Prof. Sharad Shelke | Heterocyclic Chemistry | Best Researcher Award

Prof. Sharad Shelke | Heterocyclic Chemistry | Best Researcher Award

Professor at R.B. Narayanrao Borawake College, Shrirampur, Dist: Ahmednagar (MS), India.

Dr. Sharad N. Shelke is a distinguished Professor in Chemistry at R.B.N.B. College, Shrirampur, India, with expertise in green organic chemistry, heterocyclic synthesis, and the development of bioactive molecules. He earned his Ph.D. in Organic Synthetic Chemistry from Pune University and has received recognition for his teaching excellence, including the National Teacher Award in 2015. Dr. Shelke has successfully guided multiple Ph.D. and M.Phil. students and has contributed significantly to research funding, securing grants for various projects. His administrative roles, including deputy coordinator of the P.G. Diploma in Green Chemistry, demonstrate his commitment to academic development. With proficiency in modern analytical techniques and a focus on innovative synthesis methods, he has made substantial contributions to the field. Dr. Shelke’s dedication to education, research, and mentorship positions him as a valuable asset to the academic community, reflecting his impactful presence in chemistry.

Profile

Education

Dr. Sharad N. Shelke has an impressive academic background that underpins his expertise in chemistry. He earned his Master of Science (M.Sc.) in Organic Chemistry from Amaravati University in Maharashtra, India, with a commendable first-class grade of 67% in 1997. Subsequently, he qualified for the State Eligibility Test (SET) in 2000 through Pune University, showcasing his proficiency in the field. Dr. Shelke pursued his Doctorate (Ph.D.) in Organic Synthetic Chemistry at Pune University, which he completed in 2007. His doctoral research focused on the synthesis of various bioactive molecules, under the guidance of Professor C. H. Gill. In addition to his chemistry qualifications, Dr. Shelke also holds a Master of Business Administration (MBA) in Human Resource Management from Y.C.M. Open University, Nashik, which he obtained in 2011. This diverse educational background enhances his research capabilities and teaching effectiveness in the field of chemistry.

Professional Experience

Dr. Sharad N. Shelke has a distinguished professional career as a Professor in Chemistry at R.B.N.B. College, Shrirampur, India, where he has been a dedicated educator since December 2000. He specializes in green organic chemistry, heterocyclic synthesis, and the synthesis of bioactive molecules, employing innovative techniques such as microwave-assisted and ultrasound-mediated synthesis. Dr. Shelke has served as a recognized guide for numerous Ph.D. and M.Phil. students at Pune University, contributing significantly to their academic growth. His research experience includes working as a project assistant at the National Chemical Laboratory in Pune on a project funded by G.E. Company, USA. Dr. Shelke has also played an active role in academic administration, serving as a member of the College Development Committee and deputy coordinator for the P.G. Diploma in Green Chemistry program. His commitment to research and education is further exemplified by various funded research projects and awards, including the National Teacher Award in 2015.

Research Interest

Dr. Sharad N. Shelke’s research interests primarily revolve around green organic chemistry and the synthesis of bioactive molecules. His expertise encompasses various innovative synthetic techniques, including microwave-assisted and ultrasound-mediated synthesis, which enhance the efficiency and sustainability of chemical processes. He is particularly focused on the synthesis of heterocycles, including benzo(d)oxazoles, thiadiazoles, and triazoles, emphasizing their potential antimicrobial activities. Dr. Shelke actively explores organic reactions in aqueous media and solvent-free conditions, aligning with contemporary trends in environmentally friendly chemistry. Additionally, his work on multicomponent reactions contributes to the development of novel compounds with pharmaceutical applications. His dedication to advancing the field is evident through his mentorship of graduate students and his involvement in projects aimed at integrating green chemistry principles into academic curricula. Overall, Dr. Shelke’s research not only addresses fundamental scientific questions but also seeks to provide practical solutions for sustainable chemical practices.

Research Skills

Dr. Sharad N. Shelke possesses a diverse set of research skills that significantly contribute to his expertise in organic chemistry and green synthesis. His proficiency in green organic chemistry emphasizes environmentally friendly methodologies, particularly in the synthesis of bioactive molecules and heterocycles. He excels in microwave-assisted and ultrasound-mediated synthesis, showcasing innovative approaches to enhance reaction efficiency. Dr. Shelke’s hands-on experience with advanced instrumental techniques, including FTIR, UV-VIS spectrophotometry, and HPLC, equips him to conduct precise analyses and syntheses. His research encompasses multicomponent reactions and organic reactions in aqueous media, demonstrating his ability to adapt techniques to sustainable practices. Additionally, he is skilled in guiding students through complex organic synthetic processes, fostering the next generation of chemists. His recognition as a Ph.D. guide further highlights his mentoring capabilities, making him a valuable asset in both research and education within the scientific community.

Award and Recognition

Dr. Sharad N. Shelke, a Professor in Chemistry at R.B.N.B. College, has received significant recognition for his contributions to the field of organic chemistry. Notably, he was honored with the “National Teacher Award” by the Mahatma Phule Shikshan Parishad in January 2015, which underscores his excellence in teaching and mentorship. His dedication to research in green organic chemistry and synthesis of bioactive molecules has led to successful funding for multiple projects, including significant grants from the University Grants Commission (UGC). Additionally, Dr. Shelke is a recognized guide for numerous Ph.D. and M.Phil. students at Pune University, highlighting his influence in shaping the next generation of chemists. His administrative roles, including his position as deputy coordinator of the P.G. Diploma in Green Chemistry, further illustrate his commitment to academic development. Overall, Dr. Shelke’s awards and recognition reflect his impactful contributions to both education and research in chemistry.

Conclusion

Dr. Sharad N. Shelke’s contributions to green organic chemistry, along with his commitment to teaching and mentorship, position him as a strong candidate for the Best Researcher Award. His innovative research, extensive teaching experience, and recognition in the field demonstrate his dedication and impact. By focusing on expanding his publication record and fostering collaborations, he can further enhance his contributions to the scientific community. Overall, his profile reflects a dedicated researcher and educator deserving of this recognition.

Publication Top Notes

  • Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics
    • Authors: MB Gawande, SN Shelke, R Zboril, RS Varma
    • Year: 2014
    • Journal: Accounts of Chemical Research
    • Volume/Issue/Page: 47(4), 1338-1348
    • Citations: 764
  • Iron Oxide supported ultra-small ZnO Nanoparticles: Applications for Transesterification, Amidation and O-Acylation Reactions
    • Authors: MBG Vilas B. Gade, Anuj K. Rathi, Sujit B. Bhalekar, JiÅ™Ć­ Tuček, Ondrej…
    • Year: 2017
    • Journal: ACS Sustainable Chemistry & Engineering
    • Citations: 139*
  • Iron oxide-supported copper oxide nanoparticles (nanocat-Fe-CuO): magnetically recyclable catalysts for the synthesis of pyrazole derivatives, 4-methoxyaniline, and Ullmannā€¦
    • Authors: SN Shelke, SR Bankar, GR Mhaske, SS Kadam, DK Murade…
    • Year: 2014
    • Journal: ACS Sustainable Chemistry & Engineering
    • Volume/Issue/Page: 2(7), 1699-1706
    • Citations: 88
  • Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives
    • Authors: SN Shelke, GR Mhaske, VDB BonifĆ”cio, MB Gawande
    • Year: 2012
    • Journal: Bioorganic & Medicinal Chemistry Letters
    • Volume/Issue/Page: 22(17), 5727-5730
    • Citations: 87
  • Green synthesis and biological evaluation of some novel azoles as antimicrobial agents
    • Authors: S Shelke, G Mhaske, S Gadakh, C Gill
    • Year: 2010
    • Journal: Bioorganic & Medicinal Chemistry Letters
    • Volume/Issue/Page: 20(24), 7200-7204
    • Citations: 71
  • Mixed metal MgO-ZrO2 nanoparticles catalyzed O-tert-Boc protection of alcohols, phenols under solvent-free conditions
    • Authors: M Gawande, A Shelke, Sharad, Rathi, R Pandey
    • Year: 2012
    • Journal: Applied Organometallic Chemistry
    • Volume/Issue/Page: 26(8), 395ā€“400
    • Citations: 55
  • Environmentally benign synthesis of fluorinated pyrazolone derivatives and their antimicrobial activity
    • Authors: SN Shelke, NR Dalvi, SB Kale, MS More, CH Gill, BK Karale
    • Year: 2007
    • Journal: CSIR
    • Citations: 24
  • Nanomagnetite-supported molybdenum oxide (nanocat-Fe-Mo): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthols
    • Authors: SR Bankar, SN Shelke
    • Year: 2018
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 44, 3507-3521
    • Citations: 20
  • Synthesis and Evaluation of Anticonvulsant Activity of Some Schiff Bases of 7ā€Aminoā€1,3ā€dihydroā€2Hā€1,4ā€benzodiazepinā€2ā€one
    • Authors: PR Nilkanth, SK Ghorai, A Sathiyanarayanan, K Dhawale, T Ahamad…
    • Year: 2020
    • Journal: Chemistry & Biodiversity
    • Volume/Issue/Page: 17(9), e2000342
    • Citations: 19
  • BrĆønsted-acidic ionic liquid: green protocol for synthesis of novel tetrasubstituted imidazole derivatives under microwave irradiation via multicomponent strategy
    • Authors: G Shirole, V Kadnor, A Tambe, S Shelke
    • Year: 2016
    • Journal: Research on Chemical Intermediates
    • Volume/Issue/Page: 101007 (11164), 016-2684-7
    • Citations: 18

 

Khalil ur Rehman | Chemistry | Best Researcher Award

Dr. Khalil ur Rehman |Chemistry | Best Researcher Award

Assistant Professor at Ā Gomal University, Dera Ismail Khan,Pakistan

The individual is an accomplished researcher and academic specializing in Inorganic Chemistry and Material Science. Currently serving as an Assistant Professor at the Institute of Chemical Sciences, Gomal University in Dera Ismail Khan, KP, Pakistan, they have made significant contributions to the field through both research and teaching. Their extensive educational background and hands-on experience in various capacities underscore their commitment to advancing scientific knowledge and fostering student development.

Profile:

Education

The individual completed their Ph.D. in Inorganic Chemistry/Material Science at the Institute of Chemical Sciences, Gomal University, from 2019 to 2022. Prior to this, they earned an M.Phil. and a Master’s in Inorganic Chemistry from the same institution, achieving a Division 1st classification. Their foundational education includes a B.Sc. in Chemistry, HSSC in Pre-Medical, SSC in Science, and advanced degrees in Education (B.Ed. and M.Ed.) from Allama Iqbal Open University, along with a Diploma of Information Technology. Each of these qualifications reflects their dedication to academic excellence.

Work Experience

The individual has amassed valuable teaching experience, beginning as a Lecturer on a NIP basis in South Waziristan Agency from July 2017 to June 2018. They served as a Teaching Assistant at the Institute of Chemical Sciences from January 2019 to January 2020, followed by a position as a Visiting Teacher at the same institute. Currently, they are employed as a Lecturer and have transitioned to the role of Assistant Professor since October 2023. Their roles have enabled them to engage deeply with students and contribute to the academic community.

Skills

The individual possesses a robust set of scientific skills, including proficiency in various spectroscopy techniques such as UV-VIS, Fourier Transform Infrared, Scanning Electron Microscopy, X-ray Diffraction, EDX Spectroscopy, and Thermogravimetric Analysis. Additionally, they are skilled in advanced techniques like Zeta Potential and XPS Analysis, which are essential for materials characterization in their research endeavors.

Awards and Honors

Throughout their academic journey, they have been recognized for their achievements, including awards for excellence in various educational milestones, particularly in their advanced studies. Specific details about awards received can be highlighted if available.

Membership

The individual is an active member of professional organizations related to chemistry and material science, contributing to the broader scientific community and staying abreast of the latest advancements in their field.

Teaching Experience

Their teaching experience spans several years, encompassing roles as a Lecturer, Teaching Assistant, and Visiting Teacher. They have been involved in both undergraduate and postgraduate education, focusing on the principles of Inorganic Chemistry and Material Science, and engaging students through innovative teaching methodologies.

Research Focus

The individualā€™s research interests are primarily centered on the preparation and application of nanocomposite materials, with specific focuses including the environmental and biomedical applications of inorganic-based nanocomposites, the synthesis of novel materials such as graphene-based and mesoporous silica composites, and the development of efficient methods for removing heavy metals and organic dyes from water. Their work aims to address critical challenges in environmental remediation and material development, showcasing a commitment to impactful scientific research.

Conclusion

In my opinion, this candidate is highly suitable for the Best Researcher Award due to his impressive academic credentials, meaningful contributions to environmental and biomedical research, and his commitment to advancing scientific knowledge. While there are areas for improvement, particularly in expanding his publication record and enhancing collaboration, his strengths significantly outweigh these challenges. Recognizing him with this award would not only honor his past achievements but also encourage his future contributions to the field of chemistry and material science.

Publication Top Notes
  • Purification and characterization of a thermostable Galium aparine Ī²-galactosidase: A competent agent with enhanced cytotoxic activity against MCF-7 cell line
    • Year: 2024
    • Journal: Process Biochemistry
  • Ī²-Galactosidase isolated from Ranunculus arvensis seeds to synthesize trisaccharide: Kinetics and thermodynamic properties
    • Year: 2024
    • Journal: Food Bioscience
  • Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken’s brain
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Kinetics and thermodynamic stability of native and chemically modified acid invertase: Extracted from yellow pea (Lathyrus aphaca) Seedlings
    • Year: 2024
    • Journal: Process Biochemistry
  • Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
    • Year: 2024
    • Journal: Inorganics
  • Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
    • Year: 2024
    • Journal: Inorganics
  • Remarkable Removal of Pb(II) Ions from Aqueous Media Using Facilely Synthesized Sodium Manganese Silicate Hydroxide Hydrate/Manganese Silicate as a Novel Nanocomposite
    • Year: 2024
    • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Optimization of parameters for the formulation of Moringa oleifera nanosuspension with enhanced hepatoprotective potential
    • Year: 2024
    • Journal: Pakistan Journal of Agricultural Sciences

 

Kamal Kishore | Chemistry | Academic Research Impact Award

Assoc Prof Dr. Kamal Kishore | Chemistry | Academic Research Impact Award

Associate Professor of Eternal University, India.

Dr. Kamal Kishore holds a Ph.D. in Chemistry from B.U. Bhopal, India, and has over fourteen years of teaching experience, coupled with one year in the pharmaceutical industry. His research primarily focuses on the physicochemical and thermodynamic behavior of rare earth soaps and surfactants. Currently, he is an Associate Professor at Eternal University, Himachal Pradesh, India, and has previously served at Career Point University and Sri Sai University. Dr. Kishore’s research has been published in numerous international and national journals, including Journal of Molecular Liquids and Scopus-indexed journals. He has also contributed to textbooks and edited volumes on chemistry and nanotechnology. Dr. Kishore is an active member of several editorial boards and has supervised numerous M.Sc. and Ph.D. students. His work is recognized for its contribution to understanding surfactant behavior and material properties, with a strong track record of conference presentations and publications.

Profile
Education

Kamal Kishore earned his Doctor of Philosophy (Ph.D.) in Chemistry from Bhopal University (B.U.) in 2010, where his thesis focused on the “Physico-chemical, thermal, and acoustical behavior of terbium soaps,” supervised by Prof. S.K. Upadhyaya. He completed his Master of Science (M.Sc.) in Chemistry at Bhopal University in 2004 and his Bachelor of Science (B.Sc.) in Non-Medical from Himachal Pradesh University (H.P.U.), Shimla, in 2001. Additionally, he holds a Bachelor of Education (B.Ed.) in Science from Jammu University, awarded in 2002. Kishore’s educational qualifications are complemented by his Teachers Eligibility Test (HPTET) certification, affirming his competence in teaching. His diverse academic background has equipped him with a solid foundation in chemistry and education, contributing significantly to his professional and research endeavors.

Professional Experience

Dr. Kamal Kishore has a robust academic and industrial background spanning over fourteen years. He is currently an Associate Professor in the Department of Chemistry & Biochemistry at Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh, India, a position he has held since January 2021. Before this, he served as an Assistant Professor at Eternal University and Career Point University, where he contributed significantly to the field of Chemistry. His career began with a role as a Lecturer at MIT College of Engineering & Management and includes experience as an IPQA Chemist at Alkem Laboratories LTD. His diverse roles underscore his commitment to both teaching and practical applications of chemistry, demonstrating a strong blend of academic rigor and industrial insight. His career trajectory highlights a continuous dedication to education and research in the field of chemistry.

Research Interest

Dr. Kamal Kishore’s research interests primarily focus on the physicochemical properties of surfactants and their applications in various fields. His work includes the detailed study of acoustic, thermal, and conductometric behaviors of different metal soaps, particularly terbium-based compounds. Dr. Kishore’s research extends to the synthesis and characterization of surfactants, including imidazolium and other gemini surfactants, exploring their surface-active properties, micellization behavior, and thermal stability. He is also interested in the application of nanotechnology in environmental engineering, examining the fundamental principles of nanomaterials for environmental sustainability and remediation. His contributions to the field are reflected in his numerous publications in reputed journals and his involvement in editing significant textbooks. Dr. Kishore’s interdisciplinary approach combines fundamental research with practical applications, aiming to advance the understanding of surfactant chemistry and its potential uses in industrial and environmental contexts.

Research Skills

Kamal Kishore’s research skills are extensive and well-honed, encompassing a broad range of techniques and methodologies in the field of chemistry. His expertise includes physico-chemical and acoustic analyses, demonstrated by his work on the behavior of terbium soaps and other compounds in various solvents. He excels in conducting detailed studies using methods such as spectroscopy, conductometry, and ultrasonic velocity measurements, which are critical for understanding molecular interactions and material properties. Kishore’s proficiency in thermal stability and structural analysis, along with his experience in synthesizing and characterizing surfactants, further highlights his versatility. His role as an editorial board member and reviewer for several reputed journals underscores his critical evaluation skills and commitment to advancing scientific knowledge. Additionally, his experience supervising both M.Sc. and Ph.D. students reflects his capability to mentor and guide emerging researchers in the field.

Awards and Recognition

Kamal Kishore has received several awards and recognitions throughout his academic and professional career. He was honored with a merit certificate for achieving a rank in state-level matriculation by the HP Board of School Education in 1996 and a recognition for disciplined service at Career Point University, Hamirpur. Kishore’s excellence as an educator was acknowledged with the “Best Teacher” award for the academic session 2012-13 at Career Point University. In addition, he received the “Award of Honor” for the 41st Junior Girls (U-20) National Handball Championship in 2019 and an “Award of Appreciation” for organizing the 4th Kishan Mela at Eternal University, Baru Sahib. He was also certified as a Publons Academy Mentor in 2020, highlighting his contribution to scholarly mentorship and peer review. These accolades underscore his commitment to education, research, and community involvement.

Conclusion

The individual is a strong candidate for the Research for Best Researcher Award based on their extensive experience, significant research contributions, and active role in academia. To enhance their candidacy, focusing on increasing the impact of their publications, diversifying their research areas, and showcasing collaborative projects and grant funding would be beneficial. Their proven track record in teaching, research, and professional service aligns well with the criteria for a prestigious research award.

Publications Top Notes

  • State-of-Art Review on Smart Perovskites Materials: Properties and Applications
    • Authors: Thakur, P., Sharma, N., Pathak, D., Dhar, S., Lal, M.
    • Year: 2024
    • Citations: 3
  • Removal of Heavy Metals from Waste Water Using Different Biosensors
    • Authors: Kishore, K., Walia, Y.K.
    • Year: 2024
  • Progress in the Development of Smart and High-Performing Analytical Tools to Detect Infectious Diseases Using Nanomaterial-Based Sensors: Sensitivity, Rapidity of Reaction, Selectivity, and Robustness
    • Authors: Chintapalli, I., Kishore, K., Singh, M., Usha, R., Ankireddy, S.R.
    • Year: 2024
  • Synthesis, Self-Assembly and Surface-Active Properties of Alkyl Halide Mediated Imidazolium Monomeric Surfactants
    • Authors: Kaur, J., Farzeen, R., Kumar, A., Upadhyaya, S.K., Kishore, K.
    • Year: 2024
  • Electrochemical Behavior, Antimicrobial Activities, and Effect of Temperature on Micellization of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Getahun, T., Singh, M., Thakur, N., Kishore, K.
    • Year: 2023
    • Citations: 1
  • Structural, Morphological, and Magnetic Properties of CoFe2O4 Nano-Ferrites Synthesized via Co-Precipitation Route
    • Authors: Thakur, P., Thakur, P., Kishore, K., Sharma, P., Lal, M.
    • Year: 2023
    • Citations: 13
  • Investigation on Conductance, Acoustical and Refractive Index Behavior of Stearalkonium Chloride in Methanol at 301 K
    • Authors: Singh, C., Negi, S., Singh, M., Kishore, K.
    • Year: 2022
  • Multiferroic Properties of Mn-Substituted BiFeO3
    • Authors: Singh, M., Kumari, P., Kishore, K., Verma, K.C.
    • Year: 2021
    • Citations: 4
  • Recent Developments in the Diagnosis of COVID-19 with Micro- and Nanosystems
    • Authors: Singh, M., Kishore, K., Ankireddy, S.R.
    • Year: 2021
  • Synthesis, Thermal Stability and Surface Activity of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Bhatia, C., Singh, M., Upadhyaya, S.K., Kishore, K.
    • Year: 2020
    • Citations: 17

 

Girish wadhwa | Neuroscience | Best Researcher Award

Dr. Girish wadhwa | Neuroscience | Best Researcher Award

Post doctoral Researcher at University of Ferrara, Italy

Dr. Girish Wadhwa is a dedicated and highly motivated researcher with a Ph.D. in VLSI Design from Dr. B R Ambedkar National Institute of Technology, Jalandhar. His doctoral research focused on the modeling, simulation, and design analysis of charge plasma-based dielectric modulated gate underlap Tunnel Field Effect Transistor (TFET) biosensors using Silvaco and Matlab/Maple. Dr. Wadhwa has significant expertise in semiconductor process engineering, nano processor and sensor design, and the study of graphene and 2D materials. His academic journey includes teaching roles at several prestigious institutions and current postdoctoral research at the University of Ferrara, Italy. He is known for his problem-solving abilities, leadership qualities, and outstanding management skills, contributing significantly to both academic and research environments.

Professional Profiles:

Education

Girish Wadhwa holds a Ph.D. in VLSI Design from Dr. B R Ambedkar National Institute of Technology, Jalandhar. His doctoral research focused on advanced methodologies and technologies in Very-Large-Scale Integration (VLSI) Design, contributing to the field’s knowledge and application. Prior to his Ph.D., he earned an M.Tech in VLSI Design from Maharishi Markandeshwar University, achieving a CGPA of 7.41. His master’s studies provided him with a strong foundation in VLSI design principles and practices. Girish’s academic journey began with a B.Tech in Electronics and Communication Engineering from Kurukshetra University, where he graduated with a 68% score. This undergraduate degree laid the groundwork for his specialization in electronics and communication, shaping his career path and research interests in VLSI design. His educational background reflects a solid and progressive engagement with electronic systems and integrated circuit design.

Professional Experience

Dr. Girish Wadhwa is currently serving as a Postdoctoral Researcher at the University of Ferrara, Italy, since October 1, 2023. Prior to this role, he was an Assistant Professor at Chitkara University from October 2022 to September 2023. His extensive teaching career includes positions as an Assistant Professor at NIT Jalandhar (September 2013 to December 2016), RPIIT (September 2012 to September 2013), MIET (August 2011 to August 2012), and GIMT Kanipla (July 2008 to August 2011). He began his academic career as a Lecturer at SKIET (August 2006 to May 2008). Dr. Wadhwa has a strong background in semiconductor nanodevice research, modeling and TCAD simulation, and digital circuit design using VHDL.

Research Interest

Girish Wadhwa specializes in semiconductor process engineering with a strong focus on modeling and simulation of semiconductor processes. His expertise encompasses reliability studies and failure analysis, crucial for optimizing semiconductor device performance and longevity. He is deeply involved in the design and development of nano processors and sensors, exploring cutting-edge technologies in this field. Wadhwa’s research includes advanced work on graphene and other 2D materials, which are pivotal for next-generation semiconductor applications. His work extends to nanoscale semiconductor devices, such as Nanowire FETs, Nanosheets FETs, and 2D materials, as well as Tunnel FETs (TFETs), vertical structures, organic FETs, FinFETs, carbon nanotubes (CNTs), and ferroelectric materials. His contributions are significant in advancing the development of high-performance, miniaturized semiconductor devices, enhancing both their efficiency and functionality in various applications.

Award and Honors

Dr. Girish Wadhwa has been recognized for his academic and teaching excellence throughout his career. He was awarded the Best Teacher Award at GIMT for the session 2010, highlighting his exceptional teaching skills and dedication. His research contributions have earned him accolades in the field of semiconductor devices, particularly for his work on charge plasma-based dielectric modulated gate underlap Tunnel Field Effect Transistor (TFET) biosensors. This research significantly advances biosensor technology, offering improved performance through innovative techniques. His contributions are widely acknowledged in the academic community, reflecting his expertise and commitment to advancing semiconductor and nanotechnology fields.

Research Skills

Dr. Girish Wadhwa demonstrates robust research skills in semiconductor process engineering and nanoscale device design. He excels in modeling and simulation using advanced tools like MATLAB, Maple, Silvaco, Cadence, Sentaurus, and PSPICE, facilitating precise analysis and design of semiconductor devices. His expertise extends to digital circuit design with VHDL, enhancing his capability to develop and optimize complex circuits. Dr. Wadhwa’s research involves a deep understanding of nanoscale semiconductor devices, including Nanowire FETs, Nanosheets FETs, TFETs, and 2D materials. His work in reliability study, failure analysis, and sensor design highlights his ability to address critical challenges in semiconductor technology. Proficient in analyzing device performance and reliability, he adeptly employs modeling techniques to improve device efficiency and functionality. His skills contribute significantly to advancing knowledge in semiconductor processes and nanotechnology.

Publications
  1. Recent Advances and Progress in the Development of the Field Effect Transistor Biosensor: A Review
    • Authors: T. Wadhera, D. Kakkar, G. Wadhwa, B. Raj
    • Journal: Journal of Electronic Materials
    • Volume: 48
    • Pages: 7635-7646
    • Year: 2019
    • Citations: 166
  2. Label-Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET
    • Authors: G. Wadhwa, B. Raj
    • Journal: Journal of Electronic Materials
    • Volume: 47
    • Pages: 4683-4693
    • Year: 2018
    • Citations: 135
  3. Design, Simulation, and Performance Analysis of JLTFET Biosensor for High Sensitivity
    • Authors: G. Wadhwa, B. Raj
    • Journal: IEEE Transactions on Nanotechnology
    • Volume: 18
    • Pages: 567-574
    • Year: 2019
    • Citations: 120
  4. Parametric Variation Analysis of Symmetric Double Gate Charge Plasma JLTFET for Biosensor Application
    • Authors: G. Wadhwa, B. Raj
    • Journal: IEEE Sensors Journal
    • Volume: 18
    • Issue: 15
    • Pages: 6070-6077
    • Year: 2018
    • Citations: 76
  5. Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance
    • Authors: S. Badgujjar, G. Wadhwa, S. Singh, B. Raj
    • Journal: Transactions on Electrical and Electronic Materials
    • Volume: 21
    • Pages: 74-82
    • Year: 2020
    • Citations: 61

Tesfaye Abebe Geleta | Chemistry Department | Best Researcher Award

Dr. Tesfaye Abebe Geleta | Chemistry Department | Best Researcher Award

Postdoctoral Research Fellow at National Taiwan University, Taiwan

Dr. Tesfaye Abebe Geleta is a Postdoctoral Research Fellow at National Taiwan University, specializing in photocatalysis and environmental remediation. His research focuses on the photocatalytic activity of perovskite/graphitic carbon nitride heterojunctions for degrading pollutants. With a strong background in computational simulations and density functional theory (DFT), Dr. Geleta also has extensive experience in materials characterization using various analytical techniques, including XRD, TEM, and SEM. His previous roles include Senior Application Engineer at MacDermid Alpha Electronics Solutions and Research Assistant at Chung Yuan Christian University. Dr. Geleta holds a Ph.D. in Solar Energy Harvesting from National Taiwan University of Science and Technology, an M.Sc. in Quantum Optics from Addis Ababa University, and a B.Sc. in Physics from Wollega University. His expertise extends to nanomaterials synthesis, renewable energy technologies, and advanced membrane technologies.

Professional Profiles:

Education

Dr. Tesfaye Abebe Geleta earned his Ph.D. in Applied Science & Technology from the National Taiwan University of Science & Technology in Taipei, Taiwan, where he focused on ZnO-Based Dye-Sensitized Solar Cells, particularly the effects of additives. Prior to this, he completed his M.Sc. in Quantum Optics at Addis Ababa University in Ethiopia, which provided him with a strong foundation in quantum physics. His academic journey began with a B.Sc. in Physics from Wollega University, also in Ethiopia. His extensive education equips him with expertise in photovoltaic materials, quantum optics, and advanced computational techniques, supporting his research and professional work in energy harvesting, photocatalysis, and membrane technology.

Professional Experience

Dr. Tesfaye Abebe Geleta is currently a Postdoctoral Research Fellow at National Taiwan University, where he focuses on the photocatalytic activity of perovskite/graphitic carbon nitride heterojunctions for environmental remediation. Before this, he worked as a Senior Application Engineer at MacDermid Alpha Electronics Solutions, specializing in surface modification of printed circuit boards (PCBs) and final finishing technologies. His earlier roles include a Research Assistant at the R&D Center for Membrane Technology at Chung Yuan Christian University, where he explored antifouling membranes, and a Lecturer in Quantum Physics at Bule Hora University in Ethiopia. He also has experience as a Physics Teacher at Hinde Secondary and Preparatory School. His diverse professional background spans academia, industry, and research, reflecting a strong focus on energy solutions, material science, and environmental technologies.

Research Interest

Dr. Tesfaye Abebe Geleta’s research interests encompass a range of advanced material sciences and energy technologies. His current work at National Taiwan University focuses on photocatalysis, specifically using perovskite/graphitic carbon nitride heterojunctions for environmental remediation. He employs density functional theory (DFT) and computational simulations to enhance photocatalytic efficiency. Additionally, he has a strong background in photovoltaic technologies, including dye-sensitized and perovskite solar cells, and membrane technology. His previous research includes quantum optics and the development of antifouling membranes. Dr. Geleta’s work integrates theoretical and practical approaches to address challenges in renewable energy and environmental sustainability.

Ā Award and Honors

Dr. Tesfaye Abebe Geleta has received several notable awards and honors throughout his career. In January 2023, he was recognized as a member of the Technical Program Committee for the 2nd International Conference on Smart Grid and Green Energy (ICSGGE 2023) in China. In October 2022, he was awarded a Certificate of Completion for his participation in clean ocean protection activities by MacDermid Alpha Electronics Solutions. Additionally, he received a Social Service Certificate in June 2021 from National Taiwan University for his contribution to the i-Village Digital Learning Companion Project. His achievements reflect his commitment to both his research and community service.

Research Skills

Dr. Tesfaye Abebe Geleta possesses a diverse set of research skills, including expertise in photocatalysis, computational simulations, and renewable energy technologies. He is proficient in density functional theory (DFT) and computational tools such as Quantum Espresso, CASTEP, and WIEN2k for electronic structure calculations. His technical skills encompass the characterization of materials using XRD, TEM, SEM, FTIR, and UV-Vis spectroscopy. Dr. Geleta has hands-on experience with membrane technology, including VIPS and NIPS methods, and is skilled in the synthesis and analysis of nanomaterials. Additionally, he is adept in liquid and gas chromatography, corrosion analysis, and surface roughness evaluation. His research also includes advanced knowledge in solar cell technologies, such as dye-sensitized and perovskite solar cells.

Publications

  1. Nanocomposite Photoanodes Consisting of p-NiO/n-ZnO Heterojunction and Carbon Quantum Dot Additive for Dye-Sensitized Solar Cells
    • Authors: T.A. Geleta, T. Imae
    • Year: 2021
    • Citations: 44
    • Journal: ACS Applied Nano Materials, 4 (1), 236-249
  2. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method
    • Authors: T.A. Geleta, I.V. Maggay, Y. Chang, A. Venault
    • Year: 2023
    • Citations: 35
    • Journal: Membranes, 13 (1), 58
  3. Influence of Additives on Zinc Oxide-Based Dye-Sensitized Solar Cells
    • Authors: T.A. Geleta, T. Imae
    • Year: 2020
    • Citations: 23
    • Journal: Bulletin of the Chemical Society of Japan, 93 (4), 611-620
  4. Effect of Carbon Dots on Supercapacitor Performance of Carbon Nanohorn/Conducting Polymer Composites
    • Authors: C.C. Chang, T.A. Geleta, T. Imae
    • Year: 2021
    • Citations: 18
    • Journal: Bulletin of the Chemical Society of Japan, 94 (2), 454-462
  5. Using the Dimethyl Sulfoxide Green Solvent for the Making of Antifouling PEGylated Membranes by the Vapor-Induced Phase Separation Process
    • Authors: A. Venault, H.N. Aini, T.A. Galeta, Y. Chang
    • Year: 2022
    • Citations: 8
    • Journal: Journal of Membrane Science Letters, 2 (2), 100025
  6. Engineering Sterilization-Resistant and Fouling-Resistant Porous Membranes by the Vapor-Induced Phase Separation Process Using a Sulfobetaine Methacrylamide Amphiphilic Derivative
    • Authors: A. Venault, R.J. Zhou, T.A. Galeta, Y. Chang
    • Year: 2022
    • Citations: 8
    • Journal: Journal of Membrane Science, 658, 120760
  7. First-Principle Analysis of Optical and Thermoelectric Properties in Alkaline-Based Perovskite Compounds AInCl3 (Aā€‰=ā€‰K, Rb)
    • Authors: D. Behera, T.A. Geleta, I. Allaoui, M. Khuili, S.K. Mukherjee, B. Akila, S. Al-Qaisi
    • Year: 2024
    • Citations: 7
    • Journal: The European Physical Journal Plus, 139 (2), 127
  8. Studies on Optoelectronic and Transport Properties of XSnBr3 (X = Rb/Cs): A DFT Insight
    • Authors: D. Behera, B. Akila, S.K. Mukherjee, T.A. Geleta, A. Shaker, M.M. Salah
    • Year: 2023
    • Citations: 7
    • Journal: Crystals, 13 (10), 1437
  9. Exploring the Mechanical, Vibrational Optoelectronic, and Thermoelectric Properties of Novel Half-Heusler FeTaX (X = P, As): A First-Principles Study
    • Authors: T.A. Geleta, D. Behera, R. Sharma, M. Mana Al-Anazy, V. Srivastava, et al.
    • Year: 2024
    • Citations: 3
    • Journal: RSC Advances, 14 (6), 4165-4178
  10. A Copolymer Derivative of Poly(4-vinylpyridine propylsulfobetaine) for the Design of Thermostable Bioinert Poly(vinylidene difluoride) Microporous Membranes by Vapor-Induced Phase Separation
    • Authors: A. Venault, T.A. Geleta, T.Y. Chiu, H.T. Lin, I.V. Maggay, Y. Chang
    • Year: 2023
    • Citations: 2
    • Journal: Separation and Purification Technology, 325, 124686