Arun Kodoth | Chemistry | Best Researcher Award

Dr. Arun Kodoth | Chemistry | Best Researcher Award

Scientist at Dr Bansi Dhar Institute, India

Dr. Arun Krishna Kodoth is an accomplished researcher with a Ph.D. in Chemistry specializing in polymer and material science. With over a decade of academic and industrial experience, he has built a career centered on innovative research in polymer synthesis, hydrogels, nanofibers, and nanocomposites. His expertise spans green chemistry, microwave-assisted polymer synthesis, and advanced material applications in drug delivery, water treatment, and environmental sustainability. Dr. Kodoth has an impressive publication record, having authored 17 peer-reviewed articles and actively contributed to numerous conferences. His work has been recognized with prestigious awards for both oral and poster presentations. With a commitment to advancing scientific knowledge and a strong passion for collaboration, he has worked with academic institutions and industrial organizations to deliver impactful research solutions. As a reviewer for high-impact journals, Dr. Kodoth plays a vital role in shaping research in his field. His professional integrity, extensive technical skills, and dedication to research excellence make him a valuable contributor to global scientific advancements.

Professional Profile

Education

Dr. Kodoth holds a Ph.D. in Chemistry from Mangalore University, India (2019), with a thesis on “Synthesis, Characterization, and Applications of Copolymer-based Composite Hydrogels.” He completed his Master’s in Industrial Chemistry at Mangalore University, securing an impressive 72.125% in 2011. His undergraduate studies in Chemistry were undertaken at Govt. College Kasaragod, Kerala, where he earned a commendable 65.1%. Dr. Kodoth’s academic journey highlights a strong foundation in polymer science and material chemistry, supplemented by extensive practical exposure to advanced techniques. Throughout his education, he displayed a keen interest in interdisciplinary research, which laid the groundwork for his successful academic and industrial career. His robust academic achievements demonstrate his commitment to excellence, which has translated into impactful research contributions in polymer and material sciences.

Professional Experience

Dr. Kodoth has extensive experience in both academia and industry, making significant contributions as a scientist and educator. As a postdoctoral researcher at Mangalore University (2019–2024), he synthesized advanced polymeric nanofibers and hydrogels for applications in agriculture, dye adsorption, and drug delivery. In his role as a scientist at Shriram Institute for Industrial Research, Haryana, he developed cutting-edge materials, including hydrogels for water treatment and bio-based photocatalysts for environmental remediation. His industry experience includes a stint at AstraZeneca India, where he worked on Suzuki coupling reactions, showcasing his ability to bridge fundamental research with industrial needs. Additionally, he has successfully guided 11 MSc students, demonstrating his leadership and mentorship skills. His professional trajectory reflects a seamless blend of academic rigor and industry-oriented problem-solving.

Research Interests

Dr. Kodoth’s research interests focus on polymer and material science, with applications in environmental sustainability and healthcare. He is deeply involved in the development of hydrogels, nanofibers, and nanocomposites for advanced applications such as drug delivery, wastewater treatment, and agricultural innovation. His work on green synthesis of nanoparticles and microwave-assisted polymerization aligns with his commitment to eco-friendly and sustainable solutions. He has collaborated on projects to develop transdermal patches for cervical cancer treatment, demonstrating his interest in interdisciplinary and translational research. With a passion for addressing real-world challenges through material innovation, Dr. Kodoth aims to contribute to the fields of energy storage, environmental remediation, and smart material development.

Research Skills

Dr. Kodoth possesses an extensive repertoire of research skills in advanced material synthesis and characterization. His expertise includes the fabrication of hydrogels, nanofibers, and nanocomposites, along with drug delivery formulations. He is adept at using sophisticated analytical instruments like FTIR, UV-Vis spectrophotometers, TGA, DSC, and HPLC, ensuring thorough material analysis and data interpretation. Dr. Kodoth is skilled in electrospinning and advanced surface characterization methods, making him proficient in nanomaterial fabrication. His proficiency in software tools like ChemDraw, ChemSketch, and OriginPro complements his technical skills, enabling efficient research documentation and publication. These skills, combined with his expertise in polymer applications, position him as a leading researcher in the field of material science.

Awards and Honors

Dr. Kodoth has received several accolades recognizing his contributions to research and academia. His work has earned him awards for the best poster and oral presentations at national conferences, highlighting the quality and relevance of his research. As a referee for prominent journals such as Wiley’s Journal of Applied Polymer Science and Elsevier’s International Journal of Biological Macromolecules, he is acknowledged as an expert in his field. He has participated in multiple advanced training programs, such as LCMS/MS analysis and X-ray crystallography workshops, further solidifying his credentials. These honors reflect his dedication to research excellence and his impactful contributions to the scientific community.

Conclusion

Dr. Arun Krishna Kodoth is a highly accomplished researcher whose work in polymer and material science has significantly impacted both academia and industry. His dedication to innovative research, coupled with his extensive technical expertise, has led to advancements in drug delivery, water treatment, and sustainable materials. With a strong academic foundation, numerous publications, and awards, Dr. Kodoth is a deserving candidate for recognition as a leading researcher. His contributions exemplify the power of interdisciplinary collaboration and the application of science to address pressing global challenges.

Publication Top Notes

  1. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil
    Authors: AK Kodoth, VM Ghate, SA Lewis, B Prakash, V Badalamoole
    Year: 2019
    Citations: 67
  2. Gellan gum‐based novel composite hydrogel: evaluation as adsorbent for cationic dyes
    Authors: K Arun Krishna, B Vishalakshi
    Year: 2017
    Citations: 61
  3. Application of pectin‑zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism
    Authors: AK Kodoth, VM Ghate, SA Lewis, V Badalamoole
    Year: 2018
    Citations: 43
  4. Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions
    Authors: AK Kodoth, V Badalamoole
    Year: 2020
    Citations: 42
  5. Colloidal nanostructured lipid carriers of pentoxifylline produced by microwave irradiation ameliorates imiquimod-induced psoriasis in mice
    Authors: VM Ghate, AK Kodoth, A Shah, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 28
  6. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery
    Authors: VM Ghate, AK Kodoth, S Raja, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 18
  7. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system
    Authors: PB Krishnappa, AK Kodoth, P Kulal, V Badalamoole
    Year: 2023
    Citations: 16
  8. Pectin based graft copolymer–ZnO hybrid nanocomposite for the adsorptive removal of crystal violet
    Authors: AK Kodoth, V Badalamoole
    Year: 2019
    Citations: 16
  9. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds
    Authors: A Kurowska, V Ghate, A Kodoth, A Shah, B Vishalakshi, …
    Year: 2019
    Citations: 14
  10. Chitosan/hydroxyethyl cellulose gel immobilized polyaniline/CuO/ZnO adsorptive-photocatalytic hybrid nanocomposite for Congo red removal
    Authors: TB Gelaw, BK Sarojini, AK Kodoth
    Year: 2022
    Citations: 11

 

Naga Lalitha Sree Thatavarthi | E-commerce | Excellence in Innovation

Mrs. Naga Lalitha Sree Thatavarthi | E-commerce | Excellence in Innovation

Mrs. Naga Lalitha Sree Thatavarthi, Gabriella White LLC, United States.

Naga Lalitha Sree Thatavarthi is a dynamic leader in the field of e-commerce, renowned for her innovative approaches to digital business solutions. With a strong academic background and extensive experience in the industry, she has spearheaded numerous successful projects that have transformed online retail strategies. Naga’s expertise spans areas such as user experience design, data analytics, and supply chain optimization. Her commitment to excellence and her passion for leveraging technology to enhance customer engagement have earned her recognition in the e-commerce community. Through her work, she continues to inspire others to embrace innovation and drive growth in the digital marketplace.

Profile:

Professional Overview

Naga Lalitha Sree Thatavarthi possesses extensive technical expertise in Microsoft technologies, including the .NET Framework, ASP.NET Web Forms, ASP.NET MVC, C#, and VB.NET. Her skill set encompasses web services, RESTful services, and programming languages such as JavaScript, HTML5, and CSS3. Proficient in implementing and consuming WCF services, she excels in ensuring security, debugging, and performance optimization. With substantial experience in setting up CI/CD pipelines using tools like Jenkins, Bitbucket, and GitHub, Naga has designed comprehensive processes for API development and automation. She is well-versed in reporting tools, including SQL Server Reporting Services (SSRS) and Crystal Reports, and has a strong grasp of Agile methodology, Scrum processes, and sprint planning. Her expertise also includes developing ASP.NET custom controls and user interfaces using AJAX, AngularJS, Bootstrap, and jQuery. Naga has a solid background in database design, writing PL/SQL stored procedures, functions, triggers, and complex queries across various databases, including DB2, SQL Server, MySQL, and Hibernate (ORM). Additionally, she integrates code quality tools like SonarQube into CI/CD pipelines, ensuring high standards in software development and delivery.

Experience

Naga Lalitha Sree Thatavarthi has effectively managed source control repositories using Git, implementing branching strategies and facilitating pull requests to streamline development workflows. She has optimized SQL queries to enhance application performance in PostgreSQL databases and conducted comprehensive unit and integration testing to ensure functionality and reliability. Proficient in front-end technologies such as HTML5, CSS3, JavaScript, and Bootstrap, Naga has developed dynamic and interactive user interfaces utilizing modern JavaScript frameworks, including React.js and Angular.

Her backend development skills include working with ASP.NET Core, C#, and SQL Server, with a strong focus on building RESTful APIs and familiarity with ORM frameworks like Entity Framework and Dapper for efficient data access. She possesses a solid understanding of Object-Oriented Programming (OOP) and SOLID design principles, and she is knowledgeable in version control systems and collaborative workflows using Git and GitHub.

With experience in cloud platforms like Microsoft Azure and AWS for deploying and scaling applications, Naga is also proficient in using DevOps tools for CI/CD pipelines, including Azure DevOps and Jenkins. Her familiarity with containerization technologies, such as Docker and Kubernetes, enhances her ability to develop and maintain web applications from conception to deployment. She collaborates closely with cross-functional teams to translate business requirements into technical solutions, designs and implements RESTful APIs following best practices for security and performance, and writes clean, maintainable code adhering to established coding standards. Naga actively participates in code reviews, mentoring junior developers, and documenting technical specifications to ensure clear communication and knowledge sharing within her team.

 

Publication Top Notes

Tingting Yan | Chemistry | Best Researcher Award

Prof. Tingting Yan | Chemistry | Best Researcher Award

Researcher at Shenyang Jianzhu University, China.

Prof. Tingting Yan, born in Heilongjiang Province, China, is a distinguished researcher in Condensed Matter Physics at Shenyang Jianzhu University. She holds a Ph.D. in Condensed Matter Physics from Jilin University, where she focused on the study of energetic materials and organic polymorphs under high pressure. With expertise in energetic materials, hydrogen-bonded polycrystalline materials, and perovskite materials, Prof. Yan has made significant contributions to material behavior under extreme conditions. Her technical proficiency includes TEM, SEM, and first-principle calculations, supported by experience in scientific software such as Material Studio and Gaussian. Prof. Yan has led multiple research projects funded by national and provincial foundations and has received awards, including the “Liaoning Province Millions of Talents Project” and Shenyang City Natural Academic Achievement Award. She actively reviews for journals like The Journal of Physical Chemistry and RSC Advances, contributing to the global research community.

Profile:

Education

Prof. Tingting Yan holds a strong educational background in Condensed Matter Physics, which she pursued at Jilin University, one of China’s leading research institutions. She earned her Ph.D. in 2015 from the State Key Laboratory of Superhard Materials, focusing on the study of energetic materials and organic polymorphs under high pressure, under the supervision of renowned scholars, Prof. Guangtian Zou and Bo Zou. Prior to her doctorate, she completed her M.S. in Condensed Matter Physics in 2012, also from Jilin University, where she conducted significant research on hydrogen-bonded organic crystals under high pressure. Her educational journey began with a B.S. in Physics, completed in 2010 from Jilin University, where she also took a minor in Business Administration. This diverse and comprehensive academic training laid the foundation for her expertise in material behavior under extreme conditions and positioned her for a successful research career.

Professional Experience

Prof. Tingting Yan has been a dedicated academic and researcher at Shenyang Jianzhu University since 2012, where she currently holds the position of Professor in the School of Science. Her expertise lies in Condensed Matter Physics, particularly focusing on energetic materials, hydrogen-bonded polycrystalline materials, and perovskite materials. She began her career as an Associate Professor and Master Tutor in 2015, playing a vital role in mentoring graduate students. Throughout her tenure, she has led several research projects, including grants from the National Natural Science Foundation of China, and has contributed significantly to advancing knowledge in material sciences under extreme conditions. Prof. Yan is also an active reviewer for reputable journals such as The Journal of Physical Chemistry and RSC Advances. Her professional journey reflects her commitment to scientific innovation and education, helping shape future physicists through her teaching and research contributions.

Research Interest

Prof. Tingting Yan’s research interests center around Condensed Matter Physics, with a particular focus on understanding the properties and behavior of materials under extreme conditions. She is actively engaged in studying energetic materials, which have important applications in various industries, including defense and energy. Her work on hydrogen-bonded polycrystalline materials explores the role of hydrogen bonding in determining the structural and dynamic properties of crystals, providing insights into material stability and reactivity under pressure. Additionally, Prof. Yan has a strong interest in perovskite materials, which are known for their remarkable electronic and optical properties, making them key candidates for next-generation solar cells and other advanced technologies. Combining experimental techniques such as TEM and SEM with theoretical approaches like first-principle calculations, her research contributes to both the fundamental understanding and practical applications of these materials, pushing the boundaries of material science.

Research Skills

Prof. Tingting Yan possesses a broad range of research skills, primarily in Condensed Matter Physics. She has significant hands-on experience with Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), which she utilizes for high-precision material characterization. Her expertise extends to first-principle calculations to study the pressure-induced behavior of materials, allowing her to investigate their structural and electronic properties. Prof. Yan is proficient in synthesizing polymorphic phases of both organic and inorganic crystals, further enhancing her experimental research capabilities. She is also well-versed in using advanced scientific software such as Material Studio, Gaussian, MDI-Jade, Peakfit, and GSAS for data analysis, modeling, and simulation. Her skills in both theoretical and experimental research allow her to conduct comprehensive studies in areas like energetic materials and hydrogen-bonded organic crystals, making her a well-rounded researcher in the field of condensed matter physics.

Award and Recognition

Prof. Tingting Yan has earned significant recognition for her contributions to Condensed Matter Physics. She was honored with the prestigious Liaoning Province Millions of Talents Project Award in 2018, a testament to her expertise and impact in her field. Her research excellence has also been acknowledged through the Liaoning Province Natural Academic Achievement Award, where she secured third prize, and the Shenyang City Natural Academic Achievement Award, winning first prize in 2018. These accolades highlight her pioneering work in areas such as energetic materials and hydrogen-bonded polycrystalline materials. In addition to these honors, Prof. Yan plays an influential role within the academic community as a reviewer for renowned journals, including The Journal of Physical Chemistry and RSC Advances. Her consistent achievements and leadership in research projects, supported by national and provincial grants, further underscore her status as a highly respected figure in the scientific community.

Conclusion

Prof. Tingting Yan’s extensive research in Condensed Matter Physics, combined with her impressive technical skills and recognition within China, makes her a strong contender for the Best Researcher Award. Her strengths lie in her deep scientific knowledge, proven ability to secure research funding, and valuable contributions to the academic community. However, for global recognition, expanding international collaborations and increasing high-impact publications could enhance her standing even further. Overall, she is a highly qualified candidate deserving of this prestigious award.

Publication Top Notes

  1. Title: High-pressure behavior of hydrogen-bonded polymorphic material 1-methylhydantoin Form-I
    • Authors: Yan, T.-T., Jiang, R., Xi, D.-Y., Ma, L., Zhang, D.-D.
    • Year: 2024
    • Journal: Physics Letters, Section A: General, Atomic and Solid State Physics
    • Volume: 521
    • Article Number: 129742
  2. Title: In-situ high pressure study of hydrogen-bonded energetic material N-nitropyrazole
    • Authors: Yan, T.-T., Xu, Y.-F., Xi, D.-Y., Zhang, D.-D., Jiang, R.
    • Year: 2024
    • Journal: Chemical Physics Letters
    • Volume: 852
    • Article Number: 141501
  3. Title: High-pressure behavior of hydrogen-bonded organic crystal trifluoroacetamide
    • Authors: Yan, T.-T., Jiang, R., Xi, D.-Y., Zhang, D.-D., Xu, Y.-F.
    • Year: 2024
    • Journal: Chemical Physics Letters
    • Volume: 850
    • Article Number: 141472
  4. Title: Lubricating properties of thymol-based deep eutectic solvents
    • Authors: Li, T., Zhang, Z., Wang, J., Zhang, L., Wei, X.
    • Year: 2024
    • Journal: Industrial Lubrication and Tribology
    • Volume: 76(6), pp. 759–768
  5. Title: High pressure study of hydrogen-bonded energetic material 4-nitropyrazole
    • Authors: Yan, T.-T., Xu, Y.-F., Xi, D.-Y., Jiang, R., Zhang, D.-D.
    • Year: 2024
    • Journal: Physics Letters, Section A: General, Atomic and Solid State Physics
    • Volume: 512
    • Article Number: 129567

Mahmoud Ghuniem | Analytical Chemistry | Best Researcher Award

Dr. Mahmoud Ghuniem | Analytical Chemistry | Best Researcher Award

Researcher at Agricultural Research Center, Egypt

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem is a distinguished researcher and Deputy of the Heavy Metals Head Group at the Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center, Egypt. With over 14 years of expertise in heavy metals analysis and laboratory management, Ghuniem is proficient in advanced techniques like Flame Atomic Absorption Spectrometry and Inductively Coupled Plasma Mass Spectrometry. He holds a PhD in Chemistry from Ain Shams University and has an impressive publication record in high-impact journals, addressing critical issues in food safety and environmental health. His commitment to professional growth is evident through numerous advanced training courses and workshops. Ghuniem’s work has earned him multiple certificates of appreciation from Modern Sciences and Arts University. His extensive experience, technical proficiency, and impactful research make him a strong candidate for the Research for Best Researcher Award.

Profile

Education

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem holds a robust academic foundation in applied chemistry. He completed his Bachelor of Science in Applied Chemistry at the Faculty of Science, Ain Shams University, in 2009. Building on this, he pursued a Master of Science in Chemistry at the same institution from 2014 to 2016. His academic journey culminated with a Doctorate in Chemistry from Ain Shams University in 2019. His doctoral research and subsequent work have focused extensively on heavy metals and analytical methods, underpinning his expertise in environmental and food safety analyses. His educational background is complemented by numerous specialized courses and training programs, enhancing his skills in advanced chromatographic techniques, laboratory management, and international standards for laboratory accreditation. This solid educational foundation supports his role as a Deputy Head of the Heavy Metals Group and a recognized researcher in his field.

Professional Experience

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem boasts over 14 years of extensive professional experience in the field of heavy metals analysis and laboratory management. As the Deputy Head of the Heavy Metals Group at the Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Agricultural Research Center, Egypt, he plays a pivotal role in developing and validating analytical methods for metal contaminants in diverse matrices, including food, water, and environmental samples. His technical expertise spans advanced techniques such as Flame Atomic Absorption Spectrometry (F-AAS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Hydride Generation Atomic Absorption Spectrometry (HG-AAS). Ghuniem also serves as a Technical Expert/Assessor with the Egyptian Accreditation Council (EGAC), ensuring laboratory compliance with ISO standards. His experience is further enriched by his involvement in procuring laboratory equipment and his commitment to continuous professional development through various advanced training courses.

Research Interest

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem’s research interests primarily revolve around the analysis and management of heavy metals in various matrices, including food, water, and environmental samples. His expertise encompasses developing and validating advanced analytical methods for detecting metal contaminants using techniques such as Flame Atomic Absorption Spectrometry (F-AAS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Hydride Generation Atomic Absorption Spectrometry (HG-AAS). Ghuniem’s work is crucial in assessing the potential health risks associated with heavy metal exposure, particularly through food and environmental sources. His research also focuses on optimizing methodologies for the determination of essential and toxic elements in food products and environmental samples. By addressing these critical issues, his work contributes to ensuring food safety and environmental protection, aligning with public health interests and regulatory standards.

Research Skills

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem possesses a strong set of research skills honed over 14 years in the field of heavy metals analysis. His expertise includes the development and validation of analytical methods for detecting metal contaminants in diverse matrices such as food, water, and environmental samples. He is proficient in utilizing advanced techniques and instruments, including Flame Atomic Absorption Spectrometry (F-AAS), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), and Hydride Generation Atomic Absorption Spectrometry (HG-AAS). Ghuniem’s ability to implement rigorous methodologies and handle sophisticated equipment underscores his technical adeptness. Additionally, his extensive experience with laboratory accreditation and compliance with ISO standards demonstrates his commitment to maintaining high-quality research practices. His publication record further reflects his research proficiency, with numerous contributions to high-impact journals addressing critical issues in environmental and food safety.

Award and Recognition

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem has been recognized for his exceptional contributions to the field of heavy metals analysis and environmental safety. With over 14 years of experience at the Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, his expertise spans various advanced analytical techniques. His research, published in high-impact journals, addresses critical issues such as metal contaminants in food and water, contributing significantly to public health and environmental protection. Ghuniem has earned multiple certificates of appreciation from Modern Sciences and Arts University, acknowledging his outstanding performance and dedication. His commitment to continuous professional development through advanced training courses and workshops further underscores his excellence in the field. These awards and recognitions highlight his pivotal role in advancing analytical methods and ensuring safety standards, affirming his status as a distinguished researcher and leader in his domain.

Conclusion

Mahmoud Mustafa Abd El Aziem Mohammed Ghuniem is a highly qualified candidate for the Research for Best Researcher Award. His extensive experience, technical skills, and significant research contributions position him as a strong contender. Enhancing the practical applications of his research, fostering interdisciplinary collaborations, and expanding his funding sources could further strengthen his profile. His dedication to continuous professional development and recognized achievements underline his suitability for this award.

Publications Top Notes

  1. Title: Determination of Some Element’s Migrants in Aqueous Simulant from Plastic Food Contact Products by Inductively Coupled Plasma Mass Spectrometer
    • Authors: Ghuniem, M.M.
    • Year: 2024
    • Citations: 0
  2. Title: Exposure and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in River Nile of Egypt
    • Authors: Refai, H.M., Helmy, A.M., Ghuniem, M.M.
    • Year: 2024
    • Citations: 3
  3. Title: Assessment of Human Health Risk Due to Potentially Toxic Elements Intake via Consumption of Egyptian Rice-Based and Wheat-Based Baby Cereals
    • Authors: Ghuniem, M.M., Khorshed, M.A., El-Safty, S.M., Souaya, E.R., Khalil, M.M.H.
    • Year: 2022
    • Citations: 8
  4. Title: Potential Human Health Risk Assessment of Potentially Toxic Elements Intake via Consumption of Soft Drinks Purchased from Different Egyptian Markets
    • Authors: Ghuniem, M.M., Khorshed, M.A., El-Safty, S.M., Souaya, E.R., Khalil, M.M.
    • Year: 2022
    • Citations: 9
  5. Title: Rapid Determination of Mercury in Dust Emission Using Cold Vapour Inductively Coupled Plasma Optical Emission Spectrometer (CV ICP OES)
    • Authors: El-Safty, S.M., Khorshed, M.A., Ghuniem, M.M.
    • Year: 2022
    • Citations: 9
  6. Title: Determination of Some Essential and Toxic Elements Composition of Commercial Infant Formula in the Egyptian Market and Their Contribution to Dietary Intake of Infants
    • Authors: Ghuniem, M.M., Khorshed, M.A., Khalil, M.M.H.
    • Year: 2020
    • Citations: 17
  7. Title: Method Validation for Direct Determination of Some Trace and Toxic Elements in Soft Drinks by Inductively Coupled Plasma Mass Spectrometry
    • Authors: Ghuniem, M.M., Khorshed, M.A., Souaya, E.R.
    • Year: 2019
    • Citations: 21
  8. Title: Optimization and Validation of an Analytical Method for the Determination of Some Trace and Toxic Elements in Canned Fruit Juices Using Quadrupole Inductively Coupled Plasma Mass Spectrometer
    • Authors: Ghuniem, M.M., Khorshed, M.A., Souaya, E.R.
    • Year: 2019
    • Citations: 15

 

RAM KUMAR P | Chemistry | Best Researcher Award

Dr. RAM KUMAR P | Chemistry | Best Researcher Award

Assistant Professor of Thiagarajar College of Engineering, Madurai, India.

Dr. P. Ram Kumar is an Assistant Professor of Chemistry at Thiagarajar College of Engineering, Madurai, Tamil Nadu, India. With a strong academic background, including a PhD in Chemistry from Anna University, his research interests encompass a wide range of innovative topics such as the development of meso and β-functionalized porphyrins, semiconductor photoanode materials for dye-sensitized solar cells (DSSCs), and the synthesis of porous aerogels for energy and photocatalysis applications. Dr. Ram Kumar has made significant contributions to the field of material science, particularly in the synthesis and application of metal-organic frameworks, quantum dots, and modified carbon nanostructures. He has published extensively in high-impact journals, with a cumulative impact factor of 85.1. His work is recognized in the scientific community, reflected by his role as a research guide and supervisor at Anna University. His expertise in advanced instrumentation and experimental techniques further solidifies his standing in the field.

Profile
Education

Dr. P. Ram Kumar pursued his academic journey in Chemistry with notable accomplishments. He earned his Bachelor’s degree in Chemistry from S.T. Hindu College, Nagercoil, affiliated with Manonmaniam Sundaranar University, in 2013. He continued his studies at Noorul Islam University, Kumaracoil, where he completed his Master’s degree in Chemistry with distinction in 2015. Dr. Kumar further advanced his expertise by obtaining a Ph.D. in Chemistry from PSN College of Engineering & Technology, Tirunelveli, under the supervision of Associate Professor Dr. E. M. Mothi, in 2020. His doctoral research focused on synthesizing and investigating porphyrins for dye-sensitized solar cells, reflecting his deep engagement in materials chemistry and energy applications. His academic background provides a solid foundation for his current role as an Assistant Professor in the Department of Science and Humanities at Thiagarajar College of Engineering, Madurai.

Professional Experience

Dr. P. Ram Kumar is an accomplished Assistant Professor of Chemistry at Thiagarajar College of Engineering, Madurai, with a diverse academic background and extensive experience in research and teaching. He has held previous positions at various institutions, including National Engineering College, Lord Jegannath College of Engineering & Technology, and PSN College of Engineering & Technology. Dr. Kumar earned his PhD in Chemistry from PSN College of Engineering & Technology, where his research focused on porphyrins for dye-sensitized solar cells. He has actively contributed to numerous research projects, securing funding from organizations such as UGC and DST-SERB. Dr. Kumar’s research interests include functionalized porphyrins, photoanode materials, and metal-organic frameworks. His expertise is supported by a robust publication record in high-impact journals, and he has presented his work at various national and international conferences, reflecting his significant contributions to the field of chemistry and materials science.

Research Interest

Dr. P. Ram Kumar’s research focuses on several innovative areas within chemistry and materials science. His work primarily involves the development of simplified synthetic routes to meso and β-functionalized porphyrins, which are crucial for various applications, including dye-sensitized solar cells (DSSCs). He explores new semi-conducting photoanode materials such as titanates and stannates for enhancing the efficiency of DSSCs. Dr. Kumar is also dedicated to synthesizing and applying porous aerogels in energy and photocatalysis, and investigating metal-organic frameworks (MOFs) for energy applications. His research includes the development of chemosensors, modified carbon nanostructures, and quantum dots for LED applications. Dr. Kumar’s work contributes significantly to advancing materials for energy conversion and storage, highlighting his expertise in creating novel materials and technologies that address contemporary challenges in energy and environmental sciences.

Research Skills

Dr. P. Ram Kumar possesses a robust set of research skills essential for advancing in the field of chemistry and material sciences. His expertise includes the synthesis and characterization of advanced materials such as porphyrins, metal-organic frameworks, and quantum dots, demonstrating proficiency in developing innovative solutions for energy and photocatalysis applications. He is adept in a range of instrumental techniques including FT-IR, UV-Vis spectrophotometry, and impedance spectroscopy, which are crucial for analyzing material properties and performance. Dr. Kumar’s experience extends to hands-on skills with Schlenk line techniques, sol-gel processing, and electrochemical measurements. His work on dye-sensitized solar cells (DSSCs) and porous aerogels highlights his ability to integrate experimental findings with theoretical models, contributing to advancements in renewable energy technologies. Furthermore, his role as a research guide and supervisor showcases his capability in mentoring and guiding PhD students, reflecting his comprehensive understanding of both fundamental and applied chemistry.

Awards and Recognition

Dr. P. Ram Kumar has received notable recognition throughout his career. In 2015, he achieved third rank in his MSc Chemistry program at Noorul Islam University. His research excellence was further acknowledged with the PSN Research Fellowship, awarded from 2016 to 2019. Dr. Kumar’s academic contributions have been well-received in the scientific community, as evidenced by his cumulative impact factor of 85.1 and multiple high-impact publications. He has presented his research at several prestigious conferences, including winning the Best Paper Award at the National Conference on Recent Advances in Chemical Sciences in 2017. Additionally, Dr. Kumar’s work has been recognized for its innovative approach in solar energy materials and photocatalysis, reinforcing his reputation as a leading researcher in his field. His commitment to advancing scientific knowledge is reflected in his ongoing contributions to both research and academic mentorship.

Conclusion

Dr. P. Ram Kumar is a strong candidate for the Research for Life Sciences Innovation Award, particularly due to his innovative research in energy materials and photocatalysis. His work is well-aligned with the award’s focus on innovation and impact. To strengthen his candidacy further, he could focus on increasing patent activity, participating in more international conferences, and exploring interdisciplinary research opportunities that align with life sciences applications.

Publications Top Notes

  1. “Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells”
    • Authors: V Ramasubbu, PR Kumar, EM Mothi, K Karuppasamy, HS Kim, …
    • Journal: Applied Surface Science
    • Year: 2019
    • Volume: 496
    • Article Number: 143646
    • Citations: 80
  2. “Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging”
    • Authors: N Bhuvanesh, S Suresh, PR Kumar, EM Mothi, K Kannan, VR Kannan, …
    • Journal: Journal of Photochemistry and Photobiology A: Chemistry
    • Year: 2018
    • Volume: 360
    • Pages: 6-12
    • Citations: 30
  3. “Zn (II) porphyrin sensitized (TiO2@ Cd-MOF) nanocomposite aerogel as novel photocatalyst for the effective degradation of methyl orange (MO) dye”
    • Authors: V Ramasubbu, PR Kumar, T Chellapandi, G Madhumitha, EM Mothi, …
    • Journal: Optical Materials
    • Year: 2022
    • Volume: 132
    • Article Number: 112558
    • Citations: 29
  4. “Zinc titanate nanomaterials—Photocatalytic studies and sensitization of hydantoin derivatized porphyrin dye”
    • Authors: M Sarkar, S Sarkar, A Biswas, S De, PR Kumar, EM Mothi, A Kathiravan
    • Journal: Nano-Structures & Nano-Objects
    • Year: 2020
    • Volume: 21
    • Article Number: 100412
    • Citations: 28
  5. “Porphyrin-sensitized quasi-solid solar cells with MOF composited titania aerogel photoanodes”
    • Authors: PR Kumar, V Ramasubbu, XS Shajan, EM Mothi
    • Journal: Materials Today Energy
    • Year: 2020
    • Volume: 18
    • Article Number: 100511
    • Citations: 26
  6. “Synthesis and electronic properties of A3B-thienyl porphyrins: experimental and computational investigations”
    • Authors: PR Kumar, NJ Britto, A Kathiravan, A Neels, M Jaccob, EM Mothi
    • Journal: New Journal of Chemistry
    • Year: 2019
    • Volume: 43(3)
    • Pages: 1569-1580
    • Citations: 23
  7. “Zn-Porphyrin propped with hydantoin anchor: synthesis, photophysics and electron injection/recombination dynamics”
    • Authors: PR Kumar, EM Mothi, M Ramesh, A Kathiravan
    • Journal: Physical Chemistry Chemical Physics
    • Year: 2018
    • Volume: 20(7)
    • Pages: 5117-5127
    • Citations: 15
  8. “Pyridyl/hydroxyphenyl versus carboxyphenyl anchoring moieties in Zn–Thienyl porphyrins for dye-sensitized solar cells”
    • Authors: PR Kumar, XS Shajan, EM Mothi
    • Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2020
    • Volume: 224
    • Article Number: 117408
    • Citations: 13
  9. “Experimental and simulation studies of platinum-free counter electrode material for titania aerogel-based quasi-solid dye-sensitized solar cell”
    • Authors: SC Ramesh, P Ramkumar, CC Columbus, XS Shajan
    • Journal: IEEE Journal of Photovoltaics
    • Year: 2020
    • Volume: 10(6)
    • Pages: 1757-1761
    • Citations: 11
  10. “Oxygenated carbon functionalized TiO2 aerogel surface: Facile synthesis, surface, structural and photovoltaic investigations”
    • Authors: PR Kumar, S Alwin, XS Shajan
    • Journal: Surfaces and Interfaces
    • Year: 2023
    • Volume: 37
    • Article Number: 102727
    • Citations: 7

 

Pijus Kumar Sasmal | Medicinal Inorganic Chemistry | Best Researcher Award

Assist Prof Dr. Pijus Kumar Sasmal | Medicinal Inorganic Chemistry | Best Researcher Award

Assistant Professor of Jawaharlal Nehru University, India.

Dr. Pijus Kumar Sasmal is an Assistant Professor at the School of Physical Sciences, Jawaharlal Nehru University, New Delhi. With a Ph.D. from the Indian Institute of Science, Bangalore, and extensive postdoctoral experience at prestigious institutions like Princeton University, Rutgers University, and Philipps Universität Marburg, his research spans the interface of chemistry and biology. Dr. Sasmal’s work focuses on the design and synthesis of novel organic and inorganic compounds for applications in chemical biology and medicinal therapeutics, including targeted metal-based anticancer and antimicrobial agents, bioorthogonal chemistry, and photoactivatable prodrugs. He has published 31 research articles, with an h-index of 17 and over 1,400 citations. His contributions have earned him several awards, including the CRSI Young Scientist Award and the Early Career Research Award from SERB-DST. Dr. Sasmal’s innovative research positions him as a leading figure in his field, with significant potential for future advancements.

Profile
Education

Dr. Pijus Kumar Sasmal is a distinguished academic with a strong foundation in chemistry. He completed his Ph.D. in Inorganic and Physical Chemistry from the prestigious Indian Institute of Science (IISc), Bangalore, in April 2010. His doctoral research, under the guidance of Prof. Akhil R. Chakravarty, focused on the chemistry of oxovanadium(IV) complexes and their photoinduced cytotoxicity and DNA cleavage activity, which set the stage for his future work in chemical biology and medicinal therapeutics. Prior to his Ph.D., Dr. Sasmal earned his M.Sc. in Chemistry from the Indian Institute of Technology (IIT), Guwahati, in 2005, where he conducted research on the synthesis of β-arylvinylbromides via brominative decarboxylation under the supervision of Prof. Bhisma K. Patel. His academic journey began with a B.Sc. in Chemistry (Honors) from Midnapore College, Vidyasagar University, West Bengal, which he completed in 2003.

Professional Experience

Dr. Pijus Kumar Sasmal is an accomplished Assistant Professor at the School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi, where he has been serving since October 2015. With a strong foundation in chemistry and chemical biology, Dr. Sasmal’s expertise extends to cutting-edge research in the design and synthesis of novel organic and inorganic compounds for applications in chemical biology and medicinal therapeutics. Prior to his current role, he gained extensive international experience through postdoctoral fellowships at prestigious institutions, including Princeton University and Rutgers University in the USA, as well as Philipps Universität Marburg in Germany. His research during these fellowships focused on advanced topics such as polymeric nanoparticles for targeted drug delivery, hydrogel-nanoparticle hybrid scaffolds, and metal complex catalysis within living biological systems. Dr. Sasmal’s professional journey reflects his dedication to advancing the frontiers of chemical and biological research.

Research Interest

Dr. Pijus Kumar Sasmal’s research bridges the disciplines of chemistry and biology, with a focus on the design and synthesis of novel organic and inorganic compounds for biomedical applications. His research interests encompass the development of targeted metal-based anticancer and antimicrobial agents, which are tailored to enhance therapeutic efficacy and minimize side effects. Dr. Sasmal also investigates metal-catalyzed bioorthogonal chemistry within living cells, aiming to achieve precise chemical transformations without interfering with native biological processes. Additionally, his work explores the creation of photoactivatable prodrugs that allow for site-selective and controlled drug activation within cells. Another key area of his research involves the development of metal complexes as biosensors for detecting biologically important molecules, contributing to advancements in diagnostics and therapeutic monitoring. Overall, Dr. Sasmal’s research is driven by the goal of integrating chemical innovation with biological systems to address critical challenges in medicine.

Research Skills

Dr. Pijus Kumar Sasmal is an accomplished researcher with extensive expertise in the interdisciplinary field of chemistry and biology. His research skills encompass the design and synthesis of novel organic and inorganic compounds, particularly metal-based agents, for applications in chemical biology and medicinal therapeutics. Dr. Sasmal has a strong command over metal-catalyzed bioorthogonal chemistry, photoactivatable prodrugs, and biosensors for detecting biologically significant molecules. His experience in targeted drug delivery and imaging applications through polymeric nanoparticles and hydrogel-nanoparticle hybrid scaffolds further highlights his innovative approach to addressing complex biological challenges. Dr. Sasmal’s ability to integrate chemistry with biological systems, coupled with his proficiency in advanced spectroscopic and imaging techniques, has enabled him to make significant contributions to the development of anticancer and antimicrobial agents. His research is well-documented, with numerous high-impact publications, demonstrating his capacity for leading cutting-edge research in chemical biology.

 Awards and Recognition

Dr. Pijus Kumar Sasmal, an esteemed Assistant Professor at Jawaharlal Nehru University, has garnered significant recognition for his contributions to the field of chemistry. Among his notable accolades is the prestigious CRSI Young Scientist Award in February 2023, highlighting his exceptional research achievements. He was also honored with the Early Career Research Award by SERB-DST in 2016, a testament to his promising work in the early stages of his career. Additionally, Dr. Sasmal received a Start-Up Grant from the University Grants Commission (UGC) in 2016, further supporting his innovative research endeavors. His doctoral work earned him the Best Ph.D. Thesis Award for the academic year 2010-2011 from the Department of Inorganic and Physical Chemistry at IISc Bangalore. His dedication to research has been consistently recognized, reflecting his outstanding contributions to the advancement of chemical sciences.

Conclusion

Dr. Pijus Kumar Sasmal is a highly qualified candidate for the Research for Best Researcher Award. His significant contributions to chemical biology and medicinal chemistry, coupled with prestigious awards and a robust publication record, highlight his excellence as a researcher. To further strengthen his candidacy, enhancing the visibility and application of his research through patents, expanding leadership roles, and diversifying his publication outlets could be beneficial. Overall, his achievements and ongoing research efforts make him a strong contender for this award.

Publications Top Notes

  • Organoiridium-catalyzed bioorthogonal chemistry
    • Authors: Chauhan, D., Prasad, P., Sasmal, P.K.
    • Journal: Coordination Chemistry Reviews
    • Year: 2024
  • Nitrodopamine modified MnO2 NS-MoS2QDs hybrid nanocomposite for the extracellular and intracellular detection of glutathione
    • Authors: Sivakumar, G., Gupta, A., Babu, A., Sasmal, P.K., Maji, S.
    • Journal: Journal of Materials Chemistry B
    • Year: 2024
    • Citations: 4
  • Multifunctional Iridium(III)-Platinum(IV) Conjugates as Potent Anticancer Theranostic Agents
    • Authors: Gupta, A., Pandey, A.K., Mondal, T., Bhattacharya, J., Sasmal, P.K.
    • Journal: Journal of Medicinal Chemistry
    • Year: 2023
    • Citations: 6
  • Development of Mitochondria Targeting AIE-Active Cyclometalated Iridium Complexes as Potent Antimalarial Agents
    • Authors: Kumari, G., Gupta, A., Sah, R.K., Singh, S., Sasmal, P.K.
    • Journal: Advanced Healthcare Materials
    • Year: 2023
    • Citations: 7
  • Visible and NIR light photoactivatable o-hydroxycinnamate system for efficient drug release with fluorescence monitoring
    • Authors: Gupta, A., Singh, N., Gautam, A., Kumar, S., Sasmal, P.K.
    • Journal: RSC Medicinal Chemistry
    • Year: 2023
    • Citations: 4
  • COVID-19 detection using AIE-active iridium complexes
    • Authors: Gupta, A., Adarsh, T., Manchanda, V., Sasmal, P.K., Gupta, S.
    • Journal: Dalton Transactions
    • Year: 2023
    • Citations: 6
  • AIE-active cyclometalated iridium(iii) complexes for the detection of lipopolysaccharides and wash-free imaging of bacteria
    • Authors: Gautam, A., Gupta, A., Prasad, P., Sasmal, P.K.
    • Journal: Dalton Transactions
    • Year: 2023 (Article in Press)
    • Citations: 8
  • Algal Biomass-Loaded Hydrogel Scaffolds as a Biomimetic Platform with Antibacterial and Wound Healing Activities
    • Authors: Agarwal, A., Kumar, A., Garg, P., Chowdhury, C., Mukherjee, M.
    • Journal: ACS Applied Polymer Materials
    • Year: 2022
    • Citations: 4
  • Photoactivatable o-Hydroxycinnamic Platforms for Bioimaging and Therapeutic Release
    • Authors: Gupta, A., Gautam, A., Sasmal, P.K.
    • Journal: Journal of Medicinal Chemistry
    • Year: 2022
    • Citations: 3
  • Mitochondria-Targeted Photoactivatable Real-Time Monitoring of a Controlled Drug Delivery Platform
    • Authors: Singh, N., Gupta, A., Prasad, P., Gupta, S., Sasmal, P.K.
    • Journal: Journal of Medicinal Chemistry
    • Year: 2021
    • Citations: 12

 

Girish wadhwa | Neuroscience | Best Researcher Award

Dr. Girish wadhwa | Neuroscience | Best Researcher Award

Post doctoral Researcher at University of Ferrara, Italy

Dr. Girish Wadhwa is a dedicated and highly motivated researcher with a Ph.D. in VLSI Design from Dr. B R Ambedkar National Institute of Technology, Jalandhar. His doctoral research focused on the modeling, simulation, and design analysis of charge plasma-based dielectric modulated gate underlap Tunnel Field Effect Transistor (TFET) biosensors using Silvaco and Matlab/Maple. Dr. Wadhwa has significant expertise in semiconductor process engineering, nano processor and sensor design, and the study of graphene and 2D materials. His academic journey includes teaching roles at several prestigious institutions and current postdoctoral research at the University of Ferrara, Italy. He is known for his problem-solving abilities, leadership qualities, and outstanding management skills, contributing significantly to both academic and research environments.

Professional Profiles:

Education

Girish Wadhwa holds a Ph.D. in VLSI Design from Dr. B R Ambedkar National Institute of Technology, Jalandhar. His doctoral research focused on advanced methodologies and technologies in Very-Large-Scale Integration (VLSI) Design, contributing to the field’s knowledge and application. Prior to his Ph.D., he earned an M.Tech in VLSI Design from Maharishi Markandeshwar University, achieving a CGPA of 7.41. His master’s studies provided him with a strong foundation in VLSI design principles and practices. Girish’s academic journey began with a B.Tech in Electronics and Communication Engineering from Kurukshetra University, where he graduated with a 68% score. This undergraduate degree laid the groundwork for his specialization in electronics and communication, shaping his career path and research interests in VLSI design. His educational background reflects a solid and progressive engagement with electronic systems and integrated circuit design.

Professional Experience

Dr. Girish Wadhwa is currently serving as a Postdoctoral Researcher at the University of Ferrara, Italy, since October 1, 2023. Prior to this role, he was an Assistant Professor at Chitkara University from October 2022 to September 2023. His extensive teaching career includes positions as an Assistant Professor at NIT Jalandhar (September 2013 to December 2016), RPIIT (September 2012 to September 2013), MIET (August 2011 to August 2012), and GIMT Kanipla (July 2008 to August 2011). He began his academic career as a Lecturer at SKIET (August 2006 to May 2008). Dr. Wadhwa has a strong background in semiconductor nanodevice research, modeling and TCAD simulation, and digital circuit design using VHDL.

Research Interest

Girish Wadhwa specializes in semiconductor process engineering with a strong focus on modeling and simulation of semiconductor processes. His expertise encompasses reliability studies and failure analysis, crucial for optimizing semiconductor device performance and longevity. He is deeply involved in the design and development of nano processors and sensors, exploring cutting-edge technologies in this field. Wadhwa’s research includes advanced work on graphene and other 2D materials, which are pivotal for next-generation semiconductor applications. His work extends to nanoscale semiconductor devices, such as Nanowire FETs, Nanosheets FETs, and 2D materials, as well as Tunnel FETs (TFETs), vertical structures, organic FETs, FinFETs, carbon nanotubes (CNTs), and ferroelectric materials. His contributions are significant in advancing the development of high-performance, miniaturized semiconductor devices, enhancing both their efficiency and functionality in various applications.

Award and Honors

Dr. Girish Wadhwa has been recognized for his academic and teaching excellence throughout his career. He was awarded the Best Teacher Award at GIMT for the session 2010, highlighting his exceptional teaching skills and dedication. His research contributions have earned him accolades in the field of semiconductor devices, particularly for his work on charge plasma-based dielectric modulated gate underlap Tunnel Field Effect Transistor (TFET) biosensors. This research significantly advances biosensor technology, offering improved performance through innovative techniques. His contributions are widely acknowledged in the academic community, reflecting his expertise and commitment to advancing semiconductor and nanotechnology fields.

Research Skills

Dr. Girish Wadhwa demonstrates robust research skills in semiconductor process engineering and nanoscale device design. He excels in modeling and simulation using advanced tools like MATLAB, Maple, Silvaco, Cadence, Sentaurus, and PSPICE, facilitating precise analysis and design of semiconductor devices. His expertise extends to digital circuit design with VHDL, enhancing his capability to develop and optimize complex circuits. Dr. Wadhwa’s research involves a deep understanding of nanoscale semiconductor devices, including Nanowire FETs, Nanosheets FETs, TFETs, and 2D materials. His work in reliability study, failure analysis, and sensor design highlights his ability to address critical challenges in semiconductor technology. Proficient in analyzing device performance and reliability, he adeptly employs modeling techniques to improve device efficiency and functionality. His skills contribute significantly to advancing knowledge in semiconductor processes and nanotechnology.

Publications
  1. Recent Advances and Progress in the Development of the Field Effect Transistor Biosensor: A Review
    • Authors: T. Wadhera, D. Kakkar, G. Wadhwa, B. Raj
    • Journal: Journal of Electronic Materials
    • Volume: 48
    • Pages: 7635-7646
    • Year: 2019
    • Citations: 166
  2. Label-Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET
    • Authors: G. Wadhwa, B. Raj
    • Journal: Journal of Electronic Materials
    • Volume: 47
    • Pages: 4683-4693
    • Year: 2018
    • Citations: 135
  3. Design, Simulation, and Performance Analysis of JLTFET Biosensor for High Sensitivity
    • Authors: G. Wadhwa, B. Raj
    • Journal: IEEE Transactions on Nanotechnology
    • Volume: 18
    • Pages: 567-574
    • Year: 2019
    • Citations: 120
  4. Parametric Variation Analysis of Symmetric Double Gate Charge Plasma JLTFET for Biosensor Application
    • Authors: G. Wadhwa, B. Raj
    • Journal: IEEE Sensors Journal
    • Volume: 18
    • Issue: 15
    • Pages: 6070-6077
    • Year: 2018
    • Citations: 76
  5. Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance
    • Authors: S. Badgujjar, G. Wadhwa, S. Singh, B. Raj
    • Journal: Transactions on Electrical and Electronic Materials
    • Volume: 21
    • Pages: 74-82
    • Year: 2020
    • Citations: 61

Tesfaye Abebe Geleta | Chemistry Department | Best Researcher Award

Dr. Tesfaye Abebe Geleta | Chemistry Department | Best Researcher Award

Postdoctoral Research Fellow at National Taiwan University, Taiwan

Dr. Tesfaye Abebe Geleta is a Postdoctoral Research Fellow at National Taiwan University, specializing in photocatalysis and environmental remediation. His research focuses on the photocatalytic activity of perovskite/graphitic carbon nitride heterojunctions for degrading pollutants. With a strong background in computational simulations and density functional theory (DFT), Dr. Geleta also has extensive experience in materials characterization using various analytical techniques, including XRD, TEM, and SEM. His previous roles include Senior Application Engineer at MacDermid Alpha Electronics Solutions and Research Assistant at Chung Yuan Christian University. Dr. Geleta holds a Ph.D. in Solar Energy Harvesting from National Taiwan University of Science and Technology, an M.Sc. in Quantum Optics from Addis Ababa University, and a B.Sc. in Physics from Wollega University. His expertise extends to nanomaterials synthesis, renewable energy technologies, and advanced membrane technologies.

Professional Profiles:

Education

Dr. Tesfaye Abebe Geleta earned his Ph.D. in Applied Science & Technology from the National Taiwan University of Science & Technology in Taipei, Taiwan, where he focused on ZnO-Based Dye-Sensitized Solar Cells, particularly the effects of additives. Prior to this, he completed his M.Sc. in Quantum Optics at Addis Ababa University in Ethiopia, which provided him with a strong foundation in quantum physics. His academic journey began with a B.Sc. in Physics from Wollega University, also in Ethiopia. His extensive education equips him with expertise in photovoltaic materials, quantum optics, and advanced computational techniques, supporting his research and professional work in energy harvesting, photocatalysis, and membrane technology.

Professional Experience

Dr. Tesfaye Abebe Geleta is currently a Postdoctoral Research Fellow at National Taiwan University, where he focuses on the photocatalytic activity of perovskite/graphitic carbon nitride heterojunctions for environmental remediation. Before this, he worked as a Senior Application Engineer at MacDermid Alpha Electronics Solutions, specializing in surface modification of printed circuit boards (PCBs) and final finishing technologies. His earlier roles include a Research Assistant at the R&D Center for Membrane Technology at Chung Yuan Christian University, where he explored antifouling membranes, and a Lecturer in Quantum Physics at Bule Hora University in Ethiopia. He also has experience as a Physics Teacher at Hinde Secondary and Preparatory School. His diverse professional background spans academia, industry, and research, reflecting a strong focus on energy solutions, material science, and environmental technologies.

Research Interest

Dr. Tesfaye Abebe Geleta’s research interests encompass a range of advanced material sciences and energy technologies. His current work at National Taiwan University focuses on photocatalysis, specifically using perovskite/graphitic carbon nitride heterojunctions for environmental remediation. He employs density functional theory (DFT) and computational simulations to enhance photocatalytic efficiency. Additionally, he has a strong background in photovoltaic technologies, including dye-sensitized and perovskite solar cells, and membrane technology. His previous research includes quantum optics and the development of antifouling membranes. Dr. Geleta’s work integrates theoretical and practical approaches to address challenges in renewable energy and environmental sustainability.

 Award and Honors

Dr. Tesfaye Abebe Geleta has received several notable awards and honors throughout his career. In January 2023, he was recognized as a member of the Technical Program Committee for the 2nd International Conference on Smart Grid and Green Energy (ICSGGE 2023) in China. In October 2022, he was awarded a Certificate of Completion for his participation in clean ocean protection activities by MacDermid Alpha Electronics Solutions. Additionally, he received a Social Service Certificate in June 2021 from National Taiwan University for his contribution to the i-Village Digital Learning Companion Project. His achievements reflect his commitment to both his research and community service.

Research Skills

Dr. Tesfaye Abebe Geleta possesses a diverse set of research skills, including expertise in photocatalysis, computational simulations, and renewable energy technologies. He is proficient in density functional theory (DFT) and computational tools such as Quantum Espresso, CASTEP, and WIEN2k for electronic structure calculations. His technical skills encompass the characterization of materials using XRD, TEM, SEM, FTIR, and UV-Vis spectroscopy. Dr. Geleta has hands-on experience with membrane technology, including VIPS and NIPS methods, and is skilled in the synthesis and analysis of nanomaterials. Additionally, he is adept in liquid and gas chromatography, corrosion analysis, and surface roughness evaluation. His research also includes advanced knowledge in solar cell technologies, such as dye-sensitized and perovskite solar cells.

Publications

  1. Nanocomposite Photoanodes Consisting of p-NiO/n-ZnO Heterojunction and Carbon Quantum Dot Additive for Dye-Sensitized Solar Cells
    • Authors: T.A. Geleta, T. Imae
    • Year: 2021
    • Citations: 44
    • Journal: ACS Applied Nano Materials, 4 (1), 236-249
  2. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method
    • Authors: T.A. Geleta, I.V. Maggay, Y. Chang, A. Venault
    • Year: 2023
    • Citations: 35
    • Journal: Membranes, 13 (1), 58
  3. Influence of Additives on Zinc Oxide-Based Dye-Sensitized Solar Cells
    • Authors: T.A. Geleta, T. Imae
    • Year: 2020
    • Citations: 23
    • Journal: Bulletin of the Chemical Society of Japan, 93 (4), 611-620
  4. Effect of Carbon Dots on Supercapacitor Performance of Carbon Nanohorn/Conducting Polymer Composites
    • Authors: C.C. Chang, T.A. Geleta, T. Imae
    • Year: 2021
    • Citations: 18
    • Journal: Bulletin of the Chemical Society of Japan, 94 (2), 454-462
  5. Using the Dimethyl Sulfoxide Green Solvent for the Making of Antifouling PEGylated Membranes by the Vapor-Induced Phase Separation Process
    • Authors: A. Venault, H.N. Aini, T.A. Galeta, Y. Chang
    • Year: 2022
    • Citations: 8
    • Journal: Journal of Membrane Science Letters, 2 (2), 100025
  6. Engineering Sterilization-Resistant and Fouling-Resistant Porous Membranes by the Vapor-Induced Phase Separation Process Using a Sulfobetaine Methacrylamide Amphiphilic Derivative
    • Authors: A. Venault, R.J. Zhou, T.A. Galeta, Y. Chang
    • Year: 2022
    • Citations: 8
    • Journal: Journal of Membrane Science, 658, 120760
  7. First-Principle Analysis of Optical and Thermoelectric Properties in Alkaline-Based Perovskite Compounds AInCl3 (A = K, Rb)
    • Authors: D. Behera, T.A. Geleta, I. Allaoui, M. Khuili, S.K. Mukherjee, B. Akila, S. Al-Qaisi
    • Year: 2024
    • Citations: 7
    • Journal: The European Physical Journal Plus, 139 (2), 127
  8. Studies on Optoelectronic and Transport Properties of XSnBr3 (X = Rb/Cs): A DFT Insight
    • Authors: D. Behera, B. Akila, S.K. Mukherjee, T.A. Geleta, A. Shaker, M.M. Salah
    • Year: 2023
    • Citations: 7
    • Journal: Crystals, 13 (10), 1437
  9. Exploring the Mechanical, Vibrational Optoelectronic, and Thermoelectric Properties of Novel Half-Heusler FeTaX (X = P, As): A First-Principles Study
    • Authors: T.A. Geleta, D. Behera, R. Sharma, M. Mana Al-Anazy, V. Srivastava, et al.
    • Year: 2024
    • Citations: 3
    • Journal: RSC Advances, 14 (6), 4165-4178
  10. A Copolymer Derivative of Poly(4-vinylpyridine propylsulfobetaine) for the Design of Thermostable Bioinert Poly(vinylidene difluoride) Microporous Membranes by Vapor-Induced Phase Separation
    • Authors: A. Venault, T.A. Geleta, T.Y. Chiu, H.T. Lin, I.V. Maggay, Y. Chang
    • Year: 2023
    • Citations: 2
    • Journal: Separation and Purification Technology, 325, 124686