period, she honed her ability to perform precise analytical procedures, ensuring product quality and compliance with industry standards. This experience equipped her with essential skills in chemical analysis, documentation, and the use of advanced laboratory equipment. Additionally, Ishika has actively participated in research projects focusing on organic synthesis and environmental chemistry. Her research endeavors include the synthesis of GG-g-PAN-based hydrolyzed products aimed at dye exclusion and the spectroscopic investigation of these novel compounds. This work demonstrates her capacity to apply theoretical knowledge to address real-world challenges. Her professional journey also includes proficiency in laboratory techniques such as titration, chromatography, and spectroscopic analysis. Beyond technical expertise, Ishika’s effective communication skills and attention to detail have enabled her to collaborate seamlessly in research settings. Her professional experience reflects a commitment to scientific innovation, methodological accuracy, and the pursuit of knowledge. Ishika’s ability to bridge academic learning with practical implementation positions her as a promising contributor to advanced chemical research.

Research Interests

Ishika Pal’s research interests lie at the intersection of organic synthesis, environmental remediation, and computational chemistry. She is particularly passionate about developing innovative chemical processes to address industrial and environmental challenges. Her work on Guar Gum-based hydrogels for dye remediation reflects her commitment to sustainable solutions, exploring ways to remove hazardous dyes from aqueous environments. Ishika is also interested in advancing chemosensors—devices that detect and analyze chemical substances—with a focus on improving their sensitivity and application in industrial quality control. Additionally, she is intrigued by the role of positive psychology in scientific innovation, exploring how mental well-being can enhance research productivity and creativity. Ishika’s academic background has sparked her curiosity about computational chemistry, using advanced software like Gauss View to model chemical reactions and analyze molecular interactions. Her interdisciplinary approach integrates experimental methodologies with theoretical frameworks, providing a comprehensive perspective on chemical phenomena. She aspires to contribute to cutting-edge research that combines chemical principles with technological advancements to drive meaningful scientific progress. Through her research, Ishika seeks to develop novel materials and methodologies that improve both environmental sustainability and industrial efficiency, positioning herself as a forward-thinking and solution-oriented scholar in the field of chemistry.

Research Skills

Ishika Pal possesses a diverse range of research skills that reflect her proficiency in chemical experimentation and data analysis. She is well-versed in organic synthesis techniques, enabling her to design and execute chemical reactions with precision. Her expertise extends to spectroscopic analysis, including UV and IR spectroscopy, which she uses to characterize chemical compounds and investigate molecular structures. Ishika is also skilled in chromatographic techniques, applying methods like gas chromatography to separate and analyze complex mixtures. She has a strong command of laboratory management practices, ensuring the accuracy, safety, and reproducibility of experimental procedures. Her technical toolkit includes proficiency in specialized software such as Microsoft Office, Gauss View, and ChemDraw, which facilitate computational modeling and chemical visualization. Additionally, Ishika’s attention to detail supports her capability in data documentation and interpretation, ensuring comprehensive reporting of experimental outcomes. She adheres strictly to safety protocols and exhibits competence in handling hazardous materials. Beyond technical expertise, her analytical mindset and problem-solving skills allow her to troubleshoot experimental challenges effectively. These research skills position her to contribute to complex scientific investigations while maintaining the integrity and precision required for advanced chemical research.

Awards and Honors

While Ishika Pal’s profile does not explicitly mention formal awards or honors, her research publications and quality control training highlight her academic and professional excellence. Her research paper on GG-g-PAN-based hydrolyzed products reflects a noteworthy contribution to environmental chemistry, addressing the critical issue of dye remediation. Furthermore, her review paper on Guar Gum-based hydrogels underscores her ability to synthesize existing research and provide new insights into sustainable materials. Completing her quality control training at Verka represents a significant achievement, as it provided her with industry-level expertise and practical experience in laboratory methodologies. These milestones demonstrate her dedication to bridging academic research with real-world applications. Ishika’s consistent academic performance in her M.Sc. and B.Sc. B.Ed programs further attests to her scholarly commitment. Although she has not yet received formal accolades, her research output and technical skills position her as a promising candidate for future recognition. With continued work in her areas of expertise, Ishika is well-positioned to receive formal awards and honors for her contributions to the field of chemistry.

Conclusion

Ishika Pal exemplifies the qualities of a dedicated and capable scholar in the field of chemistry. Her robust academic background, combined with practical experience in quality control and chemical research, underscores her readiness for advanced scientific inquiry. She has demonstrated expertise in organic synthesis, spectroscopy, and computational chemistry, supported by a strong command of laboratory techniques and analytical tools. Her research on GG-g-PAN-based hydrolyzed products and Guar Gum-based hydrogels reflects a commitment to solving real-world problems, particularly in environmental sustainability. While she has yet to receive formal awards, her work reflects a trajectory of academic excellence and innovation. Ishika’s interdisciplinary research interests, including chemosensors and positive psychology, further highlight her forward-thinking approach. To strengthen her profile, she could pursue additional publications, conference presentations, and collaborative research projects. With her analytical mindset, problem-solving capabilities, and technical proficiency, Ishika Pal is a promising candidate for the Best Scholar Award in Research. Her dedication to advancing chemical sciences and her aspiration for impactful discoveries make her a valuable contributor to the scientific community.

Publication Top Notes

  1. “Guar Gum: Superabsorbent Hydrogels for Dye Remediation”
  • Authors: Ishika Pal, Lalita Chopra, Subbulakshmi Ganesan, Girish Chandra Sharma, Abhijit Bhowmik, A. Johnson Santhosh
  • Year: 2025
  • Journal: Polymers for Advanced Technologies

 

Ajoy Kumar Bauri | Chemistry | Best Researcher Award

Dr. Ajoy Kumar Bauri | Chemistry | Best Researcher Award

Scientific Officer F at Bhabha Atomic Research Centre, India

Dr. Ajoy Kumar Bauri is a distinguished chemist from India, renowned for his extensive research in organic chemistry and its applications in medicinal chemistry. His work primarily focuses on the isolation and characterization of bioactive compounds from natural sources, aiming to discover potential therapeutic agents. Over the years, Dr. Bauri has contributed significantly to the scientific community through his research on anti-proliferative agents, photobiologically active compounds, and the structural elucidation of complex organic molecules. His studies have been pivotal in understanding the chemical properties and biological activities of various natural products, thereby advancing the field of medicinal chemistry.

Professional Profile

Education

Dr. Bauri’s academic journey began with a Master of Science (M.Sc.) in Organic Chemistry from Visva-Bharati University in Santiniketan, West Bengal, India, completed between June 1986 and June 1988. To further his research expertise, he pursued a postdoctoral fellowship at the Shiga University of Medical Science in Otsu, Shiga, Japan, from March 2007 to March 2008. During this fellowship, he engaged in advanced research in chemistry, honing his skills in the isolation and structural analysis of organic compounds. This international experience enriched his scientific perspective and laid a strong foundation for his future research endeavors.

Professional Experience

Dr. Bauri’s professional career is marked by significant roles in both industry and academia. He served as a Chemical Engineer in the Reactor Engineering Division at the Bhabha Atomic Research Centre (BARC) in Mumbai, Maharashtra, India, from March 1991 to March 1997. In this capacity, he was involved in research and development activities pertinent to reactor engineering and chemical processes. Prior to this, he held a teaching position at Bharat Aluminium Company Ltd (BALCO) in Asansol, West Bengal, India, from July 1988 to June 1991, where he contributed to the education and training of junior college students in chemistry.

Research Interests

Dr. Bauri’s research interests are deeply rooted in the field of organic and medicinal chemistry. He focuses on the isolation, structural elucidation, and biological evaluation of natural products, particularly those with potential anti-cancer properties. His work includes the study of phenolic compounds derived from spices, such as malabaricone B, which has been shown to induce mitochondrial damage in lung cancer cells via a p53-independent pathway. Additionally, he has investigated halogenated depsides from lichens for their anti-proliferative activities. Dr. Bauri is also interested in the photobiological activities of furanocoumarins and their potential therapeutic applications.

Research Skills

Throughout his career, Dr. Bauri has developed a robust set of research skills. He is proficient in various chromatographic techniques for the isolation of natural products and has extensive experience in spectroscopic methods, including nuclear magnetic resonance (NMR) and mass spectrometry, for structural elucidation. His expertise extends to X-ray crystallography, which he has utilized to confirm the structures of complex organic molecules. Dr. Bauri is also skilled in conducting in vitro biological assays to evaluate the anti-proliferative activities of compounds, employing techniques such as the Sulforhodamine B (SRB) assay to assess cytotoxicity against various human cancer cell lines.

Awards and Honors

Dr. Bauri’s contributions to the field of chemistry have been recognized through various awards and honors. Notably, he secured funding from the Japan Society for the Promotion of Science for his project on the separation of nanocarbon materials through molecular recognition with diporphyrin nanotweezers. This grant underscores his innovative approach to research and his ability to attract competitive funding. Additionally, his publications in high-impact journals and collaborations with international researchers highlight his standing in the scientific community.

Conclusion

Dr. Ajoy Kumar Bauri’s career exemplifies a profound commitment to advancing organic and medicinal chemistry. His extensive research on natural products has not only expanded the understanding of their chemical and biological properties but also opened avenues for the development of novel therapeutic agents. Through his academic and professional endeavors, Dr. Bauri has made significant contributions to science, demonstrating a blend of theoretical knowledge and practical expertise. His work continues to inspire and influence research in the field of medicinal chemistry.

Publication Top Notes

  1. Exhibition of Förster resonance energy transfer from CdSe/ZnS quantum dot to zinc porphyrazine studied in solution
    • Authors: Anamika Ray, Sumanta Bhattacharya, Ajoy Bauri
    • Year: 2019
    • Journal: Journal of Molecular Liquids
    • Volume: 276
    • Pages: 770-778
    • Citations: 24
  2. Analysis of Chemical Constituents of Steam Distillate of Trachyspermum roxburghianum
    • Authors: Ajoy Bauri
    • Year: 2018
    • Journal: American Journal of Food Science & Nutrition
    • Volume: 5(4)
    • Pages: 76-81
  3. Anti-proliferative Active Flavones from the Methanol Extract of Indian Herb Artemisia reticulata
    • Authors: Ajoy Bauri
    • Year: 2018
    • Journal: American Journal of Pharmacy & Pharmacology
    • Volume: 5(4)
    • Pages: 27-32
  4. Anti-proliferative Allyl Phenol from the Methanol Extract of Piper betle
    • Authors: Ajoy Bauri
    • Year: 2018
    • Journal: American Journal of Pharmacy & Pharmacology
    • Volume: 5(3)
    • Pages: 13-18
  5. Molecular Assembly of PC70BM with a Designed Monoporphyrin: Spectroscopic Investigation in Solution and Theoretical Calculations
    • Authors: Subrata Nayek, Sneha Paul, Ajoy Bauri, Sumanta Bhattacharya
    • Year: 2018
    • Journal: Journal of Molecular Liquids
    • Volume: 272
    • Pages: 137-150
    • Citations: 12
  6. Study of Chemical Physics on Energy Transfer Phenomenon between Quantum Dots and Designed Diporphyrin in Solution
    • Authors: Anamika Ray, Sumanta Bhattacharya, Ajoy Bauri
    • Year: 2018
    • Journal: Journal of Molecular Liquids
    • Volume: 263
    • Pages: 64-71
  7. Synthesis and Evaluation of Polyphenolic Malabaricones for their Anti-cancer Potential
    • Authors: Ajoy Bauri
    • Year: 2018
    • Journal: BARC Newsletter
    • Issue: September-October
  8. The Spice Derived Phenolic, Malabaricone B, Induces Mitochondrial Damage in A549 Cells via p53-Independent Pathway
    • Authors: Ajoy Bauri
    • Year: 2018
    • Journal: Food & Function
    • Volume: 9(11)
    • Pages: 5715-5727
  9. (10R,13R)-17-(6-Hydroxy-5-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol Hemihydrate: A Bioactive Steroid Isolated from the Indian Herb Artemisia reticulata
    • Authors: Ajoy Bauri
    • Year: 2017
    • Journal: Journal of Molecular Liquids
  10. Crystal Structure of a Photobiologically Active Brominated Angular Pyranocoumarin: Bromo Hydroxyl Seselin
    • Authors: Ajoy Bauri
    • Year: 2017
    • Journal: Acta Crystallographica Section E
    • Volume: 73
    • Pages: 453-455

 

Agnieszka Majkowska-Pilip | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Agnieszka Majkowska-Pilip | Chemistry | Best Researcher Award

Professor at Institute of Nuclear Chemistry and Technology, Poland

Author Summary

Dr. Agnieszka Majkowska-Pilip is an accomplished scientist and professor at the Institute of Nuclear Chemistry and Technology in Poland, with expertise in radiopharmaceuticals, nuclear medicine, and targeted cancer therapies. Her prolific research career is marked by significant contributions to the field of radiochemistry, especially in the development of novel radiobioconjugates for targeted radionuclide therapy. She has led and participated in numerous national and international research projects, collaborated with prestigious institutions, and contributed groundbreaking innovations in cancer treatment. Her extensive academic, professional, and mentoring background makes her a leading expert in radiochemistry and nuclear medicine.

Professional profile

Education

Dr. Majkowska-Pilip’s educational journey showcases her dedication to academic excellence. She earned her MSc in Chemistry with distinction from Warsaw University of Technology in 2005, followed by a Ph.D. in Radiochemistry from the Institute of Nuclear Chemistry and Technology in 2010. Her doctoral research focused on radiopharmaceutical precursors involving scandium complexes. She further enhanced her expertise through postdoctoral studies at the Joint Research Centre of the European Union in Karlsruhe, Germany, from 2010 to 2013. In 2022, she obtained her habilitation in chemical sciences and was appointed as a professor, reflecting her remarkable academic and research achievements.

Professional Experience

Dr. Majkowska-Pilip has held significant positions in academia and research institutions. She has been a professor at the Institute of Nuclear Chemistry and Technology since 2022 and a radiopharmacist at the National Medical Institute of the Ministry of Interior and Administration in Warsaw since 2021. Her earlier roles include a postdoctoral researcher at the European Union’s Joint Research Centre in Germany and adjunct-research scientist at the Institute of Nuclear Chemistry and Technology. Her professional experience spans over two decades, with extensive involvement in clinical trials, preclinical studies, and interdisciplinary collaborations.

Research Interests

Dr. Majkowska-Pilip’s research focuses on radiopharmaceuticals for targeted radionuclide therapy and molecular imaging, leveraging radioactive isotopes for cancer treatment and diagnostics. Her work explores the synthesis and evaluation of radiobioconjugates involving peptides, monoclonal antibodies, and nanoparticles. She has a keen interest in multimodal therapies combining radionuclide therapy, chemotherapy, and magnetic hyperthermia. Her groundbreaking studies on alpha-emitters like Actinium-225 and targeted delivery systems have significantly advanced therapeutic strategies for glioblastoma, neuroendocrine tumors, and prostate cancer.

Research Skills

Dr. Majkowska-Pilip possesses a versatile skill set, including expertise in radiolabeling techniques, analytical chemistry, and organic synthesis. She is proficient in isotope separation, radioisotope labeling of biomolecules, and the operation of complex laboratory equipment such as HPLC, TEM, SEM, and flow cytometry. Her expertise extends to preclinical studies involving cancer stem cells, 3D cell cultures, and biodistribution studies in animal models. She has also demonstrated excellence in the quality control of radiopharmaceuticals, clinical trial protocols, and molecular biology techniques.

Awards and Honors

Dr. Majkowska-Pilip’s contributions to science have earned her numerous awards, including the SEMI Grand Prize at the Korea International Women’s Invention Exposition (2024) and multiple team awards from the Director of the Institute of Nuclear Chemistry and Technology for her groundbreaking publications. Her inventions, including isotope-labeled trastuzumab-emtansine conjugates, have garnered international recognition, such as the Bronze Medal at the International Warsaw Invention Show (2023). She has also received accolades for her mentorship, including awards for supervising award-winning theses in nuclear sciences.

Conclusion

Dr. Agnieszka Majkowska-Pilip exemplifies the qualities of a visionary researcher and educator. Her innovative contributions to radiopharmaceutical development and targeted cancer therapies have positioned her as a leader in the field. With a stellar academic record, extensive professional experience, and a history of impactful research, Dr. Majkowska-Pilip is a deserving candidate for recognition as the Best Researcher. Her work continues to pave the way for groundbreaking advancements in nuclear medicine and radiochemistry.

Publication Top Notes

  1. Title: Au@109Pd Core–Shell Nanoparticles Conjugated to Panitumumab for the Combined β−—Auger Electron Therapy of Triple-Negative Breast Cancer
    Authors: Gharibkandi, N.A.; Majkowska-Pilip, A.; Walczak, R.; Wierzbicki, M.; Bilewicz, A.
    Year: 2024
    Citations: 0
  2. Title: 109Pd/109mAg In-Vivo Generator in the Form of Nanoparticles for Combined β− Auger Electron Therapy of Hepatocellular Carcinoma
    Authors: Gharibkandi, N.A.; Wawrowicz, K.; Walczak, R.; Wierzbicki, M.; Bilewicz, A.
    Year: 2024
    Citations: 1
  3. Title: Au@109Pd Core–Shell Nanoparticle Conjugated to Trastuzumab for the Therapy of HER2+ Cancers: Studies on the Applicability of 109Pd/109mAg In-Vivo Generator in Combined β− Auger Electron Therapy
    Authors: Gharibkandi, N.A.; Wawrowicz, K.; Majkowska-Pilip, A.; Wierzbicki, M.; Bilewicz, A.
    Year: 2023
    Citations: 3
  4. Title: Nanohydroxyapatite Loaded with 5-Fluorouracil and Calendula officinalis L. Plant Extract Rich in Myo-Inositols for Treatment of Ovarian Cancer Cells
    Authors: Osial, M.; Wilczewski, S.; Szulc, J.; Kulus, D.; Giersig, M.
    Year: 2023
    Citations: 1
  5. Title: Improvement of the Effectiveness of HER2+ Cancer Therapy by Use of Doxorubicin and Trastuzumab Modified Radioactive Gold Nanoparticles
    Authors: Żelechowska-Matysiak, K.; Salvanou, E.-A.; Bouziotis, P.; Bilewicz, A.; Majkowska-Pilip, A.
    Year: 2023
    Citations: 9
  6. Title: 5-Fluorouracil and Curcuminoids Extract from Curcuma longa L. Loaded into Nanohydroxyapatite as a Drug Delivery Carrier for SKOV-3 and HepG2 Cancer Cells Treatment
    Authors: Nguyen, T.P.; Wilczewski, S.; Lewandowski, J.; Krysiński, P.; Osial, M.
    Year: 2023
    Citations: 6
  7. Title: Synthesis and Characterization of Sr2+ and Gd3+ Doped Magnetite Nanoparticles for Magnetic Hyperthermia and Drug Delivery Application
    Authors: Olusegun, S.J.; Osial, M.; Majkowska-Pilip, A.; Pękała, M.; Krysiński, P.
    Year: 2023
    Citations: 16
  8. Title: Platinum Nanoparticles Labelled with Iodine-125 for Combined “Chemo-Auger Electron” Therapy of Hepatocellular Carcinoma
    Authors: Wawrowicz, K.; Żelechowska-Matysiak, K.; Majkowska-Pilip, A.; Wierzbicki, M.; Bilewicz, A.
    Year: 2023
    Citations: 3
  9. Title: Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers
    Authors: Żelechowska-Matysiak, K.; Wawrowicz, K.; Wierzbicki, M.; Bilewicz, A.; Majkowska-Pilip, A.
    Year: 2023
    Citations: 5
  10. Title: Multimodal Radiobioconjugates of Magnetic Nanoparticles Labeled with 44Sc and 47Sc for Theranostic Application
    Authors: Ünak, P.; Yasakçı, V.; Tutun, E.; Majkowska-Pilip, A.; Bilewicz, A.
    Year: 2023
    Citations: 6

Arun Kodoth | Chemistry | Best Researcher Award

Dr. Arun Kodoth | Chemistry | Best Researcher Award

Scientist at Dr Bansi Dhar Institute, India

Dr. Arun Krishna Kodoth is an accomplished researcher with a Ph.D. in Chemistry specializing in polymer and material science. With over a decade of academic and industrial experience, he has built a career centered on innovative research in polymer synthesis, hydrogels, nanofibers, and nanocomposites. His expertise spans green chemistry, microwave-assisted polymer synthesis, and advanced material applications in drug delivery, water treatment, and environmental sustainability. Dr. Kodoth has an impressive publication record, having authored 17 peer-reviewed articles and actively contributed to numerous conferences. His work has been recognized with prestigious awards for both oral and poster presentations. With a commitment to advancing scientific knowledge and a strong passion for collaboration, he has worked with academic institutions and industrial organizations to deliver impactful research solutions. As a reviewer for high-impact journals, Dr. Kodoth plays a vital role in shaping research in his field. His professional integrity, extensive technical skills, and dedication to research excellence make him a valuable contributor to global scientific advancements.

Professional Profile

Education

Dr. Kodoth holds a Ph.D. in Chemistry from Mangalore University, India (2019), with a thesis on “Synthesis, Characterization, and Applications of Copolymer-based Composite Hydrogels.” He completed his Master’s in Industrial Chemistry at Mangalore University, securing an impressive 72.125% in 2011. His undergraduate studies in Chemistry were undertaken at Govt. College Kasaragod, Kerala, where he earned a commendable 65.1%. Dr. Kodoth’s academic journey highlights a strong foundation in polymer science and material chemistry, supplemented by extensive practical exposure to advanced techniques. Throughout his education, he displayed a keen interest in interdisciplinary research, which laid the groundwork for his successful academic and industrial career. His robust academic achievements demonstrate his commitment to excellence, which has translated into impactful research contributions in polymer and material sciences.

Professional Experience

Dr. Kodoth has extensive experience in both academia and industry, making significant contributions as a scientist and educator. As a postdoctoral researcher at Mangalore University (2019–2024), he synthesized advanced polymeric nanofibers and hydrogels for applications in agriculture, dye adsorption, and drug delivery. In his role as a scientist at Shriram Institute for Industrial Research, Haryana, he developed cutting-edge materials, including hydrogels for water treatment and bio-based photocatalysts for environmental remediation. His industry experience includes a stint at AstraZeneca India, where he worked on Suzuki coupling reactions, showcasing his ability to bridge fundamental research with industrial needs. Additionally, he has successfully guided 11 MSc students, demonstrating his leadership and mentorship skills. His professional trajectory reflects a seamless blend of academic rigor and industry-oriented problem-solving.

Research Interests

Dr. Kodoth’s research interests focus on polymer and material science, with applications in environmental sustainability and healthcare. He is deeply involved in the development of hydrogels, nanofibers, and nanocomposites for advanced applications such as drug delivery, wastewater treatment, and agricultural innovation. His work on green synthesis of nanoparticles and microwave-assisted polymerization aligns with his commitment to eco-friendly and sustainable solutions. He has collaborated on projects to develop transdermal patches for cervical cancer treatment, demonstrating his interest in interdisciplinary and translational research. With a passion for addressing real-world challenges through material innovation, Dr. Kodoth aims to contribute to the fields of energy storage, environmental remediation, and smart material development.

Research Skills

Dr. Kodoth possesses an extensive repertoire of research skills in advanced material synthesis and characterization. His expertise includes the fabrication of hydrogels, nanofibers, and nanocomposites, along with drug delivery formulations. He is adept at using sophisticated analytical instruments like FTIR, UV-Vis spectrophotometers, TGA, DSC, and HPLC, ensuring thorough material analysis and data interpretation. Dr. Kodoth is skilled in electrospinning and advanced surface characterization methods, making him proficient in nanomaterial fabrication. His proficiency in software tools like ChemDraw, ChemSketch, and OriginPro complements his technical skills, enabling efficient research documentation and publication. These skills, combined with his expertise in polymer applications, position him as a leading researcher in the field of material science.

Awards and Honors

Dr. Kodoth has received several accolades recognizing his contributions to research and academia. His work has earned him awards for the best poster and oral presentations at national conferences, highlighting the quality and relevance of his research. As a referee for prominent journals such as Wiley’s Journal of Applied Polymer Science and Elsevier’s International Journal of Biological Macromolecules, he is acknowledged as an expert in his field. He has participated in multiple advanced training programs, such as LCMS/MS analysis and X-ray crystallography workshops, further solidifying his credentials. These honors reflect his dedication to research excellence and his impactful contributions to the scientific community.

Conclusion

Dr. Arun Krishna Kodoth is a highly accomplished researcher whose work in polymer and material science has significantly impacted both academia and industry. His dedication to innovative research, coupled with his extensive technical expertise, has led to advancements in drug delivery, water treatment, and sustainable materials. With a strong academic foundation, numerous publications, and awards, Dr. Kodoth is a deserving candidate for recognition as a leading researcher. His contributions exemplify the power of interdisciplinary collaboration and the application of science to address pressing global challenges.

Publication Top Notes

  1. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil
    Authors: AK Kodoth, VM Ghate, SA Lewis, B Prakash, V Badalamoole
    Year: 2019
    Citations: 67
  2. Gellan gum‐based novel composite hydrogel: evaluation as adsorbent for cationic dyes
    Authors: K Arun Krishna, B Vishalakshi
    Year: 2017
    Citations: 61
  3. Application of pectin‑zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism
    Authors: AK Kodoth, VM Ghate, SA Lewis, V Badalamoole
    Year: 2018
    Citations: 43
  4. Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions
    Authors: AK Kodoth, V Badalamoole
    Year: 2020
    Citations: 42
  5. Colloidal nanostructured lipid carriers of pentoxifylline produced by microwave irradiation ameliorates imiquimod-induced psoriasis in mice
    Authors: VM Ghate, AK Kodoth, A Shah, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 28
  6. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery
    Authors: VM Ghate, AK Kodoth, S Raja, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 18
  7. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system
    Authors: PB Krishnappa, AK Kodoth, P Kulal, V Badalamoole
    Year: 2023
    Citations: 16
  8. Pectin based graft copolymer–ZnO hybrid nanocomposite for the adsorptive removal of crystal violet
    Authors: AK Kodoth, V Badalamoole
    Year: 2019
    Citations: 16
  9. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds
    Authors: A Kurowska, V Ghate, A Kodoth, A Shah, B Vishalakshi, …
    Year: 2019
    Citations: 14
  10. Chitosan/hydroxyethyl cellulose gel immobilized polyaniline/CuO/ZnO adsorptive-photocatalytic hybrid nanocomposite for Congo red removal
    Authors: TB Gelaw, BK Sarojini, AK Kodoth
    Year: 2022
    Citations: 11

 

LUMEI PU | Chemistry | Best Researcher Award

Prof. Dr. LUMEI PU | Chemistry | Best Researcher Award

Professor at College of science, Gansu agricultural university, China

Lumei Pu is a distinguished academic and researcher specializing in plasma chemistry and the application of natural products in medicinal and biological chemistry. With more than 34 years of experience at Gansu Agricultural University in China, she has made significant contributions to the development of her field. Pu’s extensive career includes a progression from her M.Sc. in Chemistry to a professorship in 2008, with a focus on exploring the intersection of chemistry and biology. Her research has had a lasting impact on understanding the properties and applications of natural compounds in various biological systems, positioning her as a leading expert in her areas of study.

Professional Profile

Education:

Lumei Pu obtained her M.Sc. in Chemistry from Northwest Normal University in China in 2001, where she laid the foundation for her career in scientific research. Her pursuit of advanced studies continued with a Ph.D., which she completed in 2005, further solidifying her expertise in the field of chemistry. These academic milestones were pivotal in shaping her research career, equipping her with the knowledge to contribute to both theoretical and applied chemistry in areas such as plasma chemistry and medicinal chemistry.

Professional Experience:

Lumei Pu has dedicated over three decades to research and academia, all at Gansu Agricultural University in China. Beginning as a lecturer, she ascended to a full professorship in 2008, where she became a leader in her department. Throughout her career, Pu has mentored numerous students and researchers, fostering innovation and promoting academic excellence. Her professional journey is marked by a continuous commitment to advancing the fields of plasma and medicinal chemistry.

Research Interests:

Pu’s primary research interests lie in plasma chemistry and the utilization of natural products in medicinal and biological chemistry. She has worked extensively on exploring how plasma technology can be applied to improve the synthesis of natural compounds and their therapeutic potential. Additionally, her research focuses on understanding the biochemical and biological roles of these compounds, investigating their potential in treating various diseases and improving human health. These interests have made her a key figure in both applied and theoretical research.

Research Skills:

Throughout her career, Lumei Pu has developed a diverse skill set, particularly in plasma chemistry, natural product chemistry, and medicinal chemistry. She is skilled in the design and execution of experiments that involve plasma technology to manipulate natural substances for biological and medicinal purposes. Her expertise extends to the analytical techniques required for studying complex chemical reactions, including spectroscopy and chromatography. Pu also possesses strong leadership and mentoring abilities, helping guide younger researchers to explore innovative scientific avenues.

Awards and Honors:

Lumei Pu’s dedication to research has earned her numerous accolades and recognition over the years. While specific awards are not detailed in the provided information, her position as a professor and her long-standing contribution to the field of plasma and medicinal chemistry reflect the respect she commands within the academic community. Her academic achievements and leadership roles within her institution underscore her significant contributions to advancing the scientific understanding of plasma chemistry and natural products.

Conclusion:

Lumei Pu is a highly experienced and knowledgeable researcher in plasma chemistry and medicinal chemistry, making her a strong candidate for the Best Researcher Award. While her extensive experience and research in the application of natural products are commendable, there is room to boost her global academic influence through enhanced publication activity, interdisciplinary collaboration, and innovation. If she continues to push the boundaries in these areas, she could further solidify her place as a leading figure in her field.

Publication Top Notes

  1. “A novel yet facile colorimetric and fluorescent dual-channel salamo-type probe for highly effective detection of B4O72− ions in real water samples and its application”
    • Authors: Zhang, Z.-X., Zhang, H.-W., Tuo, N., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1322
    • Article Number: 140497
  2. “Unprecedented cyclic-salamo-based compound and binuclear Zn(II) salamo-based complex originated from a double-armed salamo-based ligand: Experimental and theoretical studies”
    • Authors: Zhang, Z.-X., Du, M.-X., Yang, R.-W., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1321
    • Article Number: 140210
  3. “Exploring the synthesis, structure and properties of two phenoxy-bridged polynuclear Cu(II) and Ni(II) complexes containing salamo-based bicompartmental ligand”
    • Authors: Zhang, Z.-X., Tuo, N., Zhang, H.-W., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2025
    • Volume: 1320
    • Article Number: 139692
    • Citations: 1
  4. “Anion-Modulated Construction of Two Novel Tetra- and Hepta-Nuclear Ni(II) Salamo-Type Clusters: Comparison of the DFT Calculations and Weak Interaction Analyses”
    • Authors: Zhang, Z.-X., Zhang, H.-W., Zheng, T., Dong, W.-K., Wang, L.
    • Journal: Applied Organometallic Chemistry
    • Year: 2024
    • Volume: 38(12)
    • Article Number: e7733
  5. “Modulating electron structure of active sites in high-entropy metal sulfide nanoparticles with greatly improved electrocatalytic performance for oxygen evolution reaction”
    • Authors: Bo, L., Fang, J., Yang, S., Ma, Z., Tong, J.
    • Journal: International Journal of Hydrogen Energy
    • Year: 2024
    • Volume: 84
    • Pages: 89–96
  6. “Self-Assembly Mechanism of Avermectin B1a and Its Activity against Potato Rot Nematode”
    • Authors: Xu, W., Chu, S., Pan, F., Pu, L., Li, H.
    • Journal: ACS Agricultural Science and Technology
    • Year: 2024
    • Volume: 4(8)
    • Pages: 827–836
  7. “Interface Engineering Construction of an Ag-Modified Crystalline CoFe@Amorphous Fe2O3 Composite for Superior Oxygen Evolution Electrocatalysis”
    • Authors: Bo, L., Shen, Y., Li, S., Xu, L., Tong, J.
    • Journal: ACS Sustainable Chemistry and Engineering
    • Year: 2024
    • Volume: 12(32)
    • Pages: 12076–12085
  8. “Comprehensive insights of a Salamo-like Oligo(N,O-donor) ligand and its self-assembled di-nuclear Mn(III) and tetra-nuclear Cd(II) complexes”
    • Authors: Pu, L.-M., Li, S.-Z., Yan, Y.-B., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2024
    • Volume: 1309
    • Article Number: 138264
    • Citations: 3
  9. “Exploring the structural characteristics of novel Zn(II) complex and Ni(II) coordination polymer with a salamo-like ligand containing an exposed aldehyde”
    • Authors: Pu, L.-M., Gan, L.-L., Yue, Y.-N., Long, H.-T., Dong, W.-K.
    • Journal: Journal of Molecular Structure
    • Year: 2024
    • Volume: 1308
    • Article Number: 138024
    • Citations: 2
  10. “An unusual highly sensitive dual-channel bis(salamo)-like chemical probe for recognizing B4O72−, sensing mechanism, theoretical calculations and practical applications”
    • Authors: Pu, L.-M., Li, X.-X., Chen, R., Long, H.-T., Dong, W.-K.
    • Journal: Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2024
    • Volume: 314
    • Article Number: 124187
    • Citations: 1

 

 

Farag Altalbawy | Organic Chemistry | Excellence in Research

Prof. Dr. Farag Altalbawy | Organic Chemistry | Excellence in Research

ProfDr. at University of Tabuk, Saudi Arabia

Prof. Dr. Farag Mohamed A. Altalbawy is an esteemed Professor of Photoorganic Chemistry with a distinguished career marked by significant contributions to organic and nanomaterial chemistry. Born in Giza, Egypt, Prof. Altalbawy has held various academic roles in Egypt and Saudi Arabia, specializing in photoorganic chemistry and nanotechnology applications. His research focuses on organic and heterocyclic chemistry, spectroscopic analysis, and nanoparticle chemistry, with recent work addressing environmental applications, drug delivery systems, and cancer therapies. Prof. Altalbawy has an impressive publication record with studies appearing in prestigious international journals. His collaboration with researchers worldwide underlines his commitment to advancing scientific knowledge. Known for his expertise in Density Functional Theory (DFT) and spectroscopic methods, he leverages advanced analytical tools to tackle complex research questions. Prof. Altalbawy’s career showcases a dedication to innovative, interdisciplinary research and a global perspective on collaboration.

Professional Profile

Education

Prof. Altalbawy completed his B.Sc. in Chemistry with distinction at Cairo University in 1988. His academic journey took him to Monash University, Australia, where he earned an M.Sc. in 2001, focusing on photoorganic chemistry and gaining foundational expertise in organic synthesis. In 2005, he achieved his Ph.D. in Photoorganic Chemistry from Cairo University. His doctoral research delved into advanced photophysical and photochemical properties of organic molecules, equipping him with an in-depth understanding of spectroscopic analysis and reaction mechanisms. His comprehensive education, combining theoretical knowledge with practical training in experimental methodologies, laid the groundwork for his later research in nanomaterials and heterocyclic chemistry. Prof. Altalbawy’s academic background has been instrumental in shaping his innovative approach to chemical research, particularly in developing nano-based systems for biomedical applications.

Professional Experience

Prof. Altalbawy has accumulated over two decades of academic and research experience, beginning as a Demonstrator at Cairo University in 1997. He progressed to Assistant Lecturer in 2001 and Assistant Professor by 2006, solidifying his expertise in photoorganic and spectroscopic chemistry. In 2013, he advanced to Associate Professor at Cairo University, where he expanded his research into nanomaterials and computational chemistry. Currently, Prof. Altalbawy holds a professorship at the University of Tabuk in Saudi Arabia, a position he has occupied since 2018. His role there encompasses teaching, mentoring, and leading research initiatives in advanced chemistry topics. Throughout his career, Prof. Altalbawy has not only taught a wide array of chemistry courses but also contributed to numerous research projects with international collaborators, illustrating his commitment to fostering scientific exchange and innovation.

Research Interests

Prof. Altalbawy’s research interests lie at the intersection of organic chemistry, nanotechnology, and computational modeling. His work spans organic synthesis, heterocyclic chemistry, spectroscopic analysis, and the application of nanoparticles in environmental and biomedical fields. In recent years, he has focused on nanostructured materials for drug delivery, with significant contributions in Density Functional Theory (DFT) studies, providing theoretical insights into molecular interactions. Prof. Altalbawy’s exploration of metal-organic frameworks (MOFs) and other novel nanostructures for sensing and catalysis reflects his dedication to developing cutting-edge solutions for complex chemical challenges. Additionally, his research on anti-cancer drug delivery systems and nanosensors underscores his commitment to advancing healthcare through chemistry, positioning him as a key contributor to modern photochemistry and nano-biotechnology.

Research Skills

Prof. Altalbawy is proficient in a wide range of research skills, including advanced spectroscopic techniques, DFT computational modeling, and organic synthesis. He is skilled in the use of software tools like ChemDraw and ISIS for chemical structure visualization and analysis. His expertise in Microsoft Office and internet-based research applications supports his data management and presentation capabilities. Prof. Altalbawy has significant experience with spectroscopic instrumentation, employing techniques such as UV-Vis and FTIR to analyze molecular properties. Additionally, his computational skills enable him to conduct theoretical studies on nanostructured materials, investigating their potential applications in areas such as drug delivery and environmental remediation. His combined proficiency in both experimental and computational methods reflects a versatile approach to tackling interdisciplinary scientific problems.

Awards and Honors

Prof. Altalbawy’s contributions to the field of chemistry have earned him recognition both regionally and internationally. While specific awards are not listed in his CV, his achievements, including numerous high-impact publications in international journals, reflect his stature and influence in the scientific community. His work in advancing photoorganic and nanomaterial chemistry has likely brought him considerable respect among his peers, and his role at University of Tabuk as a professor underscores his academic distinction. Prof. Altalbawy’s collaborations across global research teams are a testament to his expertise and the value his insights bring to multi-disciplinary projects. His career achievements highlight his dedication to advancing knowledge and innovation in chemistry, making him a strong candidate for honors within academic and scientific circles.

Conclusion

Prof. Dr. Farag Mohamed A. Altalbawy’s strong research portfolio, international collaborations, and extensive publication record make him a robust candidate for the Best Researcher Award. His profile is distinguished by a commitment to innovative and relevant research areas in photoorganic chemistry and nanotechnology, which aligns well with the award’s criteria. Adding mentorship and greater diversity in research methods would further strengthen his candidacy, but overall, he demonstrates exceptional qualifications worthy of recognition.

Publication Top Notes

  1. The PDINH decorated NH2-UiO-67 MOF for promoted photocatalytic Cr(VI) reduction: Performance, and mechanism
    • Authors: Suliman, M., Altalbawy, F.M.A., Sur, D., Hamoodah, Z.J., Almoswee, M.
    • Year: 2025
    • Journal: Journal of Molecular Structure, 1322, 140374
  2. An overview of lncRNA NEAT1 contribution in the pathogenesis of female cancers; from diagnosis to therapy resistance
    • Authors: Ibraheem Shelash Al-Hawari, S., Abdalkareem Jasim, S., M. A. Altalbawy, F., Alsaadi, S.B., Hussein Zwamel, A.
    • Year: 2025
    • Journal: Gene, 933, 148975
  3. Incorporation anthracene and Cu to NH2-Zr-UiO-67 metal-organic framework: Introducing the simultaneous selectivity and efficiency in photocatalytic CO2 reduction to ethanol
    • Authors: Saadh, M.J., Mustafa, M.A., Altalbawy, F.M.A., Alam, M.M., Abosaoda, M.K.
    • Year: 2024
    • Journal: Journal of Molecular Structure, 1318, 139329
  4. Exploring green synthesis and characterization of ZIF-8 and recent developments in anti-infective applications
    • Authors: Suliman, M., Altalbawy, F.M.A., Kaur, M., Zwamel, A.H., Abualigah, L.
    • Year: 2024
    • Journal: Inorganic Chemistry Communications, 170, 113333
  5. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression
    • Authors: Jasim, S.A., Farhan, S.H., Ahmad, I., Alsaadi, S.B., Abosaoda, M.K.
    • Year: 2024
    • Journal: Molecular Biology Reports, 51(1), 964
  6. Fe3O4@SiO2-APA-Amide/Imid-NiCl2 as a New Nano-Magnetic Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]benzothiazole Derivatives via MCRs Under Solvent-Free Conditions
    • Authors: Altalbawy, F.M.A., Ballal, S., Chahar, M., Kalyani, T., Alhadrawi, M.
    • Year: 2024
    • Journal: ChemistrySelect, 9(42), e202403810
  7. A theoretical approach on the removal of elemental Cu and Cu (I) ions applying the g-C3N4S, g-C3N4O, g-C3N4N, and g-C3N4 nanosheets
    • Authors: Altalbawy, F.M.A., Mustafa Hameed, S., Rekha, M.M., Ali Mtasher, A., Seed, F.F.
    • Year: 2024
    • Journal: Computational and Theoretical Chemistry, 1241, 114917
  8. Synthesis, characterization, and applications of starch-based nano drug delivery systems for breast cancer therapy: A review
    • Authors: Mei, S., Roopashree, R., Altalbawy, F.M.A., Al-Abdeen, S.H.Z., Alhadrawi, M.
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules, 280, 136058
  9. Harmonizing sustainability and sensing: Exploring green synthesis approaches and sensing advancements in Au-based nanostructures
    • Authors: Roopashree, R., Altalbawy, F.M.A., Krishna Saraswat, S., Warid Maya, R., Alhadrawi, M.
    • Year: 2024
    • Journal: Inorganic Chemistry Communications, 169, 113130
  10. Inhibitors of the mTOR signaling pathway can play an important role in breast cancer immunopathogenesis
    • Authors: Al-Hawary, S.I.S., Altalbawy, F.M.A., Jasim, S.A., Jawad, M.A., Zwamel, A.H.
    • Year: 2024
    • Journal: Cell Biology International, 48(11), 1601–1611