Abraham Badu-Tawiah | Analytical Chemistry | Best Researcher Award

Prof. Dr. Abraham Badu-Tawiah | Analytical Chemistry | Best Researcher Award

Chemistry at The Ohio State University, United States

Abraham Kwame Badu-Tawiah is a distinguished professor at The Ohio State University, specializing in the fields of mass spectrometry and analytical chemistry. With a robust academic background and innovative research, he focuses on developing analytical techniques that can improve healthcare, particularly for underserved communities. His work encompasses a variety of projects, including novel mass spectrometry approaches and paper microfluidics aimed at enhancing disease diagnosis. Badu-Tawiah’s research contributions have significantly advanced the field, evidenced by his numerous patents and extensive funding from prestigious organizations. His outreach efforts also aim to inspire and engage minorities in STEM, showcasing his commitment to diversity and education in science. Overall, Badu-Tawiah stands out as a prominent researcher dedicated to impactful scientific advancements and community engagement.

Professional Profile

Education

Abraham Badu-Tawiah’s educational journey reflects his dedication to chemistry and scientific excellence. He earned his Bachelor’s and Master’s degrees in Chemistry from Kwame Nkrumah University of Science and Technology in Ghana, where he was mentored by esteemed professors. Badu-Tawiah further pursued a Master’s degree in Chemistry at Indiana University of Pennsylvania, culminating in a PhD from Purdue University under the guidance of Professor R. Graham Cooks. His rigorous training continued with a postdoctoral fellowship at Harvard University, where he worked with Professor George M. Whitesides. This impressive educational background has equipped him with a strong foundation in analytical chemistry, allowing him to make significant contributions to the field through innovative research and development.

Professional Experience

Abraham Badu-Tawiah’s professional trajectory is marked by a series of significant academic appointments at The Ohio State University. He began his career as an Assistant Professor in the Department of Chemistry and Biochemistry and has since progressed through the ranks to his current role as a Fox Professor. His interdisciplinary collaboration spans various departments, including Microbial Infection and Immunity and Internal Medicine, reflecting his commitment to bridging chemistry with healthcare. Badu-Tawiah has also served as an adjunct faculty member in multiple capacities, enhancing educational opportunities across disciplines. His involvement in initiatives at the Comprehensive Cancer Center exemplifies his dedication to integrating research with real-world health challenges. Through his extensive professional experience, Badu-Tawiah has established himself as a leader in analytical chemistry and mass spectrometry.

Research Interests

Abraham Badu-Tawiah’s research interests lie at the intersection of analytical chemistry and healthcare, focusing on innovative methods to improve disease diagnosis, particularly in underserved populations. His current projects explore diverse areas, including panoptic mass spectrometry, accelerated droplet chemistry, and mass spectrometry-based immunoassays. Badu-Tawiah is particularly interested in developing portable, paper-based microfluidic devices that allow for sensitive and affordable disease detection. His work on dry-state microsampling platforms aims to revolutionize blood sampling methods, making them more accessible and practical for use in remote areas. Additionally, Badu-Tawiah is passionate about outreach initiatives that support minorities in STEM, fostering inclusivity and encouraging future generations to pursue careers in science. Overall, his research is driven by a commitment to societal impact and advancing scientific knowledge.

Research Skills

Abraham Badu-Tawiah possesses a diverse range of research skills that underpin his contributions to analytical chemistry. His expertise in mass spectrometry enables him to develop innovative analytical techniques for complex biological samples. Badu-Tawiah is proficient in microfluidics, which he applies to create novel platforms for disease diagnosis and analysis. His work involves designing and executing experiments, interpreting complex data, and optimizing methodologies for real-world applications. Furthermore, he excels in interdisciplinary collaboration, working alongside experts from various fields to enhance the impact of his research. His experience in securing significant funding from organizations such as the NIH and NSF showcases his ability to articulate and promote research ideas effectively. Badu-Tawiah’s skills in education and mentorship also play a crucial role in shaping the next generation of scientists.

Awards and Honors

Abraham Badu-Tawiah’s exceptional contributions to the field of analytical chemistry have earned him numerous prestigious awards and recognitions. In 2021, he was honored as the Early Career Innovator of the Year at The Ohio State University, highlighting his impactful research. His achievements include receiving the Sloan Fellowship and the NIH R35 MIRA Award for New Investigators, demonstrating his promise in advancing scientific knowledge. Badu-Tawiah has also been recognized with the ACS Arthur F. Findeis Award for Achievements by a Young Analytical Scientist and the Eli Lilly Young Investigator Award. His selection as an Emerging Investigator by esteemed journals underscores his influence in the scientific community. Collectively, these accolades reflect Badu-Tawiah’s dedication to research excellence and his commitment to addressing pressing health challenges through innovative scientific approaches.

Conclusion 🎉

Abraham Badu-Tawiah is a highly qualified candidate for the Best Researcher Award. His innovative research contributions, strong community outreach, and recognition within the scientific community highlight his dedication and impact in the field of analytical chemistry. While there are areas for improvement, particularly in dissemination and collaboration, his overall profile aligns well with the ideals of this award. He exemplifies a commitment not only to scientific advancement but also to the betterment of society through education and innovation.

Publications Top Notes

  1. Comparison of three rapid diagnostic tests for Plasmodium falciparum diagnosis in Ghana
    • Authors: Kayode, T.A., Addo, A.K., Addison, T.K., Badu, K., Koepfli, C.
    • Journal: Malaria Journal
    • Year: 2024
    • Volume: 23(1)
    • Pages: 265
    • Citations: 0
  2. Multi-Analyte Concentration Analysis of Marine Samples through Regression-Based Machine Learning
    • Authors: North, N.M., Clark, J.B., Enders, A.A.A., Badu-Tawiah, A., Allen, H.C.
    • Journal: ACS Earth and Space Chemistry
    • Year: 2024
    • Volume: 8(8)
    • Pages: 1549–1559
    • Citations: 0
  3. Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening
    • Authors: Grooms, A.J., Burris, B.J., Badu-Tawiah, A.K.
    • Journal: Mass Spectrometry Reviews
    • Year: 2024
    • Volume: 43(4)
    • Pages: 683–712
    • Citations: 2
  4. The Growing Influence of Mass Spectrometry in Measurement Science
    • Authors: Badu-Tawiah, A.K.
    • Journal: ACS Measurement Science Au
    • Year: 2023
    • Volume: 3(6)
    • Pages: 390–392
    • Citations: 0
  5. Dual Tunability for Uncatalyzed N-Alkylation of Primary Amines Enabled by Plasma-Microdroplet Fusion
    • Authors: Grooms, A.J., Nordmann, A.N., Badu-Tawiah, A.K.
    • Journal: Angewandte Chemie – International Edition
    • Year: 2023
    • Volume: 62(51)
    • Article Number: e202311100
    • Citations: 4
  6. Charge inversion under plasma-nanodroplet reaction conditions excludes Fischer esterification for unsaturated fatty acids: a chemical approach for type II isobaric overlap
    • Authors: Kulyk, D.S., Baryshnikov, G.V., Damale, P.S., Maher, S., Badu-Tawiah, A.K.
    • Journal: Chemical Science
    • Year: 2023
    • Volume: 15(3)
    • Pages: 914–922
    • Citations: 2
  7. Two-dimensional isomer differentiation using liquid chromatography-tandem mass spectrometry with in-source, droplet-based derivatization
    • Authors: Heiss, D.R., Amoah, E., Badu-Tawiah, A.K.
    • Journal: Analyst
    • Year: 2023
    • Volume: 148(20)
    • Pages: 5270–5278
    • Citations: 1
  8. High-Throughput Nanoliter Sampling and Direct Analysis of Biological Fluids Using Droplet Imbibition Mass Spectrometry
    • Authors: Sahraeian, T., Amoah, E., Kulyk, D.S., Badu-Tawiah, A.K.
    • Journal: Analytical Chemistry
    • Year: 2023
    • Volume: 95(18)
    • Pages: 7093–7099
    • Citations: 3
  9. Mass Spectrometry Approach for Differentiation of Positional Isomers of Saccharides: Toward Direct Analysis of Rare Sugars
    • Authors: Amoah, E., Kulyk, D.S., Callam, C.S., Hadad, C.M., Badu-Tawiah, A.K.
    • Journal: Analytical Chemistry
    • Year: 2023
    • Volume: 95(13)
    • Pages: 5635–5642
    • Citations: 5
  10. Plasma-Droplet Reaction Systems: A Direct Mass Spectrometry Approach for Enhanced Characterization of Lipids at Multiple Isomer Levels
    • Authors: Grooms, A.J., Nordmann, A.N., Badu-Tawiah, A.K.
    • Journal: ACS Measurement Science Au
    • Year: 2023
    • Volume: 3(1)
    • Pages: 32–44
    • Citations: 6

 

Qiushui Mu | Chemistry | Best Researcher Award

Ms. Qiushui Mu | Chemistry | Best Researcher Award

Ph.D Student at Fudan University, China

Qiu-Shui Mu is a doctoral candidate in Inorganic Chemistry at Fudan University, Shanghai, China. With a strong academic foundation, Mu is emerging as a promising young researcher in the field of molecular chemistry. His research focuses on constructing complex molecular topologies using organometallic units, an area that holds potential for advancements in nanotechnology and materials science. He has co-authored several high-impact publications in leading scientific journals, establishing himself as a rising expert in the field. Mu’s technical skills, combined with a passion for innovation, have earned him numerous awards and scholarships throughout his academic journey. Beyond his academic achievements, he maintains interests in sketching and running, which reflect his well-rounded personality and creativity.

Professional Profile

Education

Qiu-Shui Mu’s educational journey began at Henan University, where he completed his Bachelor of Chemistry in 2021. His undergraduate research focused on the synthesis and properties of polyoxometalate clusters, providing him with a solid foundation in experimental chemistry. After graduating, Mu pursued his doctoral studies at Fudan University, one of China’s top universities, where he has been enrolled since September 2021. His doctoral research revolves around the construction of complex molecular structures, specifically exploring the synthesis of molecular Solomon links and chiral catenanes. This combination of rigorous academic training and research experience has shaped Mu into a highly skilled chemist, ready to make significant contributions to his field.

Professional Experience

During his academic career, Qiu-Shui Mu has gained valuable research experience through both his undergraduate and doctoral projects. His bachelor’s research at Henan University involved investigating polyoxometalate clusters, while his doctoral work at Fudan University focuses on complex molecular topology, particularly with half-sandwich organometallic units. These projects have honed his skills in organic synthesis, crystal solving, and molecular design, providing him with the technical expertise required for advanced research. Mu has co-authored several peer-reviewed publications, including in the Journal of the American Chemical Society and Science China Chemistry, where he has worked alongside leading experts in the field. His ability to collaborate on cutting-edge research showcases his potential for leadership in the scientific community.

Research Interests

Qiu-Shui Mu’s research interests lie in the synthesis and self-assembly of complex molecular structures, with a particular focus on organometallic chemistry and chiral catenanes. His work aims to uncover novel molecular topologies, such as Solomon links, figure-eight knots, and chiral prisms, which hold promise for applications in fields like nanotechnology, catalysis, and materials science. Mu is especially interested in how fine-tuning ligands can control the stereoselectivity and chirality of molecular assemblies, leading to unique properties and potential industrial applications. His fascination with molecular design and topology reflects a broader interest in the fundamental principles that govern the behavior of complex systems, positioning him at the forefront of innovation in inorganic chemistry.

Awards and Honors

Throughout his academic career, Qiu-Shui Mu has been recognized for his outstanding academic performance and research contributions. He received the prestigious National Scholarship in 2019, a testament to his excellence as an undergraduate student at Henan University. In 2021, Mu was named one of the Outstanding Graduates of Henan Province, further solidifying his reputation as a top student. At Fudan University, he has been awarded the Outstanding Academic Scholarship twice, in both 2022 and 2023, highlighting his continued excellence at the doctoral level. These awards reflect Mu’s dedication, hard work, and potential to become a leading figure in the field of inorganic chemistry.

Conclusion

Qiu-Shui Mu is a promising and highly accomplished early-career researcher in inorganic chemistry. His publications in high-impact journals, innovative research projects, and numerous academic awards position him as a strong contender for the Best Researcher Award. With further development of independent research projects and a stronger emphasis on the broader applications of his work, he would be an even more compelling candidate for future recognition on a global scale.

In summary, Mu is a well-rounded researcher with the technical skills and academic achievements to merit consideration for the award, though expanding his impact beyond academic circles could further enhance his candidacy.

Publication top noted

  • 🧪 Chiral Self-Assembly of Twisted Prisms, Cuboids, and Polyhedral Capped Cages with Tartrate Ligands
    Authors: Mu, Q.-S., Wang, X.-Y., Gao, X., Jin, G.-X.
    Journal: Small, 2024
    Citations: 0
  • 🔗 Selective Construction of Borromean Rings and Tweezer-Like Molecular Assembly Featuring Cp*Rh/Ir Clips for Near-Infrared Photothermal Conversion
    Authors: Zou, Y., Zhang, H.-N., Mu, Q.-S., Dang, L.-L., Jin, G.-X.
    Journal: Chinese Journal of Chemistry, 2023, 41(23), pp. 3229–3237
    Citations: 7
  • 🔗 Selective construction of molecular Solomon links and figure-eight knots by fine-tuning unsymmetrical ligands
    Authors: Mu, Q.-S., Gao, X., Cui, Z., Lin, Y.-J., Jin, G.-X.
    Journal: Science China Chemistry, 2023, 66(10), pp. 2885–2891
    Citations: 12
  • 🔗 Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes
    Authors: Cui, Z., Mu, Q.-S., Gao, X., Jin, G.-X.
    Journal: Journal of the American Chemical Society, 2023, 145(1), pp. 725–731
    Citations: 17
  • 🧪 A novel peroxopolyoxoniobate incorporating mixed heteroatoms: [P2Se2Nb6(O2)6O22]8-
    Authors: Yang, Z., Mu, Q., Liang, Z., Niu, J., Wang, J.
    Journal: Dalton Transactions, 2019, 48(35), pp. 13135–13138
    Citations: 12

Khalil ur Rehman | Chemistry | Best Researcher Award

Dr. Khalil ur Rehman |Chemistry | Best Researcher Award

Assistant Professor at  Gomal University, Dera Ismail Khan,Pakistan

The individual is an accomplished researcher and academic specializing in Inorganic Chemistry and Material Science. Currently serving as an Assistant Professor at the Institute of Chemical Sciences, Gomal University in Dera Ismail Khan, KP, Pakistan, they have made significant contributions to the field through both research and teaching. Their extensive educational background and hands-on experience in various capacities underscore their commitment to advancing scientific knowledge and fostering student development.

Profile:

Education

The individual completed their Ph.D. in Inorganic Chemistry/Material Science at the Institute of Chemical Sciences, Gomal University, from 2019 to 2022. Prior to this, they earned an M.Phil. and a Master’s in Inorganic Chemistry from the same institution, achieving a Division 1st classification. Their foundational education includes a B.Sc. in Chemistry, HSSC in Pre-Medical, SSC in Science, and advanced degrees in Education (B.Ed. and M.Ed.) from Allama Iqbal Open University, along with a Diploma of Information Technology. Each of these qualifications reflects their dedication to academic excellence.

Work Experience

The individual has amassed valuable teaching experience, beginning as a Lecturer on a NIP basis in South Waziristan Agency from July 2017 to June 2018. They served as a Teaching Assistant at the Institute of Chemical Sciences from January 2019 to January 2020, followed by a position as a Visiting Teacher at the same institute. Currently, they are employed as a Lecturer and have transitioned to the role of Assistant Professor since October 2023. Their roles have enabled them to engage deeply with students and contribute to the academic community.

Skills

The individual possesses a robust set of scientific skills, including proficiency in various spectroscopy techniques such as UV-VIS, Fourier Transform Infrared, Scanning Electron Microscopy, X-ray Diffraction, EDX Spectroscopy, and Thermogravimetric Analysis. Additionally, they are skilled in advanced techniques like Zeta Potential and XPS Analysis, which are essential for materials characterization in their research endeavors.

Awards and Honors

Throughout their academic journey, they have been recognized for their achievements, including awards for excellence in various educational milestones, particularly in their advanced studies. Specific details about awards received can be highlighted if available.

Membership

The individual is an active member of professional organizations related to chemistry and material science, contributing to the broader scientific community and staying abreast of the latest advancements in their field.

Teaching Experience

Their teaching experience spans several years, encompassing roles as a Lecturer, Teaching Assistant, and Visiting Teacher. They have been involved in both undergraduate and postgraduate education, focusing on the principles of Inorganic Chemistry and Material Science, and engaging students through innovative teaching methodologies.

Research Focus

The individual’s research interests are primarily centered on the preparation and application of nanocomposite materials, with specific focuses including the environmental and biomedical applications of inorganic-based nanocomposites, the synthesis of novel materials such as graphene-based and mesoporous silica composites, and the development of efficient methods for removing heavy metals and organic dyes from water. Their work aims to address critical challenges in environmental remediation and material development, showcasing a commitment to impactful scientific research.

Conclusion

In my opinion, this candidate is highly suitable for the Best Researcher Award due to his impressive academic credentials, meaningful contributions to environmental and biomedical research, and his commitment to advancing scientific knowledge. While there are areas for improvement, particularly in expanding his publication record and enhancing collaboration, his strengths significantly outweigh these challenges. Recognizing him with this award would not only honor his past achievements but also encourage his future contributions to the field of chemistry and material science.

Publication Top Notes
  • Purification and characterization of a thermostable Galium aparine β-galactosidase: A competent agent with enhanced cytotoxic activity against MCF-7 cell line
    • Year: 2024
    • Journal: Process Biochemistry
  • β-Galactosidase isolated from Ranunculus arvensis seeds to synthesize trisaccharide: Kinetics and thermodynamic properties
    • Year: 2024
    • Journal: Food Bioscience
  • Isolation and biochemical characterization of novel acid phosphatase and zinc-dependent acid phosphatase from the chicken’s brain
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Kinetics and thermodynamic stability of native and chemically modified acid invertase: Extracted from yellow pea (Lathyrus aphaca) Seedlings
    • Year: 2024
    • Journal: Process Biochemistry
  • Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media
    • Year: 2024
    • Journal: Inorganics
  • Alkaline protease functionalized hydrothermal synthesis of novel gold nanoparticles (ALPs-AuNPs): A new entry in photocatalytic and biological applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
    • Year: 2024
    • Journal: Inorganics
  • Remarkable Removal of Pb(II) Ions from Aqueous Media Using Facilely Synthesized Sodium Manganese Silicate Hydroxide Hydrate/Manganese Silicate as a Novel Nanocomposite
    • Year: 2024
    • Journal: Journal of Inorganic and Organometallic Polymers and Materials
  • Biochemical and thermodynamic properties of de novo synthesized urease from Vicia sativa seeds with enhanced industrial applications
    • Year: 2024
    • Journal: International Journal of Biological Macromolecules
  • Optimization of parameters for the formulation of Moringa oleifera nanosuspension with enhanced hepatoprotective potential
    • Year: 2024
    • Journal: Pakistan Journal of Agricultural Sciences

 

Naga Lalitha Sree Thatavarthi | E-commerce | Excellence in Innovation

Mrs. Naga Lalitha Sree Thatavarthi | E-commerce | Excellence in Innovation

Mrs. Naga Lalitha Sree Thatavarthi, Gabriella White LLC, United States.

Naga Lalitha Sree Thatavarthi is a dynamic leader in the field of e-commerce, renowned for her innovative approaches to digital business solutions. With a strong academic background and extensive experience in the industry, she has spearheaded numerous successful projects that have transformed online retail strategies. Naga’s expertise spans areas such as user experience design, data analytics, and supply chain optimization. Her commitment to excellence and her passion for leveraging technology to enhance customer engagement have earned her recognition in the e-commerce community. Through her work, she continues to inspire others to embrace innovation and drive growth in the digital marketplace.

Profile:

Professional Overview

Naga Lalitha Sree Thatavarthi possesses extensive technical expertise in Microsoft technologies, including the .NET Framework, ASP.NET Web Forms, ASP.NET MVC, C#, and VB.NET. Her skill set encompasses web services, RESTful services, and programming languages such as JavaScript, HTML5, and CSS3. Proficient in implementing and consuming WCF services, she excels in ensuring security, debugging, and performance optimization. With substantial experience in setting up CI/CD pipelines using tools like Jenkins, Bitbucket, and GitHub, Naga has designed comprehensive processes for API development and automation. She is well-versed in reporting tools, including SQL Server Reporting Services (SSRS) and Crystal Reports, and has a strong grasp of Agile methodology, Scrum processes, and sprint planning. Her expertise also includes developing ASP.NET custom controls and user interfaces using AJAX, AngularJS, Bootstrap, and jQuery. Naga has a solid background in database design, writing PL/SQL stored procedures, functions, triggers, and complex queries across various databases, including DB2, SQL Server, MySQL, and Hibernate (ORM). Additionally, she integrates code quality tools like SonarQube into CI/CD pipelines, ensuring high standards in software development and delivery.

Experience

Naga Lalitha Sree Thatavarthi has effectively managed source control repositories using Git, implementing branching strategies and facilitating pull requests to streamline development workflows. She has optimized SQL queries to enhance application performance in PostgreSQL databases and conducted comprehensive unit and integration testing to ensure functionality and reliability. Proficient in front-end technologies such as HTML5, CSS3, JavaScript, and Bootstrap, Naga has developed dynamic and interactive user interfaces utilizing modern JavaScript frameworks, including React.js and Angular.

Her backend development skills include working with ASP.NET Core, C#, and SQL Server, with a strong focus on building RESTful APIs and familiarity with ORM frameworks like Entity Framework and Dapper for efficient data access. She possesses a solid understanding of Object-Oriented Programming (OOP) and SOLID design principles, and she is knowledgeable in version control systems and collaborative workflows using Git and GitHub.

With experience in cloud platforms like Microsoft Azure and AWS for deploying and scaling applications, Naga is also proficient in using DevOps tools for CI/CD pipelines, including Azure DevOps and Jenkins. Her familiarity with containerization technologies, such as Docker and Kubernetes, enhances her ability to develop and maintain web applications from conception to deployment. She collaborates closely with cross-functional teams to translate business requirements into technical solutions, designs and implements RESTful APIs following best practices for security and performance, and writes clean, maintainable code adhering to established coding standards. Naga actively participates in code reviews, mentoring junior developers, and documenting technical specifications to ensure clear communication and knowledge sharing within her team.

 

Publication Top Notes

Tingting Yan | Chemistry | Best Researcher Award

Prof. Tingting Yan | Chemistry | Best Researcher Award

Researcher at Shenyang Jianzhu University, China.

Prof. Tingting Yan, born in Heilongjiang Province, China, is a distinguished researcher in Condensed Matter Physics at Shenyang Jianzhu University. She holds a Ph.D. in Condensed Matter Physics from Jilin University, where she focused on the study of energetic materials and organic polymorphs under high pressure. With expertise in energetic materials, hydrogen-bonded polycrystalline materials, and perovskite materials, Prof. Yan has made significant contributions to material behavior under extreme conditions. Her technical proficiency includes TEM, SEM, and first-principle calculations, supported by experience in scientific software such as Material Studio and Gaussian. Prof. Yan has led multiple research projects funded by national and provincial foundations and has received awards, including the “Liaoning Province Millions of Talents Project” and Shenyang City Natural Academic Achievement Award. She actively reviews for journals like The Journal of Physical Chemistry and RSC Advances, contributing to the global research community.

Profile:

Education

Prof. Tingting Yan holds a strong educational background in Condensed Matter Physics, which she pursued at Jilin University, one of China’s leading research institutions. She earned her Ph.D. in 2015 from the State Key Laboratory of Superhard Materials, focusing on the study of energetic materials and organic polymorphs under high pressure, under the supervision of renowned scholars, Prof. Guangtian Zou and Bo Zou. Prior to her doctorate, she completed her M.S. in Condensed Matter Physics in 2012, also from Jilin University, where she conducted significant research on hydrogen-bonded organic crystals under high pressure. Her educational journey began with a B.S. in Physics, completed in 2010 from Jilin University, where she also took a minor in Business Administration. This diverse and comprehensive academic training laid the foundation for her expertise in material behavior under extreme conditions and positioned her for a successful research career.

Professional Experience

Prof. Tingting Yan has been a dedicated academic and researcher at Shenyang Jianzhu University since 2012, where she currently holds the position of Professor in the School of Science. Her expertise lies in Condensed Matter Physics, particularly focusing on energetic materials, hydrogen-bonded polycrystalline materials, and perovskite materials. She began her career as an Associate Professor and Master Tutor in 2015, playing a vital role in mentoring graduate students. Throughout her tenure, she has led several research projects, including grants from the National Natural Science Foundation of China, and has contributed significantly to advancing knowledge in material sciences under extreme conditions. Prof. Yan is also an active reviewer for reputable journals such as The Journal of Physical Chemistry and RSC Advances. Her professional journey reflects her commitment to scientific innovation and education, helping shape future physicists through her teaching and research contributions.

Research Interest

Prof. Tingting Yan’s research interests center around Condensed Matter Physics, with a particular focus on understanding the properties and behavior of materials under extreme conditions. She is actively engaged in studying energetic materials, which have important applications in various industries, including defense and energy. Her work on hydrogen-bonded polycrystalline materials explores the role of hydrogen bonding in determining the structural and dynamic properties of crystals, providing insights into material stability and reactivity under pressure. Additionally, Prof. Yan has a strong interest in perovskite materials, which are known for their remarkable electronic and optical properties, making them key candidates for next-generation solar cells and other advanced technologies. Combining experimental techniques such as TEM and SEM with theoretical approaches like first-principle calculations, her research contributes to both the fundamental understanding and practical applications of these materials, pushing the boundaries of material science.

Research Skills

Prof. Tingting Yan possesses a broad range of research skills, primarily in Condensed Matter Physics. She has significant hands-on experience with Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM), which she utilizes for high-precision material characterization. Her expertise extends to first-principle calculations to study the pressure-induced behavior of materials, allowing her to investigate their structural and electronic properties. Prof. Yan is proficient in synthesizing polymorphic phases of both organic and inorganic crystals, further enhancing her experimental research capabilities. She is also well-versed in using advanced scientific software such as Material Studio, Gaussian, MDI-Jade, Peakfit, and GSAS for data analysis, modeling, and simulation. Her skills in both theoretical and experimental research allow her to conduct comprehensive studies in areas like energetic materials and hydrogen-bonded organic crystals, making her a well-rounded researcher in the field of condensed matter physics.

Award and Recognition

Prof. Tingting Yan has earned significant recognition for her contributions to Condensed Matter Physics. She was honored with the prestigious Liaoning Province Millions of Talents Project Award in 2018, a testament to her expertise and impact in her field. Her research excellence has also been acknowledged through the Liaoning Province Natural Academic Achievement Award, where she secured third prize, and the Shenyang City Natural Academic Achievement Award, winning first prize in 2018. These accolades highlight her pioneering work in areas such as energetic materials and hydrogen-bonded polycrystalline materials. In addition to these honors, Prof. Yan plays an influential role within the academic community as a reviewer for renowned journals, including The Journal of Physical Chemistry and RSC Advances. Her consistent achievements and leadership in research projects, supported by national and provincial grants, further underscore her status as a highly respected figure in the scientific community.

Conclusion

Prof. Tingting Yan’s extensive research in Condensed Matter Physics, combined with her impressive technical skills and recognition within China, makes her a strong contender for the Best Researcher Award. Her strengths lie in her deep scientific knowledge, proven ability to secure research funding, and valuable contributions to the academic community. However, for global recognition, expanding international collaborations and increasing high-impact publications could enhance her standing even further. Overall, she is a highly qualified candidate deserving of this prestigious award.

Publication Top Notes

  1. Title: High-pressure behavior of hydrogen-bonded polymorphic material 1-methylhydantoin Form-I
    • Authors: Yan, T.-T., Jiang, R., Xi, D.-Y., Ma, L., Zhang, D.-D.
    • Year: 2024
    • Journal: Physics Letters, Section A: General, Atomic and Solid State Physics
    • Volume: 521
    • Article Number: 129742
  2. Title: In-situ high pressure study of hydrogen-bonded energetic material N-nitropyrazole
    • Authors: Yan, T.-T., Xu, Y.-F., Xi, D.-Y., Zhang, D.-D., Jiang, R.
    • Year: 2024
    • Journal: Chemical Physics Letters
    • Volume: 852
    • Article Number: 141501
  3. Title: High-pressure behavior of hydrogen-bonded organic crystal trifluoroacetamide
    • Authors: Yan, T.-T., Jiang, R., Xi, D.-Y., Zhang, D.-D., Xu, Y.-F.
    • Year: 2024
    • Journal: Chemical Physics Letters
    • Volume: 850
    • Article Number: 141472
  4. Title: Lubricating properties of thymol-based deep eutectic solvents
    • Authors: Li, T., Zhang, Z., Wang, J., Zhang, L., Wei, X.
    • Year: 2024
    • Journal: Industrial Lubrication and Tribology
    • Volume: 76(6), pp. 759–768
  5. Title: High pressure study of hydrogen-bonded energetic material 4-nitropyrazole
    • Authors: Yan, T.-T., Xu, Y.-F., Xi, D.-Y., Jiang, R., Zhang, D.-D.
    • Year: 2024
    • Journal: Physics Letters, Section A: General, Atomic and Solid State Physics
    • Volume: 512
    • Article Number: 129567