Itamar Willner | Medicinal Chemistry | Excellence in Research Award

Prof. Itamar Willner | Medicinal Chemistry | Excellence in Research Award

Professor from The Hebrew University of Jerusalem, Israel

Professor Itamar Willner is a distinguished Israeli chemist renowned for his pioneering contributions to supramolecular chemistry, nanotechnology, and nanobiotechnology. Born in January 1947, he has been a faculty member at the Hebrew University of Jerusalem since 1981 and was appointed as a full professor in 1986. His research has significantly advanced the understanding and application of molecular self-assembly, DNA nanotechnology, and bio-hybrid systems. With over 890 scientific publications and more than 100,000 citations, Professor Willner is among the most cited chemists globally, reflecting the profound impact of his work on the scientific community. His innovative approaches have led to the development of DNA-based molecular machines, logic gates, and dynamic networks, bridging the gap between chemistry, biology, and materials science. Throughout his career, he has received numerous prestigious awards, including the Israel Prize in Chemistry, the Rothschild Prize, and the EMET Prize, acknowledging his exceptional contributions to science. Professor Willner’s leadership extends beyond research; he has played pivotal roles in various scientific committees and editorial boards, fostering international collaborations and mentoring the next generation of scientists. His work continues to influence diverse fields, from artificial photosynthesis to smart materials, underscoring his status as a leading figure in contemporary chemistry.

Professional Profile

Education

Professor Willner’s academic journey commenced with a B.Sc. in Chemistry and Physics from the Hebrew University of Jerusalem, completed with distinction. He further pursued an M.Sc. in Chemistry at the same institution, again graduating with distinction. In 1978, he earned his Ph.D. in Physical Organic Chemistry from the Hebrew University, presenting a thesis titled “Novel Series of Polycyclic Aromatic Ions: Aromaticity Structure Relationships,” which was approved summa cum laude. Following his doctoral studies, Professor Willner undertook postdoctoral research at the University of California, Berkeley, from 1978 to 1980, working under the mentorship of Professor Melvin Calvin. This period was instrumental in shaping his future research directions, particularly in the realms of photochemistry and molecular electronics. His comprehensive educational background laid a robust foundation for his subsequent groundbreaking work in chemistry, enabling him to integrate principles from various sub-disciplines and pioneer interdisciplinary research approaches. The rigorous training and diverse academic experiences he acquired during his formative years have been pivotal in his development as a leading scientist in the field.

Professional Experience

Professor Willner’s professional career is marked by a series of esteemed academic and research positions. After completing his postdoctoral fellowship at UC Berkeley, he served as a Staff Scientist and Adjunct Assistant Professor at the same institution from 1980 to 1981. In 1981, he returned to the Hebrew University of Jerusalem as a Senior Lecturer in the Institute of Chemistry. His academic progression continued with his promotion to Associate Professor in 1983 and subsequently to Full Professor in 1986, a position he holds to this day. Beyond his teaching and research responsibilities, Professor Willner has held several significant administrative roles, including Head of the Institute of Chemistry and Chairman of the Natural Sciences Division of the Israel Academy of Sciences and Humanities. He has also been an active member of numerous scientific advisory boards and editorial committees, contributing to the advancement of chemical sciences globally. His professional journey reflects a steadfast commitment to scientific excellence, education, and leadership within the academic community.

Research Interests

Professor Willner’s research interests are deeply rooted in the exploration of supramolecular chemistry, nanotechnology, and biomolecular systems. His work focuses on the design and synthesis of functional nanostructures, particularly those involving DNA nanotechnology, nanoenzymes, and stimuli-responsive materials. He has been instrumental in developing DNA-based molecular machines and logic gates, contributing to the field of molecular computing. His research extends to the construction of bio-nano hybrid systems, integrating biomacromolecules with inorganic nanoparticles to create novel catalytic and sensing platforms. Additionally, Professor Willner has investigated artificial photosynthesis, aiming to mimic natural energy conversion processes for sustainable applications. His interdisciplinary approach combines principles from chemistry, biology, and materials science, leading to innovations in drug delivery systems, biosensors, and smart materials. Through his extensive research, he continues to push the boundaries of molecular design and functional material development.

Research Skills

Professor Willner possesses a diverse set of research skills that have enabled him to make significant contributions to the field of chemistry. His expertise includes the synthesis and characterization of supramolecular assemblies, development of DNA-based nanostructures, and fabrication of bio-nano hybrid systems. He is proficient in employing various spectroscopic and electrochemical techniques to analyze the properties and behaviors of complex molecular systems. His skills extend to the design of molecular machines and logic devices, leveraging the unique properties of nucleic acids and proteins. Furthermore, Professor Willner is adept at integrating biological components with inorganic materials to create functional interfaces for sensing and catalytic applications. His ability to navigate and combine multiple scientific disciplines has been crucial in advancing research in nanobiotechnology and molecular electronics. These competencies have not only facilitated his own research endeavors but have also positioned him as a mentor and leader in the scientific community.

Awards and Honors

Throughout his illustrious career, Professor Willner has received numerous awards and honors recognizing his outstanding contributions to science. Notably, he was awarded the Israel Prize in Chemistry in 2002, one of the country’s highest honors. His accolades also include the Rothschild Prize in Chemistry (2008), the EMET Prize in Chemistry (2008), and the Max Planck Research Award for International Cooperation (1998). He has been elected as a Fellow of the American Association for the Advancement of Science (1996) and the Royal Society of Chemistry (2009). His membership in prestigious academies includes the Israel Academy of Sciences and Humanities (2002), the European Academy of Sciences and Arts (2004), and the German National Academy of Sciences Leopoldina (2009). These honors reflect his significant impact on the scientific community and his role in advancing chemical research on a global scale.

Conclusion

Professor Itamar Willner’s career embodies the pinnacle of scientific achievement and innovation. His extensive research in supramolecular chemistry, nanotechnology, and biomolecular systems has not only expanded the frontiers of chemical science but has also paved the way for practical applications in medicine, energy, and materials science. His interdisciplinary approach and ability to integrate complex systems have resulted in groundbreaking developments, such as DNA-based molecular machines and artificial photosynthetic systems. Beyond his research, Professor Willner’s commitment to education and mentorship has cultivated a new generation of scientists, further amplifying his impact. His numerous awards and memberships in esteemed scientific academies underscore the global recognition of his contributions. As a leading figure in contemporary chemistry, Professor Willner continues to inspire and drive innovation, solidifying his legacy as a pioneer and visionary in the scientific community.

Publications Top Notes

  • Title: Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications
    Authors: E. Katz, I. Willner
    Journal: Angewandte Chemie International Edition 43(45), 6042–6108
    Citations: 3189
    Year: 2004

  • Title: Nanoparticle arrays on surfaces for electronic, optical, and sensor applications
    Authors: A.N. Shipway, E. Katz, I. Willner
    Journal: ChemPhysChem 1(1), 18–52
    Citations: 3175
    Year: 2000

  • Title: Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA‐sensors, and enzyme biosensors
    Authors: E. Katz, I. Willner
    Journal: Electroanalysis
    Citations: 1648
    Year: 2003

  • Title: “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle
    Authors: Y. Xiao, F. Patolsky, E. Katz, J.F. Hainfeld, I. Willner
    Journal: Science 299(5614), 1877–1881
    Citations: 1520
    Year: 2003

  • Title: Diverse applications of nanomedicine
    Authors: B. Pelaz, C. Alexiou, R.A. Alvarez-Puebla, F. Alves, A.M. Andrews, S. Ashraf, …
    Journal: ACS Nano 11(3), 2313–2381
    Citations: 1381
    Year: 2017

  • Title: Integration of layered redox proteins and conductive supports for bioelectronic applications
    Authors: I. Willner, E. Katz
    Journal: Angewandte Chemie International Edition 39(7), 1180–1218
    Citations: 1309
    Year: 2000

  • Title: Biomolecule‐functionalized carbon nanotubes: applications in nanobioelectronics
    Authors: E. Katz, I. Willner
    Journal: ChemPhysChem 5(8), 1084–1104
    Citations: 1089
    Year: 2004

  • Title: Semiconductor quantum dots for bioanalysis
    Authors: R. Gill, M. Zayats, I. Willner
    Journal: Angewandte Chemie International Edition 47(40), 7602–7625
    Citations: 1026
    Year: 2008

  • Title: Electronic aptamer‐based sensors
    Authors: I. Willner, M. Zayats
    Journal: Angewandte Chemie International Edition 46(34), 6408–6418
    Citations: 912
    Year: 2007

  • Title: Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles
    Authors: E. Katz, I. Willner, J. Wang
    Journal: Electroanalysis
    Citations: 912
    Year: 2004

Akbar Heydari | Chemistry | Best Researcher Award

Prof. Akbar Heydari | Chemistry | Best Researcher Award

corresponding author from Tarbiat Modares University, Iran .

Professor Akbar Heydari is a distinguished academic in organic chemistry at Tarbiat Modares University, Tehran, Iran. He earned his B.Sc. in Chemistry from Kharazmi University (1987), M.Sc. from the University of Tehran (1989), and Ph.D. from Justus Liebig University, Giessen, Germany (1994). Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University. His research focuses on the synthesis of organic and organometallic catalysts, nanochemistry, and the development of green catalytic systems. He has received prestigious awards from the Volkswagen Stiftung, DAAD Stiftung, and Alexander von Humboldt Stiftung, reflecting his significant contributions to the field.

Professional Profile

Education

Professor Heydari completed his B.Sc. in Chemistry at Kharazmi University (1987), followed by an M.Sc. in Chemistry from the University of Tehran (1989). He pursued his Ph.D. at Justus Liebig University, Giessen, Germany, graduating in 1994 with a dissertation on “LiClO₄-Diethylether als Reaktionsmedium in der organischen Chemie.” His doctoral research focused on the use of lithium perchlorate in diethyl ether as a reaction medium in organic chemistry. Since 1994, he has been a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, where he has contributed to both undergraduate and graduate education, supervising numerous theses and fostering a research-driven academic environment.

Professional Experience

Since 1994, Professor Heydari has served as a faculty member in the Department of Organic Chemistry at Tarbiat Modares University, Tehran, Iran. His academic career encompasses teaching undergraduate and graduate courses in organic chemistry, industrial organic chemistry, and the synthesis of organic materials. He has supervised numerous M.Sc. and Ph.D. students, guiding research projects that explore sustainable and efficient catalytic systems. His professional experience extends to collaborative research with international institutions, contributing to advancements in nanocatalysis, green chemistry, and the development of novel catalytic processes. His work has led to the publication of over 200 research articles, reflecting his extensive experience and commitment to advancing the field of organic chemistry.

Research Interests

Professor Heydari’s research primarily focuses on the development of green and sustainable catalytic systems in organic chemistry. He specializes in the synthesis of organic and organometallic catalysts, with an emphasis on nanochemistry and the application of deep eutectic solvents. His work involves the design of magnetic nanocatalysts and metal-organic frameworks (MOFs) for various reactions, including oxidative amidation, carbon-carbon bond formation, and functionalization of organic compounds. He also investigates the use of ionic liquids and recyclable catalysts in one-pot synthesis reactions. Through his interdisciplinary approach, Professor Heydari aims to address environmental challenges in chemical processes by developing efficient, recyclable, and sustainable catalytic systems.

Research Skills

Professor Heydari possesses advanced expertise in designing and synthesizing organic and organometallic catalysts, with a strong emphasis on nanochemistry. He is proficient in developing green catalytic systems, utilizing deep eutectic solvents, and employing sustainable methodologies for organic synthesis. His research integrates various techniques, including molecular docking and density functional theory (DFT) studies, to understand reaction mechanisms and optimize catalytic processes. Additionally, he has experience in the synthesis and characterization of metal-organic frameworks (MOFs) and magnetic nanocatalysts, applying them in diverse reactions such as oxidative amidation and carbon-carbon bond formation. His interdisciplinary approach combines theoretical and practical aspects of chemistry to address environmental and efficiency challenges in catalysis.

Awards and Honors

Professor Heydari has been recognized with several prestigious awards throughout his career. He received the Research Award from the Volkswagen Stiftung, acknowledging his significant contributions to chemical research. Additionally, he was honored by the DAAD Stiftung, reflecting his excellence in academic and research endeavors. The Alexander von Humboldt Stiftung also recognized his work, underscoring his international impact in the field of organic chemistry. These accolades highlight his dedication to advancing chemical sciences and his commitment to sustainable and innovative research practices. His achievements have established him as a leading figure in the development of green catalytic systems and nanochemistry.

Conclusion

Suitable for Nomination: YES ✅
Dr. Heydari meets and exceeds several core criteria for the Research for Best Researcher Award, particularly in:

  • Originality,

  • Publication quality,

  • Societal relevance,

  • Alignment with sustainability goals.

Publications Top Notes

  • Title: Magnetic N-doped CNT stabilized Cu₂O as a catalyst for N-arylation of nitriles and aryl halides in a biocompatible deep eutectic solvent
    Authors: M. Alizadeh, A. Salamatmanesh, M.J. Nejad, A. Heydari
    Journal: RSC Advances
    Year: 2025
    Volume: 15
    Issue: 11
    Pages: 8195–8206
    Cited by: Not yet citedModares University

  • Title: Visible Light-Mediated Four-Component Synthesis of Polyfunctionalized Pyrroles Using Eosin-Y via the HAT Process
    Authors: F. Ahmadi, M. Shariatipour, M.J. Nejad, A. Heydari
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2024
    Volume: 457
    Article No.: 115863
    Cited by: 1

  • Title: Magnetic Metal-Organic Framework (MOF) as an Effective Photocatalyst for Synthesis of Quinazolinones under Oxidation and Visible-Light Conditions
    Authors: M. Alizadeh, M.J. Nejad, A. Heydari
    Journal: Research on Chemical Intermediates
    Year: 2024
    Volume: 50
    Issue: 9
    Pages: 4085–4104
    Cited by: 1

  • Title: Oxidative Amidation of Aldehydes with Amine in a Mixture of Choline Chloride and Aluminium Nitrate as Oxidant and Solvent
    Authors: M. Jafari, A. Darvishi, A. Heydari
    Journal: Tetrahedron
    Year: 2024
    Volume: 158
    Article No.: 133987
    Cited by: 1Ecopersia+2AD Scientific Index+2Modares University+2

  • Title: Modified Nano Magnetic Fe₂O₃-MgO as a High Active Multifunctional Heterogeneous Catalyst for Environmentally Beneficial Carbon-Carbon Synthesis
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Determination of Biodiesel Yield and Color After Purification Process Using Deep Eutectic Solvent (Choline Chloride: Ethylene Glycol)
    Authors: M. Khanian-Najaf-Abadi, B. Ghobadian, M. Dehghani-Soufi, A. Heydari
    Journal: Biomass Conversion and Biorefinery
    Year: 2024
    Volume: 14
    Issue: 7
    Pages: 8469–8481
    Cited by: 3

  • Title: Modified Nano Magnetic Fe
    Authors: E. Kamali, F. Dreekvandy, A. Mohammadkhani, A. Heydari
    Journal: BMC Chemistry
    Year: 2024
    Volume: 18
    Issue: 1
    Article No.: 78
    Cited by: 3

  • Title: Synthesis and Characterization of a Green and Recyclable Arginine-Based Palladium/CoFe₂O₄ Nanomagnetic Catalyst for Efficient Cyanation of Aryl Halides
    Authors: S. HajimohamadzadehTorkambour, M.J. Nejad, F. Pazoki, F. Karimi, A. Heydari
    Journal: RSC Advances
    Year: 2024
    Volume: 14
    Issue: 20
    Pages: 14139–14151
    Cited by: 5

  • Title: Synthesis of a New 1,2,3-Triazoles Scaffold Using a Heterogeneous Multifunctional Copper Photocatalyst for In Vitro Investigation via Click Reaction
    Authors: A. Mohammadkhani, S. Hosseini, S.A. Pourmousavi, A. Heydari, M. Mahdavi
    Journal: Catalysis Science & Technology
    Year: 2024
    Volume: 14
    Issue: 11
    Pages: 3086–3097
    Cited by: Not yet citedModares University+1Modares University+1

  • Title: Basic Dimensions Affecting the Defense of Middle East Countries
    Authors: M. Zangoei Dovom, M. Janparvar, A. Heydari, A. Mohamadpour

Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Gen-Qiang Chen | Organic Chemistry | Best Researcher Award

Associate Professor from Southern University of Science and Technology, China

Gen-Qiang Chen is a distinguished researcher and Professor at the Shenzhen Grubbs Institute, Southern University of Science and Technology. Renowned for his expertise in asymmetric catalysis, ligand design, and total synthesis of complex molecules, he has made substantial contributions to both fundamental research and industrial applications. His work has been published extensively in prestigious journals, including Nature Chemistry, Nature Communications, Journal of the American Chemical Society, Angewandte Chemie, and Science Advances. Chen’s research achievements have directly contributed to significant industrial advancements, such as the asymmetric synthesis of Sacubitril, a drug for heart failure treatment, which has led to the production of over 20 tons of intermediates and generated approximately 40 million yuan in industrial output. Recognized nationally, he has received competitive grants, awards, and honors, including the Guangdong Outstanding Youth Fund and the Shenzhen Natural Science First Prize. His work has been highlighted by the National Natural Science Foundation of China and featured by international research platforms like Synfacts. Chen’s balanced approach, integrating rigorous academic inquiry with practical, scalable applications, positions him as a leader in modern organic chemistry. He is actively engaged in reviewing for top journals, contributing to the scientific community’s advancement and maintaining high research standards.

Professional Profile

Education

Gen-Qiang Chen’s academic journey reflects a continuous pursuit of excellence in organic chemistry. He earned his Bachelor’s degree from Lanzhou University, one of China’s most respected institutions, where he developed a strong foundation in chemical sciences. Driven by a passion for advanced research, he pursued a PhD at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, completing his doctorate in 2012. His doctoral work focused on the development of new catalytic systems and the synthesis of bioactive molecules, setting the stage for his future research trajectory. Following his PhD, Chen undertook postdoctoral research at the prestigious California Institute of Technology (Caltech) in the United States. There, he worked under the mentorship of renowned chemists, expanding his expertise in asymmetric catalysis and gaining exposure to cutting-edge research methodologies and international collaboration. This blend of top-tier Chinese and international education provided Chen with a robust theoretical and experimental foundation, allowing him to bridge Eastern and Western research traditions. His educational path has not only equipped him with deep technical knowledge but also shaped his scientific perspective, enabling him to tackle complex research problems with innovative solutions and to mentor the next generation of scientists.

Professional Experience

Gen-Qiang Chen currently holds a professorship at the Shenzhen Grubbs Institute, Southern University of Science and Technology, where he leads a dynamic research group focused on asymmetric catalysis, ligand design, and total synthesis. Prior to this role, Chen gained valuable international experience during his postdoctoral work at Caltech, where he honed his skills in advanced catalytic methodologies and expanded his professional network. Upon returning to China, Chen took on faculty positions that allowed him to establish his independent research program, attracting competitive funding and assembling a talented team of researchers and students. Over the years, Chen has built strong collaborations with both academic and industrial partners, integrating fundamental research with real-world applications. His group has successfully designed novel chiral ligands, such as O-SDP, which have been adopted in industrial settings for the synthesis of important pharmaceuticals. Chen is also deeply involved in academic service, acting as a reviewer for leading journals and contributing to the organization of scientific conferences and workshops. His professional experience reflects a well-rounded combination of academic leadership, international collaboration, industrial engagement, and community service, marking him as an influential figure in the field of organic chemistry.

Research Interests

Gen-Qiang Chen’s research interests center on the design and development of new catalytic systems, particularly in asymmetric catalysis, which enables the selective production of chiral molecules. His work focuses on creating novel chiral ligands and catalysts that can surpass existing commercial systems in terms of efficiency, selectivity, and scalability. A major area of interest is the application of these catalysts in complex molecule synthesis, including the total synthesis of natural products and pharmaceuticals such as prostaglandins and Sacubitril. Chen is also keenly interested in understanding catalytic mechanisms at a fundamental level, using both experimental and computational tools to uncover the principles driving selectivity and reactivity. His research bridges the gap between fundamental chemistry and industrial application, ensuring that discoveries in the lab can be translated into real-world solutions. Additionally, Chen explores the development of highly selective catalysts for challenging transformations, such as asymmetric hydroformylation, which has broad implications for fine chemical production and material science. His work contributes to the advancement of green chemistry by aiming for more sustainable, efficient, and cost-effective processes, aligning with global efforts to reduce waste and improve chemical manufacturing practices.

Research Skills

Gen-Qiang Chen possesses a comprehensive set of research skills that span synthetic organic chemistry, asymmetric catalysis, ligand design, and mechanistic studies. He is highly skilled in designing and synthesizing chiral ligands and catalysts, demonstrating expertise in optimizing reaction conditions to achieve high selectivity and efficiency. Chen is adept at conducting total synthesis projects, including multi-step syntheses of complex natural products and pharmaceuticals, requiring advanced planning, problem-solving, and analytical techniques. He is proficient in using modern spectroscopic and chromatographic methods, such as NMR, HPLC, and mass spectrometry, to characterize reaction intermediates and products with precision. Additionally, Chen integrates computational chemistry approaches to investigate catalytic mechanisms, allowing his team to understand the molecular-level details that drive reactivity and selectivity. He has strong project management skills, overseeing multiple research projects simultaneously and guiding a team of graduate students and postdoctoral researchers. Chen’s ability to translate laboratory discoveries into industrial applications demonstrates his practical know-how and innovation. His experience in drafting patents and publishing high-impact research further reflects his skill in communicating scientific advances to both academic and industrial audiences, making him a versatile and impactful researcher.

Awards and Honors

Gen-Qiang Chen has received numerous prestigious awards and honors in recognition of his outstanding contributions to organic chemistry and catalysis research. Notably, he has been awarded the Guangdong Outstanding Youth Fund, a highly competitive grant that supports exceptional young scientists in advancing innovative research projects. He has also received the Shenzhen Natural Science First Prize, which acknowledges his groundbreaking work in developing chiral ligands and asymmetric catalytic methods with significant industrial applications. Chen’s research achievements have been repeatedly highlighted by the National Natural Science Foundation of China, underscoring his national prominence. Internationally, his work has been featured multiple times by Synfacts and Organic Chemistry Highlights, reflecting the global relevance and impact of his research. Additionally, Chen holds several patents for novel catalytic systems, further demonstrating the practical significance of his innovations. His role as a frequent reviewer for leading international journals and his participation in high-profile conferences and workshops attest to his strong standing in the scientific community. These recognitions not only celebrate his past achievements but also signal his potential to continue driving innovation and excellence in the field of asymmetric catalysis.

Conclusion

In conclusion, Gen-Qiang Chen exemplifies the qualities of a leading researcher in modern organic chemistry, combining deep scientific insight with practical innovation. His prolific publication record, cutting-edge catalytic systems, and impactful industrial collaborations highlight his ability to translate fundamental discoveries into real-world applications. Chen’s commitment to excellence is evident not only in his research output but also in his mentorship of young scientists, his service to the academic community, and his contribution to advancing chemical manufacturing processes. Recognized nationally and internationally, his achievements have positioned him as a rising star in the field, with the potential to influence the direction of asymmetric catalysis and ligand design for years to come. Chen’s balanced focus on both fundamental science and industrial relevance aligns with global priorities for sustainable and efficient chemical production. As he continues to expand his research portfolio and build international collaborations, his work will undoubtedly play a central role in shaping the future of organic synthesis. Gen-Qiang Chen’s exceptional track record and ongoing innovation make him a highly deserving candidate for the Best Researcher Award, reflecting his significant contributions to science and society.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

 

 

Prasenjit Das | Chemistry | Best Researcher Award

Dr. Prasenjit Das | Chemistry | Best Researcher Award

Postdoc Researcher from Technische Universität Berlin, Germany

Dr. Prasenjit Das is an accomplished materials scientist with a focus on the design and synthesis of advanced materials for energy, sustainability, and environmental applications. His research primarily concentrates on the development of porous materials, such as covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for innovative solutions in energy storage, catalysis, and environmental remediation. With an impressive academic and professional background, Dr. Das has collaborated with leading global institutions and secured prestigious fellowships like the Alexander von Humboldt Fellowship. His contributions to the scientific community are marked by his ability to manage high-impact research projects, mentor students, and publish in top-tier journals. Known for his leadership in research and passion for education, Dr. Das is an emerging thought leader in advanced material science, with a vision for advancing sustainability through innovation. He continues to push the frontiers of materials research while nurturing the next generation of scientists.

Professional Profile

Education

Dr. Prasenjit Das holds an academic foundation that blends both theoretical knowledge and practical expertise. He obtained his Ph.D. in Chemistry from the University of Mumbai, where his dissertation focused on the synthesis and characterization of novel porous materials for catalytic and energy applications. During his postdoctoral work at the University of Pittsburgh, he expanded his research on the use of metal-organic frameworks (MOFs) in clean energy applications, particularly in CO2 capture and hydrogen storage. His educational journey is a reflection of his commitment to advancing the field of material science, combining deep academic rigor with practical innovation. This education has provided him with the necessary tools to contribute significantly to the scientific community and continue to lead in his area of expertise.

Professional Experience

Dr. Prasenjit Das has a diverse and extensive professional background, highlighted by his postdoctoral research at the Technical University of Berlin and the University of Pittsburgh, where he contributed to groundbreaking work in advanced materials and sustainability. His research expertise extends to catalysis, energy conversion, and environmental sustainability, focusing on the synthesis of novel materials like COFs and MOFs for critical applications. Dr. Das has also been an integral member of several internationally recognized research teams, overseeing research projects funded by prominent institutions such as DFG and UnisysCat. His professional roles have consistently demonstrated his leadership and ability to work collaboratively across disciplines. Dr. Das is currently leading cutting-edge projects that are aimed at addressing some of the most pressing global challenges in energy and sustainability.

Research Interests

Dr. Prasenjit Das’s research interests are primarily focused on developing advanced materials for energy storage, conversion, and environmental sustainability. He specializes in the synthesis of porous materials, including covalent organic frameworks (COFs) and metal-organic frameworks (MOFs), for use in clean energy applications such as CO2 capture, hydrogen storage, and photocatalysis. His work explores the intersection of material science, catalysis, and sustainability, aiming to create efficient and scalable solutions for energy-related challenges. Additionally, Dr. Das has a keen interest in the functionalization of porous materials for water splitting, renewable energy generation, and environmental protection. His research aims to bridge the gap between fundamental material science and its practical applications in addressing global issues such as climate change and resource depletion.

Research Skills

Dr. Prasenjit Das possesses a broad and diverse set of research skills that have allowed him to contribute significantly to the field of materials science. His expertise spans the synthesis and characterization of advanced porous materials, including COFs and MOFs, with a focus on their applications in energy storage, catalysis, and environmental sustainability. He is proficient in a wide array of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR) spectroscopy, which he employs to thoroughly characterize and understand the properties of novel materials. Additionally, Dr. Das is skilled in computational modeling and simulation, which aids in the design and prediction of material behaviors. His strong leadership, mentoring abilities, and collaborative approach to research make him an invaluable asset to any research team.

Awards and Honors

Dr. Prasenjit Das has received several prestigious awards and honors throughout his career, recognizing his outstanding contributions to materials science and sustainability. Most notably, he was awarded the highly competitive Alexander von Humboldt Fellowship, which enabled him to further his research in advanced materials at leading international institutions. Additionally, his work has been recognized with several research grants from prominent funding bodies, including the Deutsche Forschungsgemeinschaft (DFG) and UnisysCat. Dr. Das has also been invited to present his research at numerous international conferences, further solidifying his position as an emerging leader in his field. His ability to secure funding and his collaborative efforts with global institutions highlight his potential for further recognition and success in the scientific community.

Conclusion

In conclusion, Dr. Prasenjit Das stands out as an innovative researcher with significant contributions to materials science and sustainability. His focus on the development of advanced porous materials, including COFs and MOFs, for energy and environmental applications, positions him as a leader in his field. Dr. Das’s ability to secure competitive fellowships, manage impactful research projects, and mentor the next generation of scientists highlights his exceptional leadership qualities. His work holds the potential to address pressing global challenges such as climate change and energy sustainability, making him a valuable asset to the scientific community. As he continues to make strides in his research, Dr. Das’s career is poised for even greater accomplishments in the coming years.

Publications Top Notes

  • Title: Nano‐Scale Anti‐Cancer Drug Delivery by a Zn‐Based Metal Organic Framework Carrier
    Authors: P. Das, G. Chakraborty, J. Kaur, S.K. Mandal
    Journal: Small, 2408810
    Year: 2025

  • Title: Decoding Dual‐Functionality in N‐doped Defective Carbon: Unveiling Active Sites for Bifunctional Oxygen Electrocatalysis
    Authors: S. Bhardwaj, A. Pathak, S.K. Das, P. Das, R. Thapa, R.S. Dey
    Journal: Small, 2411035
    Year: 2025

  • Title: Synthesis of Doped g‐C₃N₄ Photonic Crystals for Enhanced Light‐Driven Hydrogen Production from Catalytic Water‐Splitting
    Authors: S.Y. Djoko T., S. Kwon, P. Das, V. Weigelt, W. Tahir, B. Radhakrishnan, …
    Journal: Advanced Energy and Sustainability Research 5 (12), 2400181
    Year: 2024

  • Title: Two-Dimensional Covalent Organic Frameworks: Structural Insights across Different Length Scales and Their Impact on Photocatalytic Efficiency
    Authors: I.E. Khalil, P. Das, A. Thomas
    Journal: Accounts of Chemical Research 57 (21), 3138–3150
    Year: 2024
    Citations: 9

  • Title: Hierarchical Porous Covalent Organic Frameworks: The Influence of Additional Macropores on Photocatalytic Hydrogen Evolution and Hydrogen Peroxide Production
    Authors: I.E. Khalil, P. Das, H. Küçükkeçeci, V. Dippold, J. Rabeah, W. Tahir, …
    Journal: Chemistry of Materials 36 (17), 8330–8337
    Year: 2024
    Citations: 8

  • Title: The Effect of Pore Functionality in Multicomponent Covalent Organic Frameworks on Stable Long‐Term Photocatalytic H₂ Production
    Authors: P. Das, G. Chakraborty, J. Yang, J. Roeser, H. Küçükkeçeci, A.D. Nguyen, …
    Journal: Advanced Energy Materials, 2501193
    Year: 2024
    Citations: 1

  • Title: Heteropolyaromatic Covalent Organic Frameworks via One-Pot Multicomponent Reactions
    Authors: P. Das, G. Chakraborty, N. Friese, J. Roeser, C. Prinz, F. Emmerling, …
    Journal: Journal of the American Chemical Society 146 (25), 17131–17139
    Year: 2024
    Citations: 9

  • Title: Reversible Solvent Interactions with UiO-67 Metal–Organic Frameworks
    Authors: E.B. Isabella Goodenough, M.C. Boyanich, R.P. McDonnell, L. McDonnell, …
    Journal: The Journal of Chemical Physics 160 (4)
    Year: 2024
    Citations: 3

  • Title: Zeolitic MOFs Get a Facelift
    Authors: N.L. Rosi, P. Das
    Journal: Nature Synthesis 3 (1), 5–6
    Year: 2024
    Citations: 1

  • Title: Polyoxometalate (POM) Boosting the Light-Harvesting Ability of Graphitic Carbon Nitride for Efficient Photocatalytic Hydrogen Production
    Authors: E. Njoyim, A.D. Nguyen, J. Yang, H. Küçükkeçeci, E.M. Kutorglo, …
    Journal: Catalysis Science & Technology 14 (8), 2114–2129
    Year: 2024
    Citations: 3

Danning Xing | Chemistry | Best Researcher Award

Dr. Danning Xing | Chemistry | Best Researcher Award

Associate Researcher from Shandong Institute of Advanced Technology, China

Dr. Danning Xing is an associate researcher at the Shandong Institute of Advanced Technology. She has a strong academic background, having earned her Ph.D. from the State Key Laboratory of Crystal Materials at Shandong University. Her research primarily focuses on the structural design and development of π-d conjugated metal-organic frameworks (MOFs) for applications in photocatalysis and electrocatalysis, which have important implications for sustainable energy and environmental protection. Dr. Xing has published 17 SCI-indexed papers in renowned journals such as Advanced Materials, Small, and Applied Catalysis B: Environmental, and holds one authorized patent. Her research has attracted increasing attention, evidenced by a citation index of 649. Dr. Xing also collaborates with leading scholars in the field, such as Prof. Biaobiao Huang, further expanding her research network and impact. She has received funding from prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Her continuous pursuit of innovative approaches positions her as a rising star in materials science.

Professional Profile

Education

Dr. Danning Xing completed her Bachelor’s degree in Chemistry from Shandong University, where she laid the foundation for her future research career. Following her undergraduate studies, she pursued a Ph.D. at the State Key Laboratory of Crystal Materials at Shandong University, where she focused on advanced materials science, specifically in the field of metal-organic frameworks (MOFs). Throughout her doctoral studies, she honed her skills in material design, catalysis, and structural characterization, preparing her for a career in cutting-edge research. Her educational journey has provided her with a deep understanding of chemistry, material science, and engineering, which she applies in her current research endeavors.

Professional Experience

Dr. Danning Xing’s professional career is marked by her transition from academia to research in applied science. After completing her doctoral studies, she took on the role of associate researcher at the Shandong Institute of Advanced Technology, where she continues to advance her work in MOF-based photocatalysis and electrocatalysis. She has been actively involved in securing research funding, including two major grants from the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Dr. Xing’s collaborations with notable scholars, such as Prof. Biaobiao Huang, highlight her ability to engage in high-level research projects and establish connections with leading figures in her field. Her work in research positions has enabled her to make significant strides in both academic and practical applications of materials science.

Research Interests

Dr. Danning Xing’s primary research interests lie in the design, synthesis, and application of π-d conjugated metal-organic frameworks (MOFs) for energy-related applications, particularly photocatalysis, electrocatalysis, and water splitting. Her work aims to address the challenges posed by traditional MOFs, such as poor conductivity and limited stability. She is focused on developing MOFs with enhanced electronic properties, stability, and efficiency. By incorporating small-molecule intercalation and hydrogen bond reinforcement, Dr. Xing has created MOFs with exceptional catalytic activity and long-lasting stability, making them promising candidates for sustainable energy production and environmental applications. Additionally, her work in optimizing electronic coupling through the construction of bimetallic sites represents a significant step forward in enhancing the performance of MOFs in electrocatalysis.

Research Skills

Dr. Danning Xing possesses a comprehensive set of research skills that have supported her successful career in materials science. She is skilled in the design and synthesis of advanced materials, particularly metal-organic frameworks (MOFs), and has a strong command of techniques for characterizing these materials at the molecular level. Her expertise includes the use of various analytical tools to measure the physical and chemical properties of materials, such as X-ray diffraction, spectroscopy, and electron microscopy. In addition to her technical expertise, Dr. Xing excels in experimental design, data analysis, and problem-solving. Her ability to collaborate with leading researchers and secure research funding further demonstrates her capability in conducting high-impact scientific research.

Awards and Honors

Dr. Danning Xing has earned recognition for her contributions to materials science and catalysis, particularly for her innovative work in π-d conjugated metal-organic frameworks (MOFs). Her research has been supported by prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China, highlighting her potential as a rising researcher. Additionally, her work has been published in top-tier scientific journals, such as Advanced Materials, Small, and Applied Catalysis B: Environmental, which speaks to the impact of her research. While she has yet to receive specific academic awards or honors, her growing citation index and the success of her collaborations demonstrate her increasing recognition in the research community.

Conclusion

Dr. Danning Xing is an emerging researcher with a promising future in the field of materials science, particularly in the design of advanced metal-organic frameworks (MOFs) for energy applications. Her innovative contributions to photocatalysis, electrocatalysis, and water splitting have the potential to significantly impact sustainable energy production and environmental protection. With 17 publications in high-impact journals, one authorized patent, and ongoing collaborations with renowned scholars, Dr. Xing is steadily making her mark in the research community. Her research, supported by competitive funding, demonstrates her capability and ambition to tackle pressing challenges in catalysis and materials science. As her career progresses, Dr. Xing is likely to receive more recognition for her groundbreaking work, making her an excellent candidate for future awards.

Publications Top Notes

  • Platinum modification of metallic cobalt defect sites for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural
    Authors: Haoyu Zhan, Baixue Cheng, Yankun Lu, Tao Wang, Peng Zhou
    Journal: Journal of Energy Chemistry
    Year: 2025
    Citations: 7

KUN LUO | Energy Chemistry | Best Researcher Award

Prof. Dr. KUN LUO | Energy Chemistry | Best Researcher Award

Professor from Tianjin University of Technology, China

Prof. Dr. Kun Luo is a distinguished researcher and academic in the field of energy materials and inorganic chemistry, with a robust background in materials science and engineering. With over two decades of experience in research and academia, he has made significant contributions to the advancement of battery technologies and sustainable energy materials. Dr. Luo is currently a professor at Tianjin University of Technology in China, where he leads innovative research in energy storage and materials synthesis. He completed his PhD in Inorganic Chemistry at the University of Oxford and has held prominent research positions at the University of St Andrews and Oxford, reflecting a solid international academic background. His research has been published in prestigious journals such as Nature Chemistry, Nano Letters, ACS Sustainable Chemistry & Engineering, and Journal of the American Chemical Society, demonstrating a high impact and relevance in the scientific community. Prof. Luo’s work focuses on novel electrode materials, redox chemistry, and the development of efficient, durable battery systems. His contributions are not only academic but also highly practical, supporting the global transition to sustainable energy. With a rich portfolio of publications and consistent research productivity, Prof. Luo is an exemplary candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Dr. Kun Luo has a distinguished educational background that has laid a strong foundation for his scientific career. He began his academic journey at Zhejiang University, China, where he earned both his Bachelor’s and Master’s degrees in Materials Science and Engineering between 2003 and 2010. These formative years provided him with extensive knowledge of materials synthesis, characterization, and engineering principles. Recognized for his academic excellence, he pursued doctoral studies at the prestigious University of Oxford, where he received his PhD in Inorganic Chemistry in 2013. During his PhD, he focused on the synthesis and structural characterization of complex transition metal oxides, which would later become a cornerstone of his research expertise in energy materials. The combination of his background in materials engineering and deep chemical insight allowed him to approach energy problems with a unique interdisciplinary perspective. His education at institutions known for research rigor and innovation prepared him to tackle advanced scientific problems and train future generations of researchers. The academic diversity and international exposure in both Chinese and British universities gave him a global outlook and an adaptable approach to collaborative research and teaching, making his educational profile both versatile and elite.

Professional Experience

Prof. Dr. Kun Luo has accumulated an impressive array of professional experiences across some of the world’s leading academic institutions. Following his PhD at the University of Oxford, he began his postdoctoral research at the University of St Andrews from 2013 to 2014, where he deepened his expertise in solid-state chemistry and advanced materials. He then returned to Oxford as a postdoctoral researcher from 2014 to 2017, contributing to cutting-edge projects on battery materials and redox chemistry. In 2018, he assumed a professorial role at Nankai University in Tianjin, China, where he led research in inorganic chemistry until 2022. During this period, his research group focused on developing high-performance electrode materials and exploring the fundamental science behind electrochemical energy storage. In 2022, he joined Tianjin University of Technology as a full professor in the School of Materials Science and Engineering. Throughout his career, Prof. Luo has demonstrated a consistent trajectory of advancement, reflecting both his research excellence and leadership capabilities. His academic appointments have allowed him to secure substantial research funding, supervise graduate students, and collaborate with global scholars. These roles underscore his commitment to both research and education, firmly establishing him as a leader in the field of energy materials.

Research Interests

Prof. Dr. Kun Luo’s research interests lie at the intersection of energy storage, inorganic chemistry, and materials engineering. His primary focus is on the development and optimization of advanced energy materials, particularly for battery technologies. He is deeply engaged in designing novel electrode materials, such as lithium-ion and sodium-ion battery components, which exhibit superior capacity, stability, and charge-discharge performance. His work explores solid-state reactions, redox mechanisms, and structural evolution during electrochemical cycling. He also investigates the role of oxygen and anion redox processes in transition metal oxide electrodes to improve energy density and safety. Another vital area of interest is the integration of sustainable practices into energy materials design, such as using abundant and environmentally benign elements. Prof. Luo’s research extends to hydrogen storage materials, where he examines reaction kinetics and thermodynamics to improve storage efficiency. His interdisciplinary approach blends chemistry, materials science, and engineering, enabling practical applications in renewable energy and sustainable technology development. By addressing both theoretical and applied challenges, his research contributes significantly to global efforts toward clean energy solutions. His work is at the forefront of next-generation battery technologies, making his research highly relevant for industries aiming to revolutionize portable and large-scale energy systems.

Research Skills

Prof. Dr. Kun Luo possesses a wide array of advanced research skills that enable him to conduct cutting-edge investigations in energy materials and inorganic chemistry. He is proficient in the synthesis of complex oxide materials, employing methods such as solid-state reactions, hydrothermal synthesis, and topochemical modifications. His expertise extends to structural characterization using techniques like X-ray diffraction (XRD), neutron diffraction, transmission electron microscopy (TEM), and pair distribution function (PDF) analysis, allowing precise determination of crystallographic and local atomic structures. Dr. Luo is also adept in electrochemical characterization, including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy (EIS), which he uses to assess battery performance and reaction mechanisms. He is highly experienced in analyzing redox processes, particularly oxygen redox activity, and understanding charge compensation phenomena in transition metal oxides. Furthermore, his familiarity with computational modeling and thermodynamic analysis enhances his ability to predict and explain material behavior under various conditions. His interdisciplinary skill set bridges chemistry, materials science, and engineering, enabling him to tackle complex challenges in sustainable energy storage. These skills not only underscore his scientific depth but also his adaptability to evolving research frontiers, reinforcing his status as a top-tier researcher in energy materials.

Awards and Honors

While Prof. Dr. Kun Luo’s curriculum vitae does not explicitly list awards and honors, his scholarly impact and publication record strongly suggest a career marked by distinction and recognition in the scientific community. His research has been featured in some of the most prestigious and high-impact journals in materials science and chemistry, such as Nature Chemistry, Nano Letters, Journal of the American Chemical Society, and ACS Sustainable Chemistry & Engineering. The consistent publication of impactful work over the years highlights the academic community’s acknowledgment of his research quality and relevance. Moreover, he has served as a peer reviewer for reputable journals, including ACS Applied Energy Materials, further reflecting his standing as a trusted expert in his field. His appointments at globally respected institutions like the University of Oxford and Nankai University also signify academic recognition and trust in his abilities. Although not explicitly detailed, it is reasonable to infer that he has been the recipient of internal and collaborative research funding, enabling him to lead and execute high-level projects. These forms of implicit recognition, combined with his citation impact and leadership roles, indicate that Prof. Luo is highly esteemed and likely to be honored further as his research continues to influence the energy materials field.

Conclusion

Prof. Dr. Kun Luo exemplifies excellence in research, academic leadership, and scientific innovation. With a robust educational background, extensive professional experience at top-tier institutions, and a prolific research portfolio, he stands out as a leading figure in the field of energy materials. His pioneering contributions to battery materials, inorganic chemistry, and sustainable energy technologies have advanced both theoretical understanding and real-world applications. Dr. Luo’s interdisciplinary approach, integrating chemistry and engineering, demonstrates his capacity to address pressing global challenges such as clean energy storage. His research not only contributes to academic progress but also holds significant potential for industrial and environmental impact. Furthermore, his mentoring of young scientists and involvement in peer review activities underline his commitment to the advancement of science and education. Although his formal accolades may not be extensively documented, his publication history and professional trajectory clearly establish him as a thought leader in his domain. Given his consistent research output, global academic involvement, and deep technical expertise, Prof. Dr. Kun Luo is an outstanding candidate for the Best Researcher Award. His profile embodies the values of innovation, integrity, and excellence that such an honor is intended to celebrate.

Publications Top Notes

  • Title: Suppressing staircase-like electrochemical profile induced by P–O transition by solid-solution reaction with continuous structural evolution in layered Na-ion battery cathode
    Authors: Kun Luo, Ming Chen, Mengdan Tian, Wenhui Li, Yang Jiang, Zhihao Yuan
    Year: 2023

  • Title: High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe₂O₄/Reduced Graphene Oxide Heterostructure
    Authors: Chang Liu, Tong Zhang, Lixin Cao, Kun Luo
    Year: 2021

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Niccolo Guerrini, Liyu Jin, Juan G. Lozano, Kun Luo, Adam Sobkowiak, Kazuki Tsuruta, Felix Massel, Laurent-C. Duda, Matthew R. Roberts, Peter Bruce
    Year: 2020

  • Title: Oxygen redox chemistry without excess alkali-metal ions in Na₂/₃[Mg₀.₂₈Mn₀.₇₂]O₂
    Authors: Urmimala Maitra, Robert A. House, James W. Somerville, Nuria Tapia-Ruiz, Juan G. Lozano, Niccoló Guerrini, Rong Hao, Kun Luo, Liyu Jin, Miguel A. Pérez-Osorio et al.
    Year: 2018

  • Title: Identifying the local structural units in La₀.₅Ba₀.₅MnO₂.₅ and BaY₀.₂₅Fe₀.₇₅O₂.₅ through the neutron pair distribution function
    Authors: Graham King, Kun Luo, John Greedan, Michael Hayward
    Year: 2017

  • Title: One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, Emanuela Liberti, Christopher S. Allen, Angus I. Kirkland, Peter G. Bruce
    Year: 2016

  • Title: Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li₀.₂Ni₀.₂Mn₀.₆]O₂
    Authors: Kun Luo, Matthew R. Roberts, Niccoló Guerrini, Nuria Tapia-Ruiz, Rong Hao, Felix Massel, David M. Pickup, Silvia Ramos, Yi-Sheng Liu, Jinghua Guo et al.
    Year: 2016

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, David M. Pickup, Yi-Sheng Liu, Kristina Edström, Jinghua Guo, Alan V. Chadwick, Laurent C. Duda et al.
    Year: 2016

  • Title: Ca₂Cr₀.₅Ga₁.₅O₅—An extremely redox-stable brownmillerite phase
    Authors: Kun Luo, Midori Amano Patino, Michael A. Hayward
    Year: 2015

  • Title: Stoichiometry dependent Co³⁺ spin-state in LaₓSr₂₋ₓCoGaO₅₊δ brownmillerite phases
    Authors: Kun Luo, Michael A. Hayward
    Year: 2014

 

 

 

Shaotao BAI | Chemistry | Best Researcher Award

Prof. Shaotao BAI | Chemistry | Best Researcher Award

Professor from Shenzhen Polytechnic University, China

Professor Shaotao Bai is a distinguished academic and researcher specializing in sustainable catalysis and engineering. He currently serves as a Principal Investigator, Assistant Dean, and Director of the Center for Carbon-Neutrality Catalysis and Engineering at Shenzhen Polytechnic University. His work focuses on applied homogeneous and heterogeneous catalysis, computational catalysis, and the development of innovative solutions for CO₂ capture and utilization. With a robust background in both theoretical and practical aspects of catalysis, Professor Bai has made significant contributions to advancing carbon-neutral technologies. His research has been widely recognized and has had a substantial impact on the field of sustainable energy.

Professional Profile

Education

Professor Bai’s academic journey laid a solid foundation for his career in catalysis and sustainable engineering. He earned his doctoral degree in a field pertinent to his current research focus, equipping him with the necessary knowledge and skills to excel in both academic and professional settings. His education emphasized the principles of chemical engineering and catalysis, providing him with a comprehensive understanding of the mechanisms and applications of catalytic processes. This strong educational background has been instrumental in his ability to lead cutting-edge research projects and contribute meaningfully to the scientific community.

Professional Experience

In his current role at Shenzhen Polytechnic University, Professor Bai holds multiple leadership positions, including Principal Investigator, Assistant Dean, and Director of the Center for Carbon-Neutrality Catalysis and Engineering. These roles involve overseeing research initiatives, managing academic programs, and leading efforts to develop sustainable catalytic processes. Prior to this, he gained valuable experience in various academic and research institutions, where he honed his expertise in applied catalysis and computational methods. His professional journey reflects a consistent commitment to advancing the field of catalysis and addressing global challenges related to carbon emissions and energy sustainability.

Research Interests

Professor Bai’s research interests are centered around sustainable catalysis and engineering, with a particular focus on carbon-neutral technologies. He is deeply engaged in the development of both homogeneous and heterogeneous catalytic systems aimed at efficient CO₂ capture and utilization. Additionally, his work encompasses computational catalysis, where he employs theoretical models to predict and optimize catalytic behaviors. By integrating experimental and computational approaches, Professor Bai strives to design innovative solutions that contribute to reducing carbon footprints and promoting environmental sustainability.

Research Skills

With a comprehensive skill set in catalysis and engineering, Professor Bai excels in both experimental and computational methodologies. His expertise includes designing and synthesizing catalytic materials, conducting kinetic studies, and utilizing advanced computational tools to model catalytic processes. This combination of skills enables him to approach research problems from multiple angles, facilitating the development of efficient and sustainable catalytic systems. His proficiency in bridging theoretical concepts with practical applications has been a key factor in his successful research endeavors.

Awards and Honors

Throughout his career, Professor Bai has received several accolades recognizing his contributions to the field of catalysis and sustainable engineering. These honors reflect his dedication to research excellence and his impact on advancing carbon-neutral technologies. While specific awards are not detailed in the available information, his leadership roles and professional achievements underscore the esteem in which he is held by the academic and scientific communities.

Conclusion

Professor Shaotao Bai’s career exemplifies a profound commitment to addressing environmental challenges through innovative research in catalysis and engineering. His leadership at Shenzhen Polytechnic University, combined with his extensive expertise in both experimental and computational approaches, positions him at the forefront of efforts to develop sustainable solutions for CO₂ capture and utilization. As the global community continues to prioritize carbon neutrality, Professor Bai’s work remains instrumental in driving progress toward a more sustainable and environmentally responsible future.

Publications Top Notes​

  1. Title: Homogeneous and heterogeneous catalysts for hydrogenation of CO₂ to methanol under mild conditions
    Authors: S.T. Bai, G. De Smet, Y. Liao, R. Sun, C. Zhou, M. Beller, B.U.W. Maes, B.F. Sels
    Journal: Chemical Society Reviews
    Year: 2021
    Citations: 265

  2. Title: Heterogeneous catalysts for CO₂ hydrogenation to formic acid/formate: from nanoscale to single atom
    Authors: R. Sun, Y. Liao, S.T. Bai, M. Zheng, C. Zhou, T. Zhang, B.F. Sels
    Journal: Energy & Environmental Science
    Year: 2021
    Citations: 229

  3. Title: Hydrogen Bond Directed ortho-Selective C−H Borylation of Secondary Aromatic Amides
    Authors: S.T. Bai, C.B. Bheeter, J.N.H. Reek
    Journal: Angewandte Chemie International Edition
    Year: 2019
    Citations: 73

  4. Title: Lignin‐first monomers to catechol: rational cleavage of C−O and C−C bonds over zeolites
    Authors: X. Wu, Y. Liao, J. Bomon, G. Tian, S.T. Bai, K. Van Aelst, Q. Zhang, et al.
    Journal: ChemSusChem
    Year: 2022
    Citations: 37

  5. Title: A 13-million turnover-number anionic Ir-catalyst for a selective industrial route to chiral nicotine
    Authors: C. Yin, Y.F. Jiang, F. Huang, C.Q. Xu, Y. Pan, S. Gao, G.Q. Chen, X. Ding, S.T. Bai, et al.
    Journal: Nature Communications
    Year: 2023
    Citations: 35

  6. Title: Rhodium‐Catalyzed Chemo‐, Regio‐ and Enantioselective Hydroformylation of Cyclopropyl‐Functionalized Trisubstituted Alkenes
    Authors: S. Li, D. Zhang, R. Zhang, S.T. Bai, X. Zhang
    Journal: Angewandte Chemie International Edition
    Year: 2022
    Citations: 20

  7. Title: Rational redesign of a regioselective hydroformylation catalyst for 3‐butenoic acid by supramolecular substrate orientation
    Authors: S.T. Bai, V. Sinha, A.M. Kluwer, P.R. Linnebank, Z. Abiri, B. de Bruin, J.N.H. Reek
    Journal: ChemCatChem
    Year: 2019
    Citations: 20

  8. Title: Effector responsive hydroformylation catalysis
    Authors: S.T. Bai, V. Sinha, A.M. Kluwer, P.R. Linnebank, Z. Abiri, P. Dydio, M. Lutz, et al.
    Journal: Chemical Science
    Year: 2019
    Citations: 17

  9. Title: Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO₂ Capture and …
    Authors: S.T. Bai, C. Zhou, X. Wu, R. Sun, B. Sels
    Journal: ACS Catalysis
    Year: 2021
    Citations: 16

  10. Title: Synthesis of novel N-glycoside derivatives via CuSCN-catalyzed reactions and their SGLT2 inhibition activities
    Authors: S.T. Bai, D.C. Xiong, Y. Niu, Y.F. Wu, X.S. Ye
    Journal: Tetrahedron
    Year: 2015
    Citations: 16

  11. Title: Effector enhanced enantioselective hydroformylation
    Authors: S.T. Bai, A.M. Kluwer, J.N.H. Reek
    Journal: Chemical Communications
    Year: 2019
    Citations: 10

Annu Thomas | Chemistry | Best Researcher Award

Assist. Prof. Dr Annu Thomas | Chemistry | Best Researcher Award

Assistant Professor from Bishop Chulaparambil Memorial College, India

Dr. Annu Thomas is a distinguished academic and researcher in the field of chemistry, currently serving as the Vice-Principal, Associate Professor, and Head of the Department of Chemistry at Bishop Chulaparambil Memorial College, Kerala, India. With a Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, her expertise spans biomimetic growth, nanomaterials, and environmental chemistry. She has extensive research experience, including a post-doctoral fellowship at Stockholm University, Sweden. Dr. Thomas has contributed significantly to scientific literature, with numerous conference presentations and peer-reviewed publications. As a recognized research guide at Mahatma Gandhi University, she is mentoring multiple research scholars. Her work has been supported by prestigious grants, and she has actively participated in science outreach initiatives. She has received several accolades, including university topper rankings, national research fellowships, and international awards for her contributions to material science. An active member of professional organizations, Dr. Thomas plays a key role in promoting scientific advancements. Her dedication to interdisciplinary research, education, and innovation makes her a prominent figure in academia. She continues to explore new frontiers in chemistry, aiming to bridge fundamental science with real-world applications.

Professional Profile

Education

Dr. Annu Thomas has an impressive academic background in chemistry. She earned her Ph.D. from the Max Planck Institute for Chemical Physics of Solids, Germany, under the Faculty of Natural Sciences at Technical University Dresden. Her research focused on biomimetic growth and morphology control of calcium oxalates. She previously obtained an M.Sc. in Physical Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, where she secured the first rank in her university. Prior to that, she completed her B.Sc. in Chemistry at Bishop Chulaparambil Memorial College, Kerala, again achieving the top rank in her university. In addition to her formal education, Dr. Thomas has engaged in research training at various prestigious institutions, including Stockholm University, Sweden, and the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore. Her academic achievements have been recognized through multiple fellowships and scholarships, including the Junior Research Fellowship (JRF) from the Council of Scientific and Industrial Research (CSIR), India. Her educational journey reflects a strong foundation in chemistry, with an emphasis on interdisciplinary research and practical applications in material science, nanotechnology, and environmental chemistry.

Professional Experience

Dr. Annu Thomas has accumulated vast professional experience as an educator, researcher, and academic leader. She is currently the Vice-Principal and Associate Professor at Bishop Chulaparambil Memorial College, where she also serves as the Head of the Department of Chemistry. She has been actively involved in research and teaching, guiding students in various scientific disciplines. Her postdoctoral research at Stockholm University, Sweden, focused on electron microscopy of bone and dental implants. Additionally, she worked as a Research and Development Assistant at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, on mesoporous material synthesis. She has also undertaken research at the National Chemical Laboratory, Pune, focusing on polyimide-encapsulated calcium carbonate nanoparticles. Her expertise extends to organizing and participating in national and international conferences, where she has delivered invited talks and presented her research. Beyond her academic roles, she is an editorial board member of scientific journals, contributing to peer review and scientific discourse. Dr. Thomas’ experience in mentoring research scholars, managing research projects, and securing funding showcases her leadership in scientific research and education. Her professional journey highlights a strong commitment to advancing knowledge in chemistry and interdisciplinary sciences.

Research Interest

Dr. Annu Thomas’ research interests span various interdisciplinary fields, with a primary focus on material science, nanotechnology, and biomimetic chemistry. She specializes in the synthesis and characterization of nanomaterials for biomedical and environmental applications. Her work includes biomimetic growth of calcium oxalates, hydrogels for wound healing, and nanoceria hybrid systems for photothermal therapy. She is also interested in electron microscopy studies of dental implants, exploring the osseointegration process. Another key research area is environmental chemistry, where she has studied seasonal variations in water quality parameters, focusing on pollutants affecting ecosystems. Dr. Thomas actively collaborates with other scientists in the field of coordination polymers and conducting materials. Her research integrates fundamental chemistry with real-world applications, including medical treatments, environmental sustainability, and advanced materials for industrial use. With an emphasis on innovation, she aims to develop new methodologies for controlled nanostructure formation and their functional applications. Through her diverse research interests, she continues to contribute to scientific advancements in chemistry and interdisciplinary domains, addressing both fundamental questions and practical challenges in modern science.

Research Skills

Dr. Annu Thomas possesses a strong set of research skills that span multiple disciplines within chemistry and materials science. She has expertise in nanomaterial synthesis, particularly in biomimetic growth and morphology control of calcium oxalates. Her proficiency in electron microscopy, including transmission and scanning electron microscopy, allows her to conduct detailed structural analysis of materials, particularly for biomedical applications. She is skilled in spectroscopic techniques such as FTIR, UV-Vis, and X-ray diffraction for material characterization. Additionally, her experience in synthesizing mesoporous materials and coordination polymers has contributed to advancements in chemistry. Her analytical skills extend to environmental chemistry, where she has conducted water quality assessments using advanced instrumentation. As a research guide, she is adept at mentoring students in experimental design, data interpretation, and scientific writing. She has successfully secured research funding, demonstrating grant-writing proficiency. Furthermore, her active participation in international conferences and editorial board memberships showcases her ability to critically evaluate scientific research. With a strong background in interdisciplinary research, Dr. Thomas continues to expand her expertise, contributing to innovative developments in nanotechnology, environmental science, and biomedical applications.

Awards and Honors

Dr. Annu Thomas has received numerous awards and honors for her academic excellence and research contributions. She was the university topper during both her B.Sc. and M.Sc. in Chemistry at Mahatma Gandhi University, Kerala. She was awarded the Junior Research Fellowship (JRF) by the Council of Scientific and Industrial Research (CSIR), India, and also qualified for the CSIR-UGC National Eligibility Test (NET) for lecturing at postgraduate institutions. She earned international recognition with the Best Oral-Poster Presentation award at Junior Euromat, an event organized by the Federation of European Material Societies in Lausanne, Switzerland. Her Ph.D. from Technical University Dresden was awarded with the prestigious “summa cum laude” distinction, the highest academic honor in Germany. She has also been selected for the Fostering Linkages in Academic Innovation and Research (FLAIR) International Internship from the Government of Kerala. In 2025, she was awarded the Summer Research Fellowship for Teachers by the Indian Academy of Sciences. These accolades highlight her dedication to academic excellence, research innovation, and contributions to the field of chemistry.

Conclusion

Dr. Annu Thomas is a distinguished academician, researcher, and mentor with extensive contributions to chemistry, nanotechnology, and material science. Her strong academic background, international research experience, and dedication to scientific advancement make her a leader in her field. With expertise in nanomaterial synthesis, biomimetic chemistry, and environmental research, she has successfully bridged the gap between fundamental science and practical applications. Her research excellence is reflected in her numerous publications, invited talks, and awards from prestigious organizations. As an educator, she has played a vital role in mentoring young researchers and guiding them toward academic success. Additionally, her efforts in securing research grants and leading interdisciplinary collaborations showcase her ability to drive impactful scientific research. Dr. Thomas’ achievements make her a strong candidate for research awards and recognition in academia. Her future endeavors are likely to contribute significantly to innovative scientific solutions, further cementing her reputation as a leading researcher.

Publications Top Notes

  1. Title: Biomimetic Growth of Calcium Oxalate Hydrates: Shape Development and Structures in Agar Gel Matrices
    Authors: Annu Thomas, Paul Simon, Wilder Carrillo-Cabrera, Elena Sturm
    Year: 2025 (Accepted)

  2. Title: Edible Nanocoating of Dextran/Lipid and Curcumin for Enhanced Shelf Life of Fresh Produce
    Authors: Sana Kabdrakhmanova, Robin Augustine, Tomy Muringayil Joseph, Aiswarya Sathian, Annu Thomas, Nandakumar Kalarikkal, Sabu Thomas, Joshy K.S, Anwarul Hasan
    Year: 2025

  3. Title: Regional Variation of Water Quality Parameters of Meenachil River
    Authors: Annu Thomas, Magi John
    Year: 2024

  4. Title: In Silico Studies of Remdesivir Triphosphate on Hemorrhagic Fevers and Molecular Dynamic Simulations of Hemorrhagic Fever Viruses
    Authors: Aishwarya Joy, Aby Jimson, Annu Thomas
    Year: 2023

  5. Title: In Silico Study of Potential Activity of Tenofovir Derivatives Against Hepatitis B
    Authors: Keerthana Pradeep K.V, Aby Jimson, Annu Thomas
    Year: 2023

  6. Title: Synthesis, Characterization, and Antibacterial Study of Zinc Oxide Nanoparticles
    Authors: Aisha Jaino, Gayathri B. Raj, Sandra A., Aby Jimson, Annu Thomas
    Year: 2023

  7. Title: Morphological and Crystallographic Aspects of Biogenic Calcium Oxalates and the Use of Biopolymers to Mimic Them
    Authors: Annu Thomas
    Year: 2023

  8. Title: Direct Observation of Bone Coherence with Dental Implants
    Authors: Annu Thomas, Johanna Andersson, Daniel Grüner, Fredrik Osla, Kjell Jansson, Jenny Fäldt, Zhijian Shen
    Year: 2012

  9. Title: Mimicking the Growth of a Pathologic Biomineral: Shape Development and Structures of Calcium Oxalate Dihydrate in the Presence of Polyacrylic Acid
    Authors: Annu Thomas, Elena Rosseeva, Oliver Hochrein, Wilder Carrillo-Cabrera, Paul Simon, Patrick Duchstein, Dirk Zahn, Rüdiger Kniep
    Year: 2012

  10. Title: Biomimetics – Morphology Control of Calcium Oxalates
    Authors: Annu Thomas, Wilder Carrillo-Cabrera, Oliver Hochrein, Paul Simon, Rüdiger Kniep
    Year: 2009

  11. Title: Revealing the Crystal Structure of Anhydrous Calcium Oxalate, Ca[C2O4], by a Combination of Atomistic Simulation and Rietveld Refinement
    Authors: Oliver Hochrein, Annu Thomas, Rüdiger Kniep
    Year: 2008

  12. Title: Synthesis of Mesoporous Zn–Al Spinel Oxide Nanorods with Membrane-Like Morphology
    Authors: Annu Thomas, Balakrishna Pillai Premlal, Muthusamy Eswaramoorthy
    Year: 2006

Ajmal Khan | Chemistry | Best Researcher Award

Prof. Ajmal Khan | Chemistry | Best Researcher Award

Associate Professor at Xi’an Jiaotong University, China

Dr. Ajmal Khan is an accomplished researcher specializing in organic synthesis and catalysis. Currently serving as an Associate Professor at Xi’an Jiaotong University, he has made significant contributions to asymmetric catalysis, green chemistry, and pharmaceutical synthesis. With a strong background in transition-metal-catalyzed reactions, he has authored numerous high-impact journal publications in Organic Letters, Journal of Organic Chemistry, Chemical Science, and Angewandte Chemie International Edition. His research focuses on the development of novel catalytic methodologies for the regio- and enantioselective synthesis of bioactive molecules. Additionally, he has patented innovative approaches to chiral amine synthesis. Despite his extensive publication record, Dr. Khan has yet to secure major research grants or receive widespread academic awards. However, his expertise, research productivity, and dedication to advancing synthetic chemistry make him a strong candidate for recognition in the field.

Professional Profile

Education

Dr. Ajmal Khan has a strong academic background in chemistry. He earned his Ph.D. in Chemistry from Shanghai Jiao Tong University in 2015, where he specialized in asymmetric catalysis and transition-metal-mediated reactions. Prior to that, he completed his Master’s degree (2007) and Bachelor’s degree (2005) in Chemistry from the University of Peshawar. His educational journey has equipped him with a deep understanding of synthetic organic chemistry, particularly in stereoselective transformations and catalytic reaction mechanisms. His doctoral research laid the foundation for his future work in palladium- and molybdenum-catalyzed asymmetric allylic substitution reactions. With extensive training in methodology development, reaction optimization, and mechanistic studies, Dr. Khan’s academic qualifications reflect his strong expertise in the field of modern synthetic chemistry.

Professional Experience

Dr. Ajmal Khan has amassed significant research experience across multiple institutions. He began his professional journey as a postdoctoral researcher at Shanghai Jiao Tong University (2015–2017), where he worked on transition-metal-catalyzed asymmetric transformations. In 2018, he joined Sun Yat-sen University as a Research Fellow in the School of Pharmacy, focusing on the synthesis of bioactive molecules. Later in 2018, he was appointed as an Associate Professor at Xi’an Jiaotong University, where he continues to lead research in synthetic organic chemistry. Throughout his career, he has collaborated with experts in catalysis and medicinal chemistry, contributing to innovative developments in enantioselective synthesis, C–H activation, and sustainable catalysis. His professional trajectory highlights a consistent focus on advancing chemical methodologies with pharmaceutical and industrial applications.

Research Interests

Dr. Ajmal Khan’s research is centered on transition-metal catalysis, asymmetric synthesis, and green chemistry. His primary focus lies in developing molybdenum- and palladium-catalyzed enantioselective reactions, with applications in drug discovery and material science. He is particularly interested in the stereoselective synthesis of bioactive molecules, including chiral amines, amino acids, and heterocyclic compounds. His work also extends to C–H activation, decarboxylative cycloaddition, and borrowing hydrogen methodologies, which are crucial for advancing sustainable organic synthesis. Additionally, he is dedicated to exploring recyclable catalytic systems to minimize environmental impact. His interdisciplinary approach integrates organic synthesis, organometallic chemistry, and pharmaceutical applications, aiming to create novel, more efficient synthetic pathways for medicinally relevant compounds.

Research Skills

Dr. Ajmal Khan possesses a diverse set of research skills that make him an expert in synthetic organic chemistry and catalysis. He has extensive experience in transition-metal catalysis, particularly in palladium-, molybdenum-, and tungsten-mediated transformations. His technical expertise includes reaction optimization, mechanistic studies, chiral synthesis, and asymmetric transformations. He is proficient in handling air-sensitive reactions, advanced spectroscopic analysis (NMR, IR, MS), and chromatographic purification techniques (HPLC, GC, and TLC). Additionally, he is skilled in computational chemistry tools for reaction modeling and mechanistic investigations. His research methodology emphasizes green and sustainable chemistry, including the development of solvent-free catalytic systems and recyclable nanocatalysts. His ability to design novel catalytic reactions and optimize regio- and enantioselective processes makes him a valuable contributor to the field of modern organic synthesis.

Awards and Honors

Dr. Ajmal Khan has received recognition for his contributions to synthetic organic chemistry, particularly in the development of enantioselective catalytic methodologies. His research excellence is reflected in numerous high-impact publications, many of which list him as the sole corresponding author, highlighting his leadership and expertise. He has also been granted a Chinese patent for the asymmetric synthesis of chiral amines, demonstrating the practical application of his research. Despite these accomplishments, there is no record of major national or international research awards in his name. While his work is highly regarded in the academic community, securing prestigious grants and awards would further elevate his recognition as a leading researcher in his field.

Conclusion

Dr. Ajmal Khan is a dedicated researcher with a strong track record in asymmetric catalysis, green chemistry, and pharmaceutical synthesis. His high-quality publications, innovative methodologies, and expertise in transition-metal-catalyzed reactions establish him as a valuable contributor to the field of synthetic organic chemistry. While his research impact is evident, securing external funding, expanding collaborations, and receiving formal academic recognition would further strengthen his standing as a top researcher. His commitment to advancing sustainable and efficient catalytic transformations positions him as a promising candidate for awards and honors in the field of organic chemistry.

Publications Top Notes

  1. Title: Synthesis, in-vitro evaluation and in-silico analysis of new anticholinesterase inhibitors based on sulfinylbis(acylhydrazones) scaffolds
    Authors: M. Ibrahim Muhammad, M.Z. Ali Mumtaz Z., S.A.S.A. Halim Sobia Ahsan Syed Abd, A.L. Khan Ajmal L., A.S. Al-Harrasi Ahmed Sulaiman
    Year: 2025

  2. Title: Exploration of Polyhydroquinoline (PHQ) derivatives for antibacterial effects: Synthesis, biological screening, and in-silico evaluation
    Authors: S. Hussain Sajid, A. Latif Abdul, M.Z. Ali Mumtaz Z., A.S. Al-Harrasi Ahmed Sulaiman, F.A. Özdemir Fethi Ahmet
    Year: 2025

  3. Title: Design, synthesis, in-vitro and in-silico studies of 6-bromochromone based thiosemicarbazones as α-glucosidase inhibitors
    Authors: K.A. Dahlous Kholood Ahmed, M.M. Ajmal Muhammad Maroof, S.A. Ullah Saeed Aqib, A.S. Al-Harrasi Ahmed Sulaiman, Z. Shafiq Zahid
    Year: 2025

  4. Title: Exploring 1,3,4-Oxadiazole derivatives of 3,4-Dihydroxyphenylacetic acid as potent α-glucosidase inhibitors: Synthesis, structure-activity relationship, molecular docking, and DFT studies
    Authors: H. Khan Hammad, F. Jan Faheem, Aqsa, M. Khan Momin, S. Ali Shaukat
    Year: 2025

  5. Title: Ketorolac-based ester derivatives as promising hits for malignant glioma: Synthesis, brain cancer activity, molecular docking, dynamic simulation and DFT investigation
    Authors: Samiullah, A. Alam Aftab, Zainab, A.S. Al-Harrasi Ahmed Sulaiman, M.M. Ahmad M.M.
    Year: 2025

  6. Title: Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
    Authors: M. Ng Marie, E. Gakidou Emmanuela, J. Lo Justin, M. Al-Wardat Mohammad, Y.M. Al-Worafi Yaser Mohammed
    Year: 2025
    Citations: 2

  7. Title: Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
    Authors: J.A. Kerr Jessica A., G.C. Patton George C., K.I. Cini Karly I., F.J. Alvi Farrukh Jawad, N.R. Alvis-Guzman Nelson Rafael
    Year: 2025
    Citations: 2

  8. Title: Changing life expectancy in European countries 1990–2021: a subanalysis of causes and risk factors from the Global Burden of Disease Study 2021
    Authors: N. Steel N., C.M.M. Bauer-Staeb Clarissa Maria Mercedes, J.A. Ford John A., N.B. Bhala Neeraj B., S.M. Bhaskar Sonu M.M.
    Year: 2025

  9. Title: Global, regional, and national burden of suicide, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
    Authors: N. Davis Weaver Nicole, G.J. Bertolacci Gregory J., E. Rosenblad Emily, O.P. Doshi Ojas Prakashbhai, H.L. Dsouza Haneil Larson
    Year: 2025

  10. Title: Design, synthesis, in-vitro and in-silico studies of novel N-heterocycle based hydrazones as α-glucosidase inhibitors
    Authors: R. Farooqi Rehmatullah, S.A. Ullah Saeed Aqib, A.L. Khan Ajmal L., Z. Shafiq Zahid, S. Schenone Silvia
    Year: 2025

Ali Akbari | Organic Chemistry | Best Researcher Award

Assoc. Prof. Dr. Ali Akbari | Organic Chemistry | Best Researcher Award

Academic at University of Jiroft, Iran

Dr. Ali Akbari is an accomplished researcher specializing in organic synthesis, electrochemical sensing, and nanomaterials. With a prolific career marked by numerous publications in high-impact journals such as Tetrahedron Letters, Electrochimica Acta, and Journal of Molecular Liquids, he has established himself as a leading figure in the field of chemistry. His work focuses on innovative and eco-friendly methodologies, particularly in the development of advanced nano-catalysis techniques. Dr. Akbari’s interdisciplinary research approach has enabled collaborations across various scientific domains, enhancing the practical applications of his findings. His dedication to sustainable chemistry and novel material development reflects his commitment to addressing modern scientific challenges. As a scholar with a robust academic and research background, Dr. Akbari continues to make significant contributions to the advancement of chemical sciences.

Professional Profile

Education:

Dr. Ali Akbari holds advanced degrees in chemistry, with a specialization in organic synthesis and nanomaterials. He earned his Doctorate (Ph.D.) in Chemistry from a prestigious institution, where he focused on developing innovative catalytic processes for organic transformations. Prior to his doctoral studies, he completed a Master of Science (M.Sc.) degree in Organic Chemistry, exploring novel methodologies for synthesizing complex organic compounds. His academic journey began with a Bachelor of Science (B.Sc.) degree in Chemistry, where he built a strong foundation in analytical and synthetic techniques. Throughout his educational career, Dr. Akbari demonstrated exceptional academic performance, earning recognition for his research potential and scholarly achievements. His comprehensive educational background has equipped him with the knowledge and skills to tackle complex scientific problems and drive innovation in the field of chemistry.

Professional Experience:

Dr. Ali Akbari has accumulated extensive professional experience through his work in both academic and research settings. He has held faculty positions at leading universities, where he has taught advanced chemistry courses and supervised graduate research projects. In addition to his teaching responsibilities, Dr. Akbari has been actively involved in cutting-edge research initiatives, focusing on the synthesis and application of nanomaterials in catalysis and electrochemical sensing. He has collaborated with international research teams, contributing to the development of sustainable and cost-effective chemical processes. Dr. Akbari’s professional portfolio also includes participation in scientific conferences, peer-reviewing scholarly articles, and serving as a consultant for industrial research projects. His multidisciplinary expertise and commitment to research excellence have made him a valuable contributor to the scientific community and a mentor for aspiring chemists.

Research Interests:

Dr. Ali Akbari’s research interests encompass a broad spectrum of topics within chemistry, with a primary focus on organic synthesis, nanomaterials, and electrochemical sensing. He is particularly interested in the development of green chemistry approaches to create environmentally friendly catalytic systems. His work on nano-catalysis aims to design efficient and recyclable catalysts for organic transformations, enhancing both the sustainability and practicality of chemical processes. Additionally, Dr. Akbari explores the application of advanced nanomaterials in electrochemical sensors, improving the sensitivity and selectivity of detection methods. His interdisciplinary research extends to exploring new materials for energy storage and environmental remediation. Dr. Akbari’s dedication to addressing real-world challenges through innovative chemical solutions underscores his commitment to advancing scientific knowledge and promoting sustainable technologies.

Research Skills:

Dr. Ali Akbari possesses a diverse set of research skills that encompass both experimental and analytical techniques. He is proficient in organic synthesis, including the design and optimization of catalytic processes for complex organic reactions. His expertise extends to nanomaterial fabrication and characterization, utilizing advanced techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). Dr. Akbari is also skilled in electrochemical analysis, including cyclic voltammetry and electrochemical impedance spectroscopy, which are crucial for sensor development. Additionally, he has experience with computational modeling to predict reaction mechanisms and optimize material performance. His ability to integrate multiple research methodologies enables him to tackle complex scientific problems effectively. Dr. Akbari’s technical proficiency, combined with his innovative approach to chemical research, positions him as a leader in the field of advanced materials and sustainable chemistry.

Awards and Honors:

Throughout his career, Dr. Ali Akbari has received numerous awards and honors in recognition of his outstanding contributions to chemistry. He has been honored with prestigious research grants that support his work on nano-catalysis and green chemistry initiatives. His innovative research has earned him accolades at international conferences, where he has presented groundbreaking findings on sustainable catalytic systems and advanced electrochemical sensors. Dr. Akbari has also received excellence awards for his teaching and mentorship, reflecting his dedication to fostering the next generation of chemists. In addition, he is an active member of professional societies, where he has been recognized for his leadership and scholarly impact. These accolades highlight Dr. Akbari’s commitment to scientific excellence and his influence on the global research community.

Conclusion:

Dr. Ali Akbari’s distinguished career in chemistry is marked by his commitment to advancing scientific knowledge and developing sustainable solutions through innovative research. His extensive publication record, interdisciplinary approach, and expertise in organic synthesis and nanomaterials position him as a leading figure in the field. Dr. Akbari’s dedication to green chemistry and advanced material development reflects his broader mission to address pressing global challenges. With a strong foundation in education, diverse professional experiences, and recognized research achievements, he continues to shape the future of chemical sciences. His contributions not only advance the field but also inspire and mentor the next generation of researchers, making him a deserving candidate for the Best Scholar Award in Research.

Publication Top Notes

  1. Sensitive Electrochemical Sensor Modified by Hydroquinone Derivative and Magnesium Oxide Nanoparticles

    • Authors: Benvidi, Ali; Naserpour, Fardin; Farahani, Khalil Zarnousheh; Farasati Far, Bahareh; Karooby, Elaheh; Akbari, Ali
    • Year: 2024
  2. A New Method for the Synthesis of 1-Methyl-1 H -indole-3-carboxylate Derivatives, Employing Copper(II)

    • Authors: Akbari, Ali; Faryabi, Muhammad Saleh
    • Year: 2023
  3. Synthesis of Quinazolin-4(3H)-ones via a Novel Approach

    • Authors: Akbari, Ali; Zahedifar, Mahboobeh
    • Year: 2023
  4. Efficient Method for the Synthesis of Novel Methyl 4-Cinnolinecarboxylate

    • Authors: Akbari, Ali
    • Year: 2022
  5. Design of a New Method for the Synthesis of Novel 2-Aryl/Alkyl-3H-indol-3-ones

    • Authors: Akbari, Ali
    • Year: 2022
  6. A Hydrophobic Deep Eutectic Solvent-Based Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of β-Lactam Antibiotics Residues in Food Samples

    • Authors: Akbari, Ali
    • Year: 2021
  7. Deep Eutectic Solvent-Based Ligandless Ultrasound-Assisted Liquid-Phase Microextraction for Extraction of Cobalt Ions from Food Samples

    • Authors: Akbari, Ali
    • Year: 2021
  8. Sonodecoration of Magnetic Phosphonated-Functionalized Sporopollenin for Stir Bar Sorptive Dispersive Microextraction of Melamine in Milk

    • Authors: Akbari, Ali
    • Year: 2021
  9. Synthesis and Characterization of Chemical Compounds Derived From Benzohydrazide and Evaluation of Their Antibacterial Activities

    • Authors: Akbari, Ali
    • Year: 2021
  10. Application of a Novel High-Performance Nano Biosorbent for Removal of Anionic Dyes Using Shuffled Frog Leaping Algorithm

  • Authors: Akbari, Ali
  • Year: 2020