Dr. Zhong-Hong Zhu | Chemistry | Excellence in Research Award
Guangxi University, China
Dr. Zhong-Hong Zhu is a rising scholar in the fields of materials science, nanotechnology, and applied chemistry. Currently serving as an Assistant Professor at Guangxi University, China, Dr. Zhu’s academic path reflects a consistent commitment to excellence and innovation. With a Ph.D. in Materials Science and Engineering from South China University of Technology, he has conducted extensive research in luminescent materials, nanoclusters, and their applications in biomedicine. His publication record is exemplary, with more than 50 peer-reviewed articles in top international journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials. His research has gained significant academic recognition, having been cited over 1,600 times, earning him an H-index of 26 and two highly cited papers. Dr. Zhu’s contributions extend to multidisciplinary applications, including antibacterial technologies, cell imaging, and dynamic luminescent complexes. His deep understanding of chemistry, materials design, and functional nanomaterials places him at the forefront of next-generation research. As he embarks on his independent academic journey, Dr. Zhu is well-positioned to make transformative contributions to science and technology, especially in the areas of smart materials and biomedical engineering. His profile reflects a blend of academic rigor, innovation, and potential for leadership in the scientific community.
Professional Profile
Education
Dr. Zhong-Hong Zhu has a robust academic foundation that has shaped his multidisciplinary research expertise. He began his higher education journey in 2012, enrolling at Anyang Normal University, where he pursued a Bachelor’s degree in Applied Chemistry, which he completed in 2016. During this time, he gained a solid grounding in chemical principles, materials analysis, and laboratory research techniques. Motivated by a deepening interest in chemical science, he proceeded to Guangxi Normal University for his Master’s degree in Chemistry, graduating in 2019. His Master’s training allowed him to engage more deeply with research methodologies and experimental designs in advanced materials. Following his master’s degree, he worked as a Research Assistant at Guangxi Normal University, which further enriched his hands-on research capabilities and introduced him to collaborative academic projects. Dr. Zhu then pursued his Ph.D. at South China University of Technology in the field of Materials Science and Engineering, a highly interdisciplinary area combining chemistry, nanotechnology, and applied physics. Completing his doctorate in 2024, he was equipped with the advanced knowledge and experimental skills required for high-level research in luminescent nanomaterials and bio-functional systems. His educational path has provided a comprehensive and progressive framework for his innovative contributions to science.
Professional Experience
Dr. Zhong-Hong Zhu’s professional experience reflects a progressive journey through academia and research, culminating in his current role as an Assistant Professor at Guangxi University. His initial professional experience began shortly after completing his Master’s degree, when he took on the role of Research Assistant at Guangxi Normal University from July 2019 to September 2020. This position enabled him to contribute to ongoing research projects, refine his technical skills, and participate in scholarly publications. During this time, he gained exposure to collaborative research environments and developed a strong foundation in experimental design, materials synthesis, and characterization techniques. In September 2020, Dr. Zhu commenced his Ph.D. in Materials Science and Engineering at South China University of Technology. This phase marked a significant advancement in his academic career, where he engaged in independent research, published extensively, and gained expertise in lanthanide-based nanomaterials and their applications. After completing his doctoral studies in June 2024, he joined Guangxi University as an Assistant Professor. In this role, Dr. Zhu is now responsible for leading research initiatives, supervising students, and contributing to the academic development of his department. His professional experience illustrates a consistent and strategic commitment to scientific excellence and academic growth.
Research Interests
Dr. Zhong-Hong Zhu’s research interests are rooted in materials science, chemistry, and biomedical applications, with a particular focus on luminescent nanomaterials and their multifunctional uses. One of his primary areas of interest is the self-assembly mechanism and luminescence properties of lanthanide nanoclusters, which are pivotal in developing smart optical materials. His work investigates how these nanoclusters can be manipulated at the molecular level to achieve precise emission behaviors and structural properties. In addition, Dr. Zhu explores the use of lanthanide nanoclusters in cell imaging and antibacterial applications, leveraging their unique luminescent features to enable bioimaging and therapeutic effects in medical diagnostics. Another core area of interest includes the luminescence mechanisms of intelligent dynamic luminescent complexes, which hold promise for responsive sensors and display technologies. Furthermore, his research extends to nanoporous photosensitizers for use in bio-diagnosis and treatment, especially in the context of cancer therapy and photodynamic applications. His interdisciplinary approach combines chemistry, materials engineering, and nanobiotechnology, placing him at the forefront of innovation in smart materials and bio-functional systems. These interests not only reflect high-impact scientific inquiry but also aim to address global challenges in health care and environmental monitoring through cutting-edge material design.
Research Skills
Dr. Zhong-Hong Zhu possesses a comprehensive set of research skills that enable him to conduct high-level investigations in materials science and nanotechnology. His technical expertise includes the synthesis and structural analysis of lanthanide-based nanoclusters, where he applies both traditional wet-chemical methods and advanced self-assembly techniques to design luminescent materials. He is highly skilled in using a range of spectroscopic and imaging tools, including photoluminescence spectroscopy, UV-Vis, FTIR, NMR, and advanced microscopy, such as TEM and SEM, for the characterization of nanostructures. His work also involves quantitative and qualitative analysis of luminescent properties, enabling accurate determination of emission mechanisms and energy transfer processes. Additionally, Dr. Zhu is proficient in cell culture techniques, biocompatibility testing, and antibacterial assays, allowing him to bridge material science with biomedical applications. He is experienced in preparing publications for high-impact journals, managing collaborative research, and mentoring junior researchers. His computational skills support data interpretation and modeling, which are essential for understanding structure–property relationships in complex systems. These capabilities make him a well-rounded scientist capable of addressing interdisciplinary challenges through both experimental and theoretical approaches. His combination of laboratory proficiency and scientific reasoning ensures impactful and reproducible research outcomes.
Awards and Honors
Although specific awards and honors are not detailed in the provided resume, Dr. Zhong-Hong Zhu’s academic and research accomplishments strongly suggest that his work has been recognized and valued within the scientific community. His publication record, which includes over 50 high-level papers as the first or corresponding author in top-tier journals such as Nature Communications, Advanced Materials, ACS Nano, and Advanced Functional Materials, reflects peer recognition and academic excellence. Furthermore, his research has been cited more than 1,600 times, and he holds an H-index of 26—indicators of the quality, relevance, and influence of his scholarly work. Two of his papers have been categorized as “highly cited,” further demonstrating that his contributions are shaping the direction of current research in luminescent nanomaterials and bio-functional systems. His rapid academic progression—from research assistant to assistant professor within a short timeframe—also suggests strong institutional endorsement and recognition of his research potential. It is likely that, with the continuation of his independent research and academic leadership, formal honors, fellowships, and national or international research awards will follow. Dr. Zhu is on a clear path to establishing himself as a leading voice in his domain.
Conclusion
Dr. Zhong-Hong Zhu emerges as a promising young academic with a strong foundation in materials science, applied chemistry, and nanotechnology. His rapid career progression, prolific publication record, and interdisciplinary research interests position him as a notable early-career researcher. The breadth and depth of his work—ranging from the synthesis of luminescent nanoclusters to their application in cell imaging, antibacterial systems, and smart diagnostic tools—highlight his scientific vision and methodological rigor. While he is still in the early stages of his independent academic career, his current accomplishments far exceed typical benchmarks for his career stage. The absence of detailed information on awards or project leadership does not overshadow the significance of his contributions, which have already made a measurable impact on the field. Going forward, building on his leadership in research funding, collaboration, and mentorship will further strengthen his academic profile. Overall, Dr. Zhu is an ideal candidate for early-career research excellence awards. His record demonstrates innovation, productivity, and a commitment to impactful, high-quality research that addresses important scientific and societal challenges. With continued support and opportunities, he is poised to make substantial contributions to science and technology on a global scale.
Publications Top Notes
-
Title: Designing pillar–layered metal–organic frameworks with photo-induced electron transfer interactions between ligands for enhanced photodynamic sterilization and photocatalytic degradation of dyes and antibiotics
Authors: Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Liang, Fupei; Zhou, Liya
Journal: Journal of Colloid and Interface Science
Year: 2025 -
Title: Lanthanide Molecular Clusters and Metal-Organic Layers Constructed by Manipulation of Substituents
Authors: Li, Yunlan; Lan, Hai Fang; Wang, Hailing; Cheng, Lei; Zou, Huahong
Journal: Inorganic Chemistry
Year: 2025 -
Title: Specific smart sensing of electron-rich antibiotics or histidine improves the antenna effect, luminescence, and photodynamic sterilization capabilities of lanthanide polyoxometalates
Authors: Tang, Mengjuan; Zhu, Zhonghong; Li, Yunlan; Wang, Hailing; Zou, Huahong
Journal: Journal of Colloid and Interface Science
Year: 2025
Citations: 5 -
Title: Twisted-Planar Molecular Engineering with Sonication-Induced J-Aggregation To Design Near-Infrared J-Aggregates for Enhanced Phototherapy
Authors: Liu, Yubo; Song, Yuchen; Zhu, Zhonghong; Tang, Ben Zhong; Feng, Guangxue
Journal: Angewandte Chemie International Edition
Year: 2025
Citations: 3 -
Title: Hourglass-shaped europium cluster-based secondary building unit in metal–organic framework for photocatalytic wastewater purification and sterilization via enhanced reactive oxygen species production
Authors: Zhang, Guanhuang; Wang, Hailing; Cheng, Lei; Zhu, Zhonghong; Zou, Huahong
Journal: Journal of Colloid and Interface Science
Year: 2025
Citations: 1 -
Title: Nanoscale Metal-Organic Framework Leveraging Water, Oxygen, and Hydron Peroxide to Generate Reactive Oxygen Species for Cancer Therapy
Authors: Zhu, Zhonghong; Zhang, Le; Jia, Shaorui; Tang, Ben Zhong; Feng, Guangxue
Journal: Advanced Functional Materials
Year: 2025
Citations: 2 -
Title: In Situ Coordination-Catalyzed o-Vanillin Underwent a One-Pot Tandem Reaction to Construct Complex Chiral Tetrameric Isomer-Based Hexanuclear Clusters
Authors: Li, Ruyan; Ai, Jufen; Tao, Jia Yi; Zou, Huahong; Wang, Hailing
Journal: Inorganic Chemistry
Year: 2025