Danning Xing | Chemistry | Best Researcher Award

Dr. Danning Xing | Chemistry | Best Researcher Award

Associate Researcher from Shandong Institute of Advanced Technology, China

Dr. Danning Xing is an associate researcher at the Shandong Institute of Advanced Technology. She has a strong academic background, having earned her Ph.D. from the State Key Laboratory of Crystal Materials at Shandong University. Her research primarily focuses on the structural design and development of π-d conjugated metal-organic frameworks (MOFs) for applications in photocatalysis and electrocatalysis, which have important implications for sustainable energy and environmental protection. Dr. Xing has published 17 SCI-indexed papers in renowned journals such as Advanced Materials, Small, and Applied Catalysis B: Environmental, and holds one authorized patent. Her research has attracted increasing attention, evidenced by a citation index of 649. Dr. Xing also collaborates with leading scholars in the field, such as Prof. Biaobiao Huang, further expanding her research network and impact. She has received funding from prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Her continuous pursuit of innovative approaches positions her as a rising star in materials science.

Professional Profile

Education

Dr. Danning Xing completed her Bachelor’s degree in Chemistry from Shandong University, where she laid the foundation for her future research career. Following her undergraduate studies, she pursued a Ph.D. at the State Key Laboratory of Crystal Materials at Shandong University, where she focused on advanced materials science, specifically in the field of metal-organic frameworks (MOFs). Throughout her doctoral studies, she honed her skills in material design, catalysis, and structural characterization, preparing her for a career in cutting-edge research. Her educational journey has provided her with a deep understanding of chemistry, material science, and engineering, which she applies in her current research endeavors.

Professional Experience

Dr. Danning Xing’s professional career is marked by her transition from academia to research in applied science. After completing her doctoral studies, she took on the role of associate researcher at the Shandong Institute of Advanced Technology, where she continues to advance her work in MOF-based photocatalysis and electrocatalysis. She has been actively involved in securing research funding, including two major grants from the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China. Dr. Xing’s collaborations with notable scholars, such as Prof. Biaobiao Huang, highlight her ability to engage in high-level research projects and establish connections with leading figures in her field. Her work in research positions has enabled her to make significant strides in both academic and practical applications of materials science.

Research Interests

Dr. Danning Xing’s primary research interests lie in the design, synthesis, and application of π-d conjugated metal-organic frameworks (MOFs) for energy-related applications, particularly photocatalysis, electrocatalysis, and water splitting. Her work aims to address the challenges posed by traditional MOFs, such as poor conductivity and limited stability. She is focused on developing MOFs with enhanced electronic properties, stability, and efficiency. By incorporating small-molecule intercalation and hydrogen bond reinforcement, Dr. Xing has created MOFs with exceptional catalytic activity and long-lasting stability, making them promising candidates for sustainable energy production and environmental applications. Additionally, her work in optimizing electronic coupling through the construction of bimetallic sites represents a significant step forward in enhancing the performance of MOFs in electrocatalysis.

Research Skills

Dr. Danning Xing possesses a comprehensive set of research skills that have supported her successful career in materials science. She is skilled in the design and synthesis of advanced materials, particularly metal-organic frameworks (MOFs), and has a strong command of techniques for characterizing these materials at the molecular level. Her expertise includes the use of various analytical tools to measure the physical and chemical properties of materials, such as X-ray diffraction, spectroscopy, and electron microscopy. In addition to her technical expertise, Dr. Xing excels in experimental design, data analysis, and problem-solving. Her ability to collaborate with leading researchers and secure research funding further demonstrates her capability in conducting high-impact scientific research.

Awards and Honors

Dr. Danning Xing has earned recognition for her contributions to materials science and catalysis, particularly for her innovative work in π-d conjugated metal-organic frameworks (MOFs). Her research has been supported by prestigious grants, including the Natural Science Youth Foundation of Shandong Province and the Postdoctoral Science Foundation of China, highlighting her potential as a rising researcher. Additionally, her work has been published in top-tier scientific journals, such as Advanced Materials, Small, and Applied Catalysis B: Environmental, which speaks to the impact of her research. While she has yet to receive specific academic awards or honors, her growing citation index and the success of her collaborations demonstrate her increasing recognition in the research community.

Conclusion

Dr. Danning Xing is an emerging researcher with a promising future in the field of materials science, particularly in the design of advanced metal-organic frameworks (MOFs) for energy applications. Her innovative contributions to photocatalysis, electrocatalysis, and water splitting have the potential to significantly impact sustainable energy production and environmental protection. With 17 publications in high-impact journals, one authorized patent, and ongoing collaborations with renowned scholars, Dr. Xing is steadily making her mark in the research community. Her research, supported by competitive funding, demonstrates her capability and ambition to tackle pressing challenges in catalysis and materials science. As her career progresses, Dr. Xing is likely to receive more recognition for her groundbreaking work, making her an excellent candidate for future awards.

Publications Top Notes

  • Platinum modification of metallic cobalt defect sites for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural
    Authors: Haoyu Zhan, Baixue Cheng, Yankun Lu, Tao Wang, Peng Zhou
    Journal: Journal of Energy Chemistry
    Year: 2025
    Citations: 7

Qixin Wan | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Qixin Wan | Chemistry | Best Researcher Award

Associate Professor from Jiangxi Science and Technology Normal University, China

Dr. Qixin Wan is a highly accomplished academic and researcher, currently serving as an Associate Professor at the Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices, affiliated with Jiangxi Science and Technology Normal University in China. He obtained his Ph.D. in Electronic Science and Technology from the prestigious Huazhong University of Science and Technology (HUST), where he worked under the supervision of Professor Changqing Chen. With a career rooted in advanced materials science, Dr. Wan has dedicated himself to exploring and solving complex interfacial phenomena in novel materials. He has authored more than 20 SCI-indexed research papers published in internationally recognized journals such as Angewandte Chemie International Edition, ACS Applied Materials & Interfaces, and Optics Express. His work integrates theoretical, computational, and experimental approaches, contributing significantly to fields including optoelectronics, photonics, and semiconductors. Dr. Wan is recognized for his strong command of first-principles modeling, machine learning applications, and reaction mechanisms, all of which support the development of innovative materials and technologies. His interdisciplinary expertise places him at the intersection of physics, chemistry, and engineering, making his contributions valuable across multiple domains. He continues to lead impactful research that advances the understanding and application of cutting-edge materials.

Professional Profile

Education

Dr. Qixin Wan has followed a comprehensive and robust educational path that has laid a solid foundation for his distinguished research career. He began his academic journey at Nanchang University, where he completed his Bachelor of Science in Materials Science and Engineering in 2004. Building on his undergraduate experience, he pursued a Master of Engineering in Materials Physics and Chemistry at the same university, completing his degree in 2007 under the mentorship of Professor Fengyi Jiang. His deep interest in electronics and material interfaces led him to undertake a Ph.D. in Electronic Science and Technology at Huazhong University of Science and Technology (HUST), one of China’s leading institutions in science and engineering. From 2013 to 2019, he conducted his doctoral research at the Wuhan National Laboratory for Optoelectronics, where he was supervised by Professor Changqing Chen. His doctoral studies focused on the rational design of novel materials and interfacial physics, equipping him with high-level theoretical knowledge and experimental capabilities. This educational trajectory reflects Dr. Wan’s commitment to academic excellence and his steady progression toward becoming a thought leader in materials science. His education not only enriched his technical skills but also prepared him to contribute innovatively to scientific research and higher education.

Professional Experience

Dr. Qixin Wan’s professional career spans over 15 years of continuous growth and contribution in academia, particularly in advanced materials and optoelectronics research. He began his academic tenure at Jiangxi Science and Technology Normal University shortly after completing his master’s degree, initially serving as an instructor in the Key Laboratory for Optoelectronics and Communication of Jiangxi Province. From 2007 to 2023, he worked as an Instructor and Assistant Professor, engaging in both teaching and research responsibilities. His work during this period contributed significantly to the laboratory’s reputation in semiconductor and materials research. In December 2023, Dr. Wan was promoted to the position of Associate Professor at the Jiangxi Provincial Key Laboratory of Advanced Electronic Materials and Devices. This advancement marked a formal recognition of his contributions to scientific innovation and academic leadership. In his current role, Dr. Wan continues to lead research projects, mentor students, and collaborate on interdisciplinary initiatives. His career has been characterized by steady progress, long-term institutional commitment, and a continuous push toward innovation in the design and analysis of electronic materials. His professional experience has made him a respected figure in materials research and education, both locally and internationally.

Research Interests

Dr. Qixin Wan’s research interests lie at the forefront of advanced materials science and electronic device innovation. His work primarily focuses on the rational design of novel materials and the fundamental understanding of interfacial phenomena in electronic systems. Among his key areas of interest are first-principles modeling, which allows for atomistic-level predictions of material behavior; microkinetic simulation and machine learning, used to analyze complex reaction networks; and interface physics, crucial for optimizing device performance in optoelectronic applications. Additionally, Dr. Wan is deeply involved in photoelectric semiconductor physics, seeking to enhance the efficiency and durability of next-generation electronic and photonic devices. He also investigates reaction mechanisms at the molecular and atomic levels, exploring how material surfaces and interfaces influence chemical processes. These interests form a cohesive, interdisciplinary research agenda that integrates theoretical and computational modeling with practical device engineering. Dr. Wan’s curiosity and methodical approach have led him to address key scientific challenges, particularly those related to energy transfer, charge dynamics, and material degradation. His research not only contributes to the fundamental understanding of material science but also supports applied innovations in fields such as renewable energy, photonics, and electronics.

Research Skills

Dr. Qixin Wan possesses a comprehensive set of research skills that empower him to operate at the cutting edge of materials science and electronic engineering. His proficiency in first-principles modeling allows him to simulate and predict the behavior of complex materials at the atomic and molecular levels, which is critical for designing innovative compounds. He is highly skilled in microkinetic simulations, enabling him to understand reaction rates and mechanisms under various physical and chemical conditions. Dr. Wan also incorporates machine learning algorithms into his work, using data-driven approaches to accelerate material discovery and optimize experimental design. His technical toolkit includes advanced techniques in interface physics, particularly the study of electron and energy transport across heterogeneous materials. Additionally, he is adept in experimental methods related to photoelectric and semiconductor devices, often linking computational predictions with laboratory outcomes. These skills are complemented by his experience with scientific software platforms and programming languages used in material modeling. His interdisciplinary capabilities allow him to bridge gaps between theory, simulation, and experimental validation. Dr. Wan’s diverse skill set equips him to tackle complex research problems, lead collaborative projects, and contribute effectively to the advancement of optoelectronic technologies and materials innovation.

Awards and Honors

While specific awards and honors were not explicitly listed in the provided profile, Dr. Qixin Wan’s academic and research achievements speak to a career worthy of distinction. His promotion to Associate Professor at a leading provincial key laboratory in China is in itself a significant professional milestone, reflecting institutional recognition of his contributions to the field of materials science and optoelectronics. Furthermore, the consistent publication of over 20 SCI-indexed papers in prestigious journals such as Angewandte Chemie International Edition, ACS Applied Materials & Interfaces, Optics Express, and others, showcases his sustained research excellence and peer-reviewed validation of his work. Publishing in such high-impact journals typically reflects innovation, technical quality, and relevance—key metrics often considered for academic awards. His research impact within the field is further amplified by the diversity and scope of his interdisciplinary studies. In the future, Dr. Wan’s continued contributions and expanding influence are likely to attract additional recognitions from academic societies, research foundations, and innovation-driven organizations. As his work begins to intersect more directly with applied technologies in energy, healthcare, and environmental science, opportunities for competitive national and international honors are likely to increase.

Conclusion

Dr. Qixin Wan stands out as a forward-thinking researcher whose work bridges theoretical modeling, material design, and practical applications in electronic and photonic devices. His academic background, enriched by a Ph.D. from Huazhong University of Science and Technology and two earlier degrees from Nanchang University, has prepared him to lead pioneering research in interface physics and materials innovation. Over his professional career, he has progressed steadily, from instructor to associate professor, and has produced an impressive body of work published in high-impact journals. His research interests are at the intersection of multiple disciplines, encompassing semiconductor physics, microkinetic simulations, and machine learning. These diverse but interrelated pursuits allow him to address complex scientific problems with a high degree of precision and creativity. Although further recognition in the form of awards and honors may be forthcoming, his academic and research trajectory already places him among the most promising scientists in his field. With his expanding expertise and commitment to interdisciplinary collaboration, Dr. Wan is poised to make significant contributions to the global research community, particularly in life sciences, materials science, and applied electronics. He represents the type of scholar whose work will continue to shape the future of science and technology.

Publications Top Notes

  1. Synergizing Mg Single Atoms and Ru Nanoclusters for Boosting the Ammonia Borane Hydrolysis to Produce Hydrogen

    • Authors: Xie Shumin, Tian Shuheng, Yang Jialei, MA Ding, Zhao X. S.

    • Year: 2025

    • Citations: 1

  2. Unexpected Enhanced Thermal Conductivity of GaxIn₁₋ₓSb Ternary Alloys

    • Authors: Zhu Xiaolu, Zhang Yu, Kang Chao, Qin Guangzhao, Xiong Zhihua

    • Year: 2023

    • Citations: 3

  3. Synergistic Effect of Guanidinium Tetrafluoroborate Boosting Photovoltaic Performance of Perovskite Solar Cells

    • Authors: Wu Baifeng, Wang Xiaofeng, Xia Xuefeng, Li Yangsheng, Li Fan

    • Year: 2022

    • Citations: 5

  4. Functionalized Ionic Liquid-Crystal Additive for Perovskite Solar Cells with High Efficiency and Excellent Moisture Stability

    • Authors: Xia Xuefeng, Peng Jiayi, Wan Qixin, Zhao Jie, Li Fan

    • Year: 2021

    • Citations: 34

Komal Majeed | Chemistry | Best Researcher Award

Ms. Komal Majeed | Chemistry | Best Researcher Award

Researcher at COMSATS University Islamabad, Pakistan

Komal Majeed, born on May 12, 1994, in Pakistan, is an accomplished researcher and educator in the field of chemistry. With a passion for addressing environmental challenges through innovative materials, she has dedicated her career to the synthesis and application of nanomaterials. Komal holds an MS from COMSATS University Islamabad, where she focused on advanced analytical techniques and sustainable materials. Currently, she serves as an educator at Supernova School in Islamabad, where she inspires the next generation of scientists. Her commitment to both research and education reflects her belief in the power of knowledge to drive positive change in society.

Professional Profile

Education

Komal Majeed’s academic journey is marked by excellence and a strong focus on chemistry. She earned her Master’s degree in Advanced Analytical Techniques from COMSATS University Islamabad in 2022, where her thesis examined the photocatalytic removal of water pollutants using functional Mn3O4-based nanomaterials. Prior to that, she completed her MSc in Chemistry at the University of Poonch Rawalakot in 2017, studying a diverse range of topics, including organic chemistry and biochemistry. Her foundational education includes a BSc from the University of Punjab Lahore, where she gained insights into chemistry, zoology, and botany. This extensive educational background has equipped Komal with a robust understanding of chemical processes and materials science.

Professional Experience

Komal Majeed has built a diverse professional portfolio, beginning her career in education as a secondary school teacher. Currently, she teaches chemistry at Supernova School in Islamabad, where she leads the Science Department, conducts laboratory experiments, and develops innovative lesson plans. Previously, she worked at Roots Millennium School and Kashmir Education Foundation, where she was instrumental in mentoring new teachers and coordinating international science contests. Her experience extends beyond teaching to include significant research projects, such as her current work on oil-water separation using Mn3O4/NiO nanoparticles. Komal’s dual focus on education and research demonstrates her commitment to advancing scientific knowledge and fostering a passion for chemistry among her students.

Research Interests

Komal Majeed’s research interests center on the development and application of advanced materials to tackle pressing environmental issues. She is particularly focused on synthesizing metal oxide nanoparticles and nanocomposites, exploring their potential in photocatalytic degradation of industrial dyes and water pollutants. Her ongoing projects include the integration of nanocomposites into membranes for oil-water separation, showcasing her commitment to sustainability and environmental remediation. Additionally, she is interested in developing sustainable materials that minimize environmental impact throughout their lifecycle. Komal’s work addresses global challenges and reflects her dedication to finding innovative solutions through scientific research and collaboration.

Awards and Honors

Komal Majeed’s dedication to her profession has earned her numerous awards and recognitions. In 2023, she received a Certificate of Appreciation for her outstanding performance at Supernova School, reflecting her excellence in teaching and mentorship. She has also been recognized as a Microsoft Innovative Educator Expert, demonstrating her commitment to integrating technology into education. Her role as a Space Ambassador by the Institute of Space Technology further highlights her involvement in promoting scientific awareness. Additionally, she has been honored as the Best Mentor of the Year for her support in science contests. These accolades underscore her impact as an educator and researcher, emphasizing her contributions to both academia and the broader community.

Conclusion

Komal Majeed demonstrates a strong foundation in research and education with significant contributions to environmental remediation through nanotechnology. Her technical skills, recognition as a mentor and educator, and ongoing research projects highlight her potential as a leading researcher in her field. While there are areas for improvement, particularly in expanding her research experience and publication record, her dedication and existing accomplishments make her a suitable candidate for the Best Researcher Award. Her innovative work in developing sustainable materials aligns well with global challenges, positioning her as a valuable contributor to advancing scientific knowledge and environmental sustainability.

Publication top noted

📝 Effective Removal of Methylene Blue by Mn3O4/NiO Nanocomposite under Visible Light
👩‍🔬 Majeed, K., Ambreen, J., Khan, S.A., Gilani, S.J., Bin Jumah, M.N.
📅 Year: 2023
📖 Journal: Separations
🔗 Volume: 10, Issue: 3, Page: 200
🔍 Citations: 6

SIVAPERUMAL PERUMAL | Chemistry | Best Researcher Award

Dr. SIVAPERUMAL PERUMAL | Chemistry | Best Researcher Award

SCIENTIST-E at ICMR-NATIONAL INSTITUTE OF OCCUPATIONAL HEALTH, India

Dr. P. Sivaperumal is a distinguished scientist and head of the Pesticide Toxicology Division at the ICMR-National Institute of Occupational Health, India. He holds a Ph.D. in Chemistry and specializes in pesticide chemistry, toxicology, and occupational health and safety. With extensive research experience, Dr. Sivaperumal has contributed significantly to the evaluation of pesticide residues and persistent organic pollutants in biological and environmental samples, utilizing advanced analytical techniques such as GC-MS and LC-MS. His work emphasizes food safety, health risk assessment, and method development, ensuring compliance with regulatory standards. Dr. Sivaperumal has received several accolades, including recognition in the Graduate Aptitude Test in Engineering (GATE) and National Eligibility Test (NET). His commitment to professional development is evident in his participation in numerous training programs, workshops, and seminars. As a team facilitator with strong communication skills, he actively contributes to advancing research in pesticide studies and enhancing public health safety.

Profile:

Education

Dr. P. Sivaperumal holds a diverse and robust educational background in chemistry. He earned his Bachelor of Science in Chemistry from the University of Madras, Chennai, in 1999. Following this, he pursued a Master of Science in Chemistry at Bharathiar University, Coimbatore, where he completed his degree in 2001, focusing on comparative D.C. polarographic studies. Dr. Sivaperumal further advanced his studies by obtaining a Master of Philosophy in Chemistry (Phytochemistry) from the University of Madras in 2003, emphasizing phytochemistry and antimicrobial studies of medicinal plants. He culminated his academic journey with a Doctoral degree in Chemistry from the Cochin University of Science and Technology in 2008, where his research centered on the influence of organophosphorus pesticides on protein and lipid metabolism in Labeo rohita. This extensive educational foundation has equipped Dr. Sivaperumal with a strong expertise in pesticide chemistry and toxicology, forming the basis of his research career.

Professional Experiences 

Dr. P. Sivaperumal is a distinguished Scientist ‘E’ and Head of the Pesticide Toxicology Division at the ICMR-National Institute of Occupational Health, India. With extensive expertise in pesticide chemistry and toxicology, his professional journey spans over two decades. He began his career as a Senior Research Fellow at the Central Institute of Fisheries Technology, working on risk assessment of marine products. He then served as a Scientific Officer at SeaLab, focusing on pesticide and heavy metal residue analysis in food and environmental samples. Dr. Sivaperumal joined the National Institute of Occupational Health in 2008, progressing from Scientist ‘B’ to his current role. His research encompasses the analysis of persistent organic pollutants, food safety, and occupational health. Additionally, he has played a pivotal role in method development, validation, and regulatory compliance, with hands-on experience in sophisticated analytical techniques like GC-MS, LC-MS, and AAS.

Research Interests

Dr. P. Sivaperumal’s research interests lie at the intersection of pesticide chemistry, toxicology, and occupational health. His work primarily focuses on the evaluation of pesticide residues, persistent organic pollutants, and their health impacts in biological, environmental, and food samples. With a strong background in method development, Dr. Sivaperumal has contributed to enhancing analytical techniques for detecting harmful chemicals such as heavy metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). He is also deeply involved in the assessment of health risks associated with food safety and the long-term effects of pesticide exposure on human health. His expertise extends to developing strategies for improving occupational health and safety in industries where pesticide exposure is prevalent. Through his work, Dr. Sivaperumal aims to advance public health by ensuring the safety of agricultural products and minimizing the risk of toxic substance exposure to workers and consumers alike.

Research Skills

Dr. P. Sivaperumal possesses extensive research skills in the fields of pesticide chemistry and toxicology, with a focus on occupational health, food safety, and environmental risk assessment. He specializes in the analysis of pesticide residues, heavy metals, polychlorinated biphenyls (PCBs), and antibiotics in biological, environmental, and food samples using advanced techniques such as LC-MS/MS, GC-MS/MS, and HPLC. His expertise includes method development and validation, regulatory compliance with international standards, and health risk assessment of contaminants. Additionally, Dr. Sivaperumal has hands-on experience in managing laboratory quality systems (ISO 17025, ISO 9001, OHSAS 18001) and has been actively involved in capacity-building workshops, training programs, and collaborative research. His ability to lead large-scale projects, combined with his proficiency in analytical techniques and quality assurance, highlights his contribution to advancing pesticide toxicology and public health research, making him a valuable asset to the scientific community.

Award and Recognition 

Dr. P. Sivaperumal has earned notable recognition throughout his career for his significant contributions to pesticide chemistry and toxicology. His academic accomplishments include clearing competitive national examinations such as the Graduate Aptitude Test in Engineering (GATE) in 2003, and the National Eligibility Test (NET) in 2004, conducted by the UGC/CSIR and Agricultural Scientist Recruitment Board (ASRB), ICAR, Govt. of India. These achievements highlight his academic rigor and dedication to his field. His extensive work on the analysis of pesticide residues, heavy metals, and other toxicants in biological and environmental samples has been instrumental in advancing food safety and occupational health. Furthermore, Dr. Sivaperumal’s efforts in method development, validation, and quality control under globally recognized standards like NABL and ISO have solidified his standing as a leading scientist. His contributions have earned him professional esteem and numerous opportunities to organize and lead training programs and workshops on toxicology and safety management.

Conclusion

Dr. P. Sivaperumal is a strong candidate for the Best Researcher Award due to his extensive expertise in pesticide toxicology, proven research capabilities, and contributions to method development in chemical analysis. His leadership in training initiatives further demonstrates his commitment to advancing the field. By focusing on increasing publication output and fostering interdisciplinary collaborations, he could enhance his research’s impact. Overall, Dr. Sivaperumal’s work significantly contributes to occupational health and safety, making him a deserving nominee for this prestigious award.

Publication Top Notes
  • Development and validation for simultaneous determination of 200 pesticide residues in brinjal by modified QuEChERS and GC-QqQ-MS/MS (MRM) analysis
    • Authors: Perumal, S., Thasale, S.R., Mehta, T.G., Chauhan, G.P., Upadhyay, K.
    • Year: 2024
    • Journal: Journal of Food Composition and Analysis
    • Volume/Issue/Page: 136, 106757
    • Citations: 0
  • Multivariate optimization and validation of 200 pesticide residues in the banana matrix by GC-MS/MS
    • Authors: Ahire, T.R., Thasale, R.R., Das, A., Vyas, D.M., Perumal, S.
    • Year: 2024
    • Journal: Analytical Methods
    • Volume/Issue/Page: 16(26), pp. 4268–4284
    • Citations: 0
  • Optimization of QuEChERS method for determination of pesticide residues in vegetables and health risk assessment
    • Authors: Perumal, S., Kottadiyil, D., Thasale, R., Mehta, T.
    • Year: 2024
    • Journal: Environmental Science and Pollution Research
    • Volume/Issue/Page: 31(23), pp. 34355–34367
    • Citations: 0
  • Determination of multi-class pesticide residues in food commodities from Gujarat, India, and evaluation of acute and chronic health risk
    • Authors: Perumal, S., Mahesh, M., Kottadiyil, D., Mehta, T., Thasale, R.
    • Year: 2023
    • Journal: Environmental Science and Pollution Research
    • Volume/Issue/Page: 30(21), pp. 60460–60472
    • Citations: 3

Khalil ur Rehman | Chemistry | Best Researcher Award

Dr. Khalil ur Rehman |Chemistry | Best Researcher Award

Assistant Professor at  Gomal University, Dera Ismail Khan,Pakistan

The individual is an accomplished researcher and academic specializing in Inorganic Chemistry and Material Science. Currently serving as an Assistant Professor at the Institute of Chemical Sciences, Gomal University in Dera Ismail Khan, KP, Pakistan, they have made significant contributions to the field through both research and teaching. Their extensive educational background and hands-on experience in various capacities underscore their commitment to advancing scientific knowledge and fostering student development.

Profile:

Education

The individual completed their Ph.D. in Inorganic Chemistry/Material Science at the Institute of Chemical Sciences, Gomal University, from 2019 to 2022. Prior to this, they earned an M.Phil. and a Master’s in Inorganic Chemistry from the same institution, achieving a Division 1st classification. Their foundational education includes a B.Sc. in Chemistry, HSSC in Pre-Medical, SSC in Science, and advanced degrees in Education (B.Ed. and M.Ed.) from Allama Iqbal Open University, along with a Diploma of Information Technology. Each of these qualifications reflects their dedication to academic excellence.

Work Experience

The individual has amassed valuable teaching experience, beginning as a Lecturer on a NIP basis in South Waziristan Agency from July 2017 to June 2018. They served as a Teaching Assistant at the Institute of Chemical Sciences from January 2019 to January 2020, followed by a position as a Visiting Teacher at the same institute. Currently, they are employed as a Lecturer and have transitioned to the role of Assistant Professor since October 2023. Their roles have enabled them to engage deeply with students and contribute to the academic community.

Skills

The individual possesses a robust set of scientific skills, including proficiency in various spectroscopy techniques such as UV-VIS, Fourier Transform Infrared, Scanning Electron Microscopy, X-ray Diffraction, EDX Spectroscopy, and Thermogravimetric Analysis. Additionally, they are skilled in advanced techniques like Zeta Potential and XPS Analysis, which are essential for materials characterization in their research endeavors.

Awards and Honors

Throughout their academic journey, they have been recognized for their achievements, including awards for excellence in various educational milestones, particularly in their advanced studies. Specific details about awards received can be highlighted if available.

Membership

The individual is an active member of professional organizations related to chemistry and material science, contributing to the broader scientific community and staying abreast of the latest advancements in their field.

Teaching Experience

Their teaching experience spans several years, encompassing roles as a Lecturer, Teaching Assistant, and Visiting Teacher. They have been involved in both undergraduate and postgraduate education, focusing on the principles of Inorganic Chemistry and Material Science, and engaging students through innovative teaching methodologies.

Research Focus

The individual’s research interests are primarily centered on the preparation and application of nanocomposite materials, with specific focuses including the environmental and biomedical applications of inorganic-based nanocomposites, the synthesis of novel materials such as graphene-based and mesoporous silica composites, and the development of efficient methods for removing heavy metals and organic dyes from water. Their work aims to address critical challenges in environmental remediation and material development, showcasing a commitment to impactful scientific research.

Conclusion

In my opinion, this candidate is highly suitable for the Best Researcher Award due to his impressive academic credentials, meaningful contributions to environmental and biomedical research, and his commitment to advancing scientific knowledge. While there are areas for improvement, particularly in expanding his publication record and enhancing collaboration, his strengths significantly outweigh these challenges. Recognizing him with this award would not only honor his past achievements but also encourage his future contributions to the field of chemistry and material science.

Publication Top Notes
  • Purification and characterization of a thermostable Galium aparine β-galactosidase: A competent agent with enhanced cytotoxic activity against MCF-7 cell line
    • Year: 2024
    • Journal: Process Biochemistry
  • β-Galactosidase isolated from Ranunculus arvensis seeds to synthesize trisaccharide: Kinetics and thermodynamic properties
    • Year: 2024
    • Journal: Food Bioscience
  • Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken’s brain
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Kinetics and thermodynamic stability of native and chemically modified acid invertase: Extracted from yellow pea (Lathyrus aphaca) Seedlings
    • Year: 2024
    • Journal: Process Biochemistry
  • Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
    • Year: 2024
    • Journal: Inorganics
  • Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
    • Year: 2024
    • Journal: Inorganics
  • Remarkable Removal of Pb(II) Ions from Aqueous Media Using Facilely Synthesized Sodium Manganese Silicate Hydroxide Hydrate/Manganese Silicate as a Novel Nanocomposite
    • Year: 2024
    • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Optimization of parameters for the formulation of Moringa oleifera nanosuspension with enhanced hepatoprotective potential
    • Year: 2024
    • Journal: Pakistan Journal of Agricultural Sciences

 

Nyasha Makuve | Organometallic Chemistry | Best Researcher Award

Dr. Nyasha Makuve | Organometallic Chemistry | Best Researcher Award

Dr. Nyasha Makuve appears to be a highly suitable candidate for the Best Researcher Award based on the following factors:

Profile

Academic and Professional Background

  • PhD in Chemistry from the University of Johannesburg: This demonstrates a high level of expertise in the field of Chemistry.
  • Postgraduate Diploma in Higher Education: Indicates a commitment to educational practices.
  • MSc in Material Chemistry and BSc in Chemical Technology Honours Degree from Midlands State University: Shows a solid foundation in material chemistry and chemical technology.
  • Positions Held: Experience as an Inorganic Chemistry Lecturer at the University of Botswana, Senior Tutor and Laboratory Demonstrator at the University of Johannesburg, and Acting Quality Controller at Dairibord Zimbabwe Ltd. This diverse experience highlights her ability to apply her knowledge in both academic and industrial settings.

Teaching and Supervision

  • Extensive Teaching Experience: Dr. Makuve has taught various inorganic chemistry courses at the University of Botswana, covering both undergraduate and postgraduate levels. This includes courses such as Atomic Structure, Bonding and Main Group Chemistry, Group Theory and Organometallic Chemistry, Coordination Chemistry, and more.
  • Supervision of Postgraduate Research: Indicates involvement in advanced research and mentoring of students, contributing to the academic growth of future scientists.

Research and Publications

  • Chapter in a Book: Contributed a chapter on organometallic compounds and their catalytic applications, showing expertise in a specialized area of chemistry.
  • Refereed Journal Articles: Published numerous articles in reputable journals, covering topics like catalysts for biomass upgrading, plant essential oils as insecticides, hydrogenation of carbon dioxide, and more. This demonstrates a strong research output and contribution to various fields within chemistry.
  • Conference Presentations: Presented at international conferences, indicating recognition and active participation in the global scientific community.
  • External Research Grants: Managed research grants, showcasing ability to secure funding and lead research projects.

Fellowships and Awards

  • Recognition for Achievements: Received awards such as the Artificial Intelligence in the 4IR Achievement Award from the University of Johannesburg, University of Johannesburg Merit Award, and NRF-TWAS Doctoral Fellowship. These awards highlight her contributions and excellence in research.

Service to the Profession and Community

  • Editorial and Reviewing Roles: Serving as a reviewer for Nature Communications and an editorial board member for Modern Chemistry, which underscores her expertise and respect in the scientific community.
  • Professional Affiliations: Membership in organizations such as the Royal Society of Chemistry, International Union of Pure and Applied Chemistry, and the Chemical Society of Botswana.
  • Community Involvement: Active participation in community services, such as working with the Botswana Society for the Prevention of Cruelty to Animals and Golden Key International Honour Society.

Research Contributions

  • Diverse Research Topics: Contributions to a wide range of research areas, including environmental science, catalysis, and materials chemistry.
  • Geographic Impact: Research has a significant impact in both local and international contexts, addressing community-specific issues in different parts of the world.
  • Collaborative Efforts: Extensive collaboration with other researchers, which is essential for multi-disciplinary and impactful research.
  • Applied Research: Many studies have practical applications, directly benefiting community health and environmental sustainability.

Conclusion

Dr. Nyasha Makuve’s comprehensive academic qualifications, diverse research contributions, extensive teaching and supervisory experience, professional service, and community involvement make her a strong candidate for the Best Researcher Award. Her ability to secure research funding, publish in high-impact journals, and contribute to both the scientific community and society at large underscores her suitability for this recognition.

Publications Top Notes

  1. Catalysts for Biomass Upgrading: Transforming 5-Hydroxymethyl Furfural into 2,5-Furan Dicarboxylic Acid for Fine Chemicals, Featuring Mil-100(Fe) MOF as a Novel Catalyst
    • Authors: Manyepedza, T., Makuve, N.
    • Year: 2024
    • Journal: ChemistrySelect
    • Volume and Issue: 9(28)
    • Article ID: e202401412
  2. Palladium Complexes Bearing Bis-aldimine N^C^N and N^N^N Pincer Ligands; A Study of Homogeneous/Heterogeneous Catalyzed CO2 Hydrogenation
    • Authors: Miya, N., Makuve, N., Ocansey, E., Darkwa, J., Makhubela, B.C.E.
    • Year: 2023
    • Journal: Inorganica Chimica Acta
    • Volume: 545
    • Article ID: 121207
  3. Hydrogenation of Carbon Dioxide to Formate Using a Cadmium-Based Metal–Organic Framework Impregnated with Nanoparticles
    • Authors: Makuve, N., Darkwa, J., Mehlana, G., Makhubela, B.C.E.
    • Year: 2022
    • Journal: Inorganics
    • Volume and Issue: 10(3)
    • Article ID: 30
  4. Hydrogenation of Carbon Dioxide to Formate by α-Diimine RuII, RhIII, IrIII Complexes as Catalyst Precursors
    • Authors: Makuve, N., Mehlana, G., Tia, R., Darkwa, J., Makhubela, B.C.E.
    • Year: 2019
    • Journal: Journal of Organometallic Chemistry
    • Volume: 899
    • Article ID: 120892